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Preface 

DAFX is a  synonym for digital  audio effects. It is also  the  name for a  European 
research  project for co-operation  and scientific transfer, namely  EU-COST-G6 
“Digital  Audio Effects” (1997-2001). It was initiated by Daniel  Arfib (CNRS, 
Marseille).  In the  past couple of years we have had four  EU-sponsored  international 
workshops/conferences on  DAFX, namely, in  Barcelona  (DAFX-98l),  Trondheim 
(DAFX-9g2), Verona  (DAFX-003),  and  Limerick  (DAFX-014). A variety of DAFX 
topics  have  been  presented  by  international  participants at these conferences. The 
papers  can  be found  on the corresponding web sites. 

This  book  not  only reflects these  conferences and workshops, it is intended  as a 
profound collection and  presentation of the main fields of digital  audio effects. The 
contents  and  structure of the book  were prepared by a special  book  work  group  and 
discussed in several  workshops  over the  past  years  sponsored by the EU-COST- 
G6 project. However, the single chapters  are  the  individual work of the respective 
authors. 

Chapter 1 gives an  introduction  to  digital  signal processing and shows  software 
implementations  with  the MATLAB  programming  tool.  Chapter 2 discusses digi- 
tal  filters for shaping  the  audio  spectrum  and focuses  on the  main building  blocks 
for this  application.  Chapter 3 introduces  basic  structures for delays  and delay- 
based  audio effects. In Chapter 4 modulators  and  demodulators  are  introduced  and 
their  applications to  digital  audio effects are  demonstrated.  The  topic of nonlinear 
processing is the focus of Chapter 5.  First, we discuss fundamentals of dynamics 
processing  such as  limiters,  compressors/expanders  and  noise  gates  and  then we 
introduce  the  basics of nonlinear  processors for valve  simulation,  distortion,  har- 
monic generators  and  exciters.  Chapter 6 covers the wide field of spatial effects 
starting  with  basic effects, 3D for headphones  and  loudspeakers,  reverberation  and 
spatial  enhancements.  Chapter  7 deals with  time-segment  processing and  introduces 
techniques for variable  speed replay, time  stretching,  pitch  shifting, shuffling and 
granulation.  In  Chapter  8 we extend  the  time-domain processing of Chapters 2-7. 
We introduce  the  fundamental  techniques for time-frequency  processing,  demon- 
strate  several  implementation schemes and  illustrate  the variety of effects possible 
in the two-dimensional  time-frequency  domain. Chapter  9 covers the field of source- 
filter processing  where the  audio  signal is modeled as a source  signal  and a filter. 
We introduce  three  techniques for source-filter separation  and show source-filter 
transformations  leading  to  audio effects such as cross-synthesis, formant  changing, 
spectral  interpolation  and  pitch  shifting  with  formant  preservation.  The  end of this 
chapter covers feature  extraction  techniques.  Chapter 10 deals  with  spectral  process- 
ing where the  audio  signal is represented by spectral models  such as sinusoids plus 
a residual signal. Techniques for analysis, higher-level feature  analysis  and  synthesis 
are  introduced  and a variety of new audio effects based  on  these spectral models 

‘http://www.iua.upf.es/dafxgd 
2http://www.notam.uio.no/dafx99 
3http://profs.sci.univr.it/̂ dafx 
4http://www.csis.ul.ie/dafx01 



Preface XV 

are discussed. Effect applications  range  from  pitch  transposition,  vibrato,  spectral 
shape  shift,  gender  change to  harmonizer  and  morphing effects. Chapter 11 deals 
with  fundamental principles of time  and frequency  warping  techniques for deforming 
the  time  and/or  the frequency  axis.  Applications of these  techniques are  presented 
for pitch  shifting  inharmonic  sounds,  inharmonizer,  extraction of excitation  signals, 
morphing  and classical effects. Chapter  12 deals with  the  control of effect processors 
ranging  from  general  control  techniques to control  based  on  sound  features  and ges- 
tural  interfaces. Finally, Chapter 13 illustrates new challenges of bitstream  signal 
representations, shows the  fundamental basics and  introduces filtering concepts for 
bitstream signal processing. MATLAB  implementations in several chapters of the 
book illustrate software  implementations of DAFX  algorithms.  The MATLAB files 
can  be found on the web site h t t p  : //www . daf x. de. 

I hope the reader will enjoy the  presentation of the basic principles of DAFX 
in  this book and will be  motivated to explore  DAFX  with the help of our software 
implementations.  The  creativity of a DAFX  designer can only grow or emerge if 
intuition  and  experimentation  are combined  with  profound  knowledge of physical 
and musical  fundamentals.  The  implementation of DAFX in software  needs  some 
knowledge of digital  signal  processing  and  this is where this book  may serve as a 
source of ideas  and  implementation  details. 
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Chapter l 

Introduction 

U. Ziilzer 

1.1 Digital  Audio Effects DAFX  with 
MATLAB 

Audio effects are used by all  individuals involved in the  generation of musical signals 
and  start with  special  playing  techniques by musicians,  merge to  the use of special 
microphone  techniques and  migrate to effect processors for synthesizing,  recording, 
production  and  broadcasting of musical signals. This book will  cover several cat- 
egories of sound or audio effects and  their  impact on sound  modifications.  Digital 
audio effects - as  an acronym we use DAFX - are boxes or software  tools  with input 
audio  signals  or  sounds which are modified according to some  sound  control  pa- 
rameters  and deliver output signals or sounds (see Fig. 1.1). The input  and  output 
signals are monitored by loudspeakers  or  headphones and some  kind of visual  rep- 
resentation of the signal  such as  the  time signal, the signal level and  its  spectrum. 
According to acoustical  criteria the sound  engineer or musician sets his control 
parameters for the  sound effect he would like to achieve. Both  input  and  output 

Figure 1.1 Digital  audio effect and  its control [Arf99]. 
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signals  are in digital  format  and  represent  analog  audio signals. Modification of the 
sound  characteristic of the  input signal is the  main goal of digital  audio effects. The 
settings of the control  parameters  are  often  done by sound  engineers,  musicians  or 
simply the music listener,  but  can also be  part of the  digital  audio effect. 

The  aim of this  book is the description of digital  audio effects with  regard  to 

physical and acoustical effect: we take a short look at  the physical  background 
and  explanation. We describe  analog  means or devices  which generate  the 
sound effect. 

digital signal processing: we give a  formal  description of the underlying algo- 
rithm  and show  some  implementation  examples. 

musical  applications: we point  out  some  applications  and give references to 
sound  examples available on CD or  on the  WEB. 

The physical and  acoustical  phenomena of digital  audio effects will be  presented at 
the beginning of each effect description, followed  by an  explanation of the signal 
processing  techniques to achieve the effect and  some musical  applications  and  the 
control of effect parameters. 

In  this  introductory  chapter we next  explain  some  simple basics of digital  signal 
processing and  then show  how to write  simulation  software for audio effects process- 
ing  with  the MATLAB'  simulation  tool  or  freeware  simulation  tools2.  MATLAB 
implementations of digital  audio effects are a long way from running  in  real-time 
on a personal  computer or allowing  real-time  control of its  parameters. Neverthe- 
less the  programming of signal  processing algorithms  and in particular  sound effect 
algorithms  with MATLAB is very  easy and  can  be  learned very quickly. 

1.2 Fundamentals of Digital  Signal 
Processing 

The  fundamentals of digital  signal  processing consist of the  description of digital 
signals - in  the  context of this book we use digital  audio signals - as a sequence 
of numbers  with  appropriate  number  representation  and  the  description of digital 
systems, which are described by software  algorithms to  calculate an  output sequence 
of numbers  from  an  input sequence of numbers. The visual representation of digital 
systems is achieved by functional  block  diagram  representation  or  signal flow graphs. 
We  will focus  on  some  simple basics as  an  introduction  to  the  notation  and refer 
the  reader  to  the  literature for an  introduction  to  digital  signal processing  [ME93, 
Orf96, Zo197, MSY98,  MitOl]. 

'http://www.rnathworks.com 
2http://www.octave.org 
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t in  usec + n +  n +  t i n  p e c  + 

Figure 1.2 Sampling and quantizing  by ADC, digital  audio  effects and reconstruction by 
DAC. 

1.2.1 Digital Signals 

The  digital  signal  representation of an  analog  audio signal as a sequence of numbers 
is achieved by an  analog-to-digital  converter  ADC.  The ADC performs sampling of 
the  amplitudes of the  analog  signal x( t )  on  an  equidistant grid along  the  horizontal 
time  axis  and  quantization of the  amplitudes  to fixed samples  represented by num- 
bers x(n)  along the vertical  amplitude  axis (see Fig. 1.2).  The  samples  are shown as 
vertical lines with  dots  on  t,he  top.  The  analog signal x ( t )  denotes  the  signal ampli- 
tude over  continuous  time t in psec. Following the  ADC,  the  digital  (discrete-time 
and  quantized  amplitude) signal is represented by a sequence (stream) of samples 
~ ( n )  represented by numbers over the  discrete  time index n. The  time  distance be- 
tween  two  consecutive  samples is termed  sampling  interval T (sampling  period)  and 
the reciprocal is the  sampling  frequency fs = 1/T (sampling  rate).  The  sampling 
frequency reflects the  number of samples  per  second  in  Hertz  (Hz).  According to  the 
sampling  theorem,  it  has  to  be  chosen  as  twice  the  highest  frequency  fmax (signal 
bandwidth)  contained in the analog  signal,  namely fs > 2 . fmax. If  we are forced 
to use  a fixed sampling  frequency fs, we have to make sure  that  our  input  signal we 
want to  sample  has  a  bandwidth  according to  fmax = fs /2 .  If not, we have to reject 
higher  frequencies by filtering  with a lowpass filter which passes all frequencies up 
to  fmax.  The digital signal is then passed to a DAFX  box  (digital system), which 
performs a simple  multiplication of each  sample by 0.5 to deliver the  output  signal 
y ( n )  = 0.5-z(n).  This signal y ( n )  is then  forwarded  to  a  digital-to-analog  converter 
DAC,  which reconstructs  the  analog  signal y ( t ) .  The  output signal y ( t )  has half the 
amplitude of the  input  signal z(t). The following  M-file 1.1 may serve as  an  example 
for plotting  digital signals as shown in Fig. 1.2. 
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M-file 1.1 (figurel-02.m) 
subplot (2,4 , 1) ; 
plot((O:96)*5,y(l:97)); 
title(’x(t) ’1 ; 
axis( CO 500 -0.05 0.051) ; 
xlabel(’t in \musec \rightarrow’); 
subplot (2 , 4,2) ; 
stem((0:24),uI(I:25),’.’);axis([O 25 -0.05 0.051); 
xlabel( ’n  \rightarrow’ ) ; 
title(’x(n) ’1 ; 
subplot(2,4,3); 
stem((0:24),0.5*ul(l:25),’.’);axi~(~O 25 -0.05 0.051); 
xlabel(’n \rightarrow’) ; 
title(’y(n1’); 
subplot(2,4,4); 
plot((0:96)*5,0.5*y(l:97));axis([O 500 -0.05 0.053); 
xlabel(’t in \mu sec \rightarrow’); 
title(’y(t) ’1 ;  

-0.5 I I I I I I I I 
0 1000 2000 3000 4000 5000 6000 7000 8000 

0.4 I I I I I I 1 I I I I 

-0.4 I I I I I I I I I I l 
0 100 200 300 400 500 600 700 800 900 1000 

-0.05 I I I I I I I I I I I 
0 10 20 30 40 50 60 70 80 90 100 

n +  

Figure 1.3 Different time representations for digital  audio  signals. 
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Figure  1.3  shows  some  digital signals to  demonstrate different graphical  repre- 
sentations(see M-file 1.2).  The  upper  part shows 8000 samples,  the  middle  part  the 
first 1000 samples  and  the lower part shows the  first 100  samples  out of a digital 
audio signal. Only if the  number of samples inside a figure is sufficiently low,  will 
the line with  dot  graphical  representation  be  used for a  digital  signal. 

M-file 1.2 (figurel-03.m) 
[ulyFSyNBITS]=wavread(~ton2.wav~); 

figure(1) 
subplot(3,1,i); 
pl0t(0:7999,ul(l:800O));ylabel(’x(~~’); 
subplot  (3,1,2) ; 
p~ot(0:999,ul(l:1000));ylabel(’x(n)’); 
subplot  (3, l, 3) ; 
stem(O:99,ul(l:100),’.’);ylabel(’x(n)’); 
xlabel( ’n \rightarrow’ ) ; 

axis  format  vertical 
Vertical  Normalized 

axis  format 

32767- 
32766’ 

-32767, 
-32768 - 

Continuous 
time  axis 

I : : : : : : : : : : : : I ~ T  Discrete 
0 1 2  3 4 5 6 7 8  9 1 0 1 1  time  axis 

+-+ : : : : : : : : : : : ~n  Normalized 
discrete  time  axis 

Figure 1.4 Vertical and horizontal  scale  formats for digital  audio  signals. 

Two different vertical scale formats for digital  audio signals are shown in Fig. 1.4. 
The  quantization of the  amplitudes  to fixed numbers in the  range between  -32768 
. . . 32767 is based  on  a  16-bit  representation of the sample  amplitudes which allows 
216 quantized  values  in the  range  -215. . . 215 - 1. For a general  w-bit representation 
the  number  range is -2”-’ . . .2”-’ - 1. This  representation is called the integer 
number  representation. If we divide all integer  numbers by the  maximum  absolute 
value, for example  32768, we come to  the normalized  vertical scale in Fig. 1.4 which 
is in  the  range between -1  . . . l-Q. Q is the  quantization  step size and  can be 
calculated by Q = 2-(”-’), which leads to Q = 3.0518e - 005 for W = 16. Figure 
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1.4 also  displays the horizontal  scale  formats, namely the continuous-time  axis, 
the discrete-time  axis  and  the  normalized  discrete-time  axis, which will be used 
normally. After this  narrow  description we can define a digital  signal as a discrete- 
time  and  discrete-amplitude signal, which is formed by sampling an analog  signal 
and by quantization of the  amplitude  onto a fixed number of amplitude values. 
The digital  signal is represented by a  sequence of numbers z(n).  Reconstruction of 
analog  signals  can  be  performed by DACs. Further  details of ADCs and DACs and 
the  related  theory  can  be found in the  literature. For our discussion of digital  audio 
effects this  short  introduction to digital signals is sufficient. 

Signal  processing  algorithms  usually  process  signals by either block processing 
or  sample-by-sample  processing.  Examples for digital audio effects are presented in 
[Arf98]. For block processing, data  are transferred to a memory buffer and  then 
processed each  time  the buffer is filled with new data. Examples of such  algorithms 
are  fast  Fourier  transforms (FFTs) for spectra  computations  and  fast convolution. 
In  sample processing  algorithms,  each  input  sample is processed on a sample-by- 
sample  basis. 

A basic  algorithm for weighting of a  sound z (n)  (see Fig. 1.2) by a  constant 
factor a demonstrates a sample-by-sample  processing. (see M-file 1.3). The  input 
signal is represented by a  vector of numbers z(O), z(1) ,  . . . , z(length(z) - 1) .  

M-file 1.3 (sbs-a1g.m) 
% Read input sound file into vector x(n) and sampling frequency FS 
[x,FS]=wavread(’input filename’); 
% Sample-by sample algorithm y(n>=a*x(n> 
for n=i : length(x) , 

end ; 
% Write y(n> into output sound file with number of 
% bits Nbits and sampling frequency FS 
wavwrite(y,FS,Nbits,’output filename’); 

y(n>=a * x(n>; 

1.2.2 Spectrum Analysis of Digital Signals 

The  spectrum of a  signal shows the  distribution of energy over the frequency  range. 
The  upper  part of Fig. 1.5 shows the  spectrum of a short  time slot of an analog 
audio  signal. The frequencies  range up  to 20 kHz. The sampling  and  quantization of 
the analog  signal  with  sampling  frequency of fs = 40 kHz lead to a  corresponding 
digital  signal. The  spectrum of the digital  signal of the  same  time slot is shown 
in the lower part of Fig. 1.5. The sampling  operation  leads to a replication of the 
baseband  spectrum of the analog  signal [Orf96]. The frequency  contents from 0 Hz 
up  to 20 kHz of the analog  signal now also appear from 40 kHz up  to 60 kHz and  the 
folded version of it from 40 kHz down to 20 kHz. The replication of this first  image 
of the baseband  spectrum at 40 kHz  will  now also appear at integer  multiples of 
the  sampling frequency of fs = 40 kHz. But notice that  the  spectrum of the digital 
signal  from 0 up  to 20 kHz shows exactly  the  same  shape  as  the  spectrum of the 
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Figure 1.6 Spectra of analog  and  digital  signals. 

analog  signal.  The  reconstruction of the  analog  signal  out of the digital  signal is 
achieved by simply  lowpass filtering the digital  signal,  rejecting  frequencies  higher 
than f s / 2  = 20 kHz. If  we consider the  spectrum of the  digital  signal in the lower 
part of Fig. 1.5  and if  we reject all frequencies  higher than 20 kHz we come back to 
the  spectrum of the  analog signal in the  upper  part of the figure. 

Discrete Fourier  Transform 

The  spectrum of a  digital  signal  can  be  computed by the  discrete Fourier transform 
DFT which  is  given  by 

N-l 

X ( k )  = DFT[z(n)] = c z(n)e-jZnnklN k = 0,1 , .  . . , N  - 1. (1.1) 
n=O 

The  fast version of the  above  formula is called the fast  Fourier transform FFT. The 
FFT takes N consecutive  samples out of the signal z(n) and  performs  a  mathemat- 
ical operation  to yield N sa,mples X ( k )  of the  spectrum of the  signal.  Figure 1.6 
demonstrates  the  results of a, 16-point FFT applied to  16  samples of a cosine signal. 
The  result is normalized by N according to X=abs (fft (x ,N) ) /N; . 

The N samples X ( k )  = X,(k) + j X l ( k )  are complex-valued  with a real  part 
XR(IC) and  an  imaginary  part X ~ ( l c )  from which one  can  compute  the  absolute value 

JX(lc)J = v I X i ( k )  + X ? ( k )  IC = 0,1,. . . , N - 1 (1.2) 

which  is the  magnitude  spectrum,  and  the  phase 

p ( k )  = arctan - k = 0 , 1 ,  ... , N - l  
X R ( k )  
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Figure 1.6 Spectrum analysis  with FFT algorithm: (a) digital  cosine  with N = 16 sam- 
ples, (b) magnitude spectrum ( X ( k ) l  with N = 16 frequency  samples and (c) magnitude 
spectrum IX( f ) l  from 0 Hz up to  the sampling  frequency fa = 40000 Hz. 

which is the phase  spectrum.  Figure  1.6 also shows that  the FFT algorithm  leads to 
N equidistant frequency points which give N samples of the  spectrum of the signal 
starting from 0 Hz in  steps of up  to vis. These  frequency  points are given 
by IC$, where IC is running from 0,1,2, .  . . , N - 1. The magnitude  spectrum IX(f)l 
is often plotted over a logarithmic  amplitude scale according to 20 log,, (g) 
which gives 0 dB for a sinusoid of maximum  amplitude f l .  This normalization is 
equivalent to 20 log,, . Figure 1.7 shows this  representation of the example 
from  Fig.  1.6.  Images of the baseband  spectrum occur at  the sampling  frequency 
fs and multiples of fs. Therefore we see the original  frequency a t  5 kHz and in the 
first  image spectrum  the folded frequency fs - fc,,i,,=(40000-5)Hz=35000 Hz. The 
following M-file 1.4 is used for the  computation of Figures  1.6  and 1.7. 

( NI2 

M-file 1.4 (figurei-06-07.111) 
N=16; 
~=cos(2*pi*2*(0:l:N-l~/N) ’; 
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Figure 1.7 Magnitude  spectrum IX( f ) l  in dB from 0 Hz up to the  sampling  frequency 
fs = 40000 Hz. 

figure (1) 
subplot(3,1,1);stem(O:N-iyx,’. ’>; 
axis([-0.2 N -1.2 1.21); 
legend(’Cosine  signal  x(n> ’> ; 
ylabel(  ’a) ’ ; 
xlabel(  ’n  \rightarrow’) ; 

X=abs (f f t (x , N) ) /N; 
subplot(3,1,2);stem(O:N-l,Xy’.’); 
axis([-0.2 N -0.1 1.11); 
legend(’Magnitude spectrum\index{Magnitude spectrum)  IX(k) 1 ’ ) ;  
ylabel( ’ b) ’ ) ; 
xlabel ( ’ k \rightarrow ’ 

N=1024; 
x=cos(2*pi*(2*1024/16)*(O:I:N-l~/N)’; 

FS=40000 ; 

X=abs(fft(x,N))/N; 
subplot ( 3 , l  , 3) ;plot (f ,X> ; 
axis ( [-0.2*44100/16  max(f) -0.1 1.11 ; 
legend(’Magnitude spectrum\index{Magnitude spectrum)  IX(f) 1 ’ ) ;  
ylabel(  ’c) ’ ) ; 
xlabel(’f  in Hz \rightarrow’) 

f=((O:N-l)/N)*FS; 

figure (2) 
subplot(3,l,l);plot(f  ,20*10giO(X./(0.5)>); 
axis ( C-0.2*44100/16  max(f) -45 201 ; 
legend(  ’Magnitude spectrum\index{Magnitude spectrum) I X(f) I in  dB’) ; 
ylabel(’)X(f))  in  dB  \rightarrow’); 
xlabel(’f  in Hz \rightarrow’) 
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Inverse Discrete Fourier Transform (IDFT) 

Whilst the  DFT is used as  the  transform from the discrete-time  domain to  the 
discrete-frequency  domain for spectrum  analysis,  the inverse discrete  Fourier  trans- 
form IDFT allows the  transform from the discrete-frequency  domain to  the discrete- 
time  domain.  The  IDFT  algorithm is given by 

1 N--l ~ ( n )  = IDFT[X(IC)] = C X(k)ej2""k/N n = 0, l , .  . . , N  - 1. (1.4) 
k=O 

The  fast version of the  IDFT is called the inverse Fast  Fourier  transform IFFT. 
Taking N complex-valued  numbers and  the  property X ( k )  = X * ( N  - IC) in the 
frequency  domain  and  then  performing  the  IFFT gives N discrete-time  samples 
~(n) ,  which are  real-valued. 

Frequency Resolution: Zero-padding and Window Functions 

To  increase the frequency  resolution for spectrum  analysis we simply take more 
samples for the FFT algorithm.  Typical  numbers for the FFT resolution  are N = 
256,512,1024,2048,4096  and 8192. If we are only interested  in  computing  the spec- 
trum of 64  samples  and  would like to increase  the frequency  resolution  from  f,/64 
to  f,/1024, we have to  extend  the sequence of 64 audio  samples by adding zero 
samples  up to the  length 1024 and  then  performing  an 1024-point FFT.  This tech- 
nique is called zero-padding  and is illustrated in Fig.  1.8  and by  M-file 1.5. The 
upper left part shows the  original sequence of 8  samples  and  the  upper  right  part 
shows the corresponding  8-point FFT result.  The lower left part  illustrates  the 
adding of 8  zero  samples to  the original  8  sample  sequence  up to  the length of 
N = 16.  The lower right  part  illustrates  the  magnitude  spectrum IX(k) l  resulting 
from the 16-point FFT of the zero-padded  sequence of length N = 16.  Notice the 
increase  in  frequency  resolution  between the 8-point  and  16-point FFT. Between 
each  frequency  bin of the  upper  spectrum  a new frequency  bin in the lower spec- 
trum is calculated.  Bins k = 0,2,4,6,8,10,12,14 of the  16-point FFT correspond 
to bins k = 0,1,2,3,4,5,6,7 of the 8-point FFT. These N frequency  bins cover the 
frequency  range  from 0 Hz up  to v fs Hz. 

M-file 1.5 (f igurel-08 .m) 

x2(16)=0; 
x2(1:8)=x1; 

xI=[-I -0.5 1 2  2 1 0.5 -11; 

subplot (221) ; 
stern(O:l:7,xl);axis([-O.5 7.5 -1.5 2.51)- 
ylabel('x(n)  \rightarrow')  ;title('8 samples)); 
subplot (222) ; 
stem(O:l:7,abs(fft(xI)));axis([-O.5 7.5 -0.5 IO]); 
ylabelo IX(k) I \rightarrowJ);title('8-point FFT'); 
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Figure 1.8 Zero-padding to increase  frequency  resolution. 

subplot (223) ; 
stem(0:1:15,x2);axis([-0.5 15.5 -1.5 2.51); 
xlabel ( ’n \rightarrow’ ; ylabel( ’x (n) \rightarrow’ ; 
title( ’8 samples + zero-padding’) ; 

subplot (224) ; 
stem(0:1:15,abs(fft(x2)));axis([-1 16 -0.5 101); 
xlabel(’k \rightarrow’);ylabel(’JX(k) I \rightarrow’); 
title(’l6-point FFT’); 

The leakage effect occurs  due to  cutting  out N samples  from  the  signal.  This 
effect is shown in the  upper  part of Fig. 1.9 and  demonstrated by the  correspond- 
ing M-file 1.6. The cosine spectrum is smeared  around the frequency. We can  reduce 
the leakage effect  by selecting a window function like Blackman window and 
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Figure 1.9 Spectrum analysis of digital  signals: take N audio  samples and perform  an N 
point discrete  Fourier  transform to yield N samples of the spectrum of the signal starting 
f romOHzoverk~wherekis runningfromO,l ,Z ,  . . .  , N - l . ( a ) z ( n ) = c o s ( Z . . r r ~ ~ .  1 kHz 

n). 

Hamming  window 

~ ~ ( 7 2 )  = 0.42 - 0.5 ~0~(27rn /N)  + 0.08 cos(47rn/N), (1.5) 

~ ~ ( 7 2 )  = 0.54 - 0 . 4 6 ~ 0 ~ ( 2 ~ n / N )  (1.6) 
n = 0 , 1 ,  . . .  N - 1 .  

and weighting the N audio  samples by the window function.  This  weighting is 
performed  according to x, = w(n) . x(n) with 0 5 n 5 N - 1 and  then  an FFT 
of the weighted  signal is performed.  The cosine  weighted by a window and  the 
corresponding  spectrum is shown in  the middle part of Fig. 1.9. The lower part of 
Fig. 1.9 shows  a  segment of an  audio  signal weighted by the Blackman window and 
the corresponding  spectrum  via a FFT. Figure 1.10 shows further simple  examples 
for the  reduction of the leakage effect and  can  be  generated by the M-file 1.7. 

M-file 1.6 (figurel-09.m) 
x=cos(2*pi*1000*(0:1:N-1)/44100)~; 
f igure(2) 
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W=blackman(N) ; 
W=N*W/sum(W); % scaling  of  window 
f=((O:N/2-1)/N)*FS; 

xw=x . *W; 
subplot(3,2,l);plot(O:N-1,x); 
axis([O 1000  -1.1  1.111; 
titleoa) Cosine  signal x(n> ’) 

subplot(3,2,3);plot(O:N-1,xw);axis([O 8000 -4 41); 
titleoc) Cosine  signal  x-w(n)=x(n)  \cdot  w(n)  with  window’) 

X=2O*loglO  (abs  (f  ft  (x  ,N) 1 / (N/2) ) ; 
subplot(3,2,2) ;plot(f ,X(1:N/2)) ;  
axis( CO l0000 -80 101 1 ; 
ylabel(’X(f)’); 
title(’b)  Spectrum  of  cosine  Signal’) 

Xw=20*logiO  (abs (f f  t (xw , N) 1 / (N/2) ) ; 
subplot(3,2,4);plot(f  ,Xw(I:N/2)); 
axis( [O 10000 -80 101) ; 
ylabel(’X(f)’); 
title(’d)  Spectrum  with  Blackman  window’) 

s=ul(I:N).*W; 
subplot(3,2,5);plot(O:N-lys);axis([0 8000 -1.1  1.11); 
xlabel(  ’n  \rightarrow’) ; 
titleoe) Audio  signal  x-w(n)  with  window’) 

Sw=20*loglO  (abs (f f t (S ,N) 1 / (N/2) 1 ; 
subplot(3,2,6);plot(f  ,Sw(I:N/2)); 
axis( CO 10000 -80 101 ; 
ylabel(’X(f)’); 
titleof) Spectrum  with  Blackman  window’) 
xlabel( f  in Hz \rightarrow’ ; 

M-file 1.7 (figurel-1O.m) 

W = BLACKMAN(8) ; 
w=w*8/sum(w) ; 
xl=x. *W’ ; 
x2 (IS) =O; 
x2(1:8)=xI; 

x=[-I -0.5 1 2 2 1 0.5 -11; 
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0 1 2 3 4 5 6 7  
(b) 

l5 7 
&point FFT of (c) 

0 1 2 3 4 5 6 7  

0 1 2 3 4 5 6 7  
(C) 

16-point FFT of (d) 

~ 0 0 0 0 0 0 0 0 0  
I .  I 
0 5 10 15 

15 
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0 

n - l  k - 1  

Figure 1.10 Reduction of the leakage  effect by window  functions: (a)  the original  signal, 
(b) the Blackman  window  function of length N = 8, (c) product z(n)  . w(n) with 0 5 n 5 
N - 1, (d) zero-padding  applied to z ( n ) .  w(n)  up to length N = 16 and the corresponding 
spectra  are shown on the right  side. 

ylabel(’x(n) \rightarrow’); 
title(’a) 8 samples’) ; 
subplot (423) ; 
stem(O:l:7,w);axis([-0.5 7.5 -1.5 31); 
ylabel(’w(n) \rightarrow’) ; 
title(’b) 8 samples  Blackman window’); 

subplot (425) ; 
stem(0:l:7,xl);axis([-O.5 7.5 -1.5 S ] ) ;  
ylabel( ’ x-w  (n) \rightarrow ’ ) ; 
title(’c) x(n)\cdot  w(n)’); 
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subplot (222) ; 
stem(0:l:7,abs(fft(xl)));axis([-O.5 7.5 -0.5  151); 
ylabel( ’ I X (k)  I \rightarrow’ ) ; 
title(  ’8-point FFT of c )  ’); 

subplot (224) ; 
stem(0:1:15,abs(fft(x2)));axis(~-1 16 -0.5 151); 
xlabel(’k  \rightarrow’)  ;ylabel(’ lX(k) I \rightarrow’) ; 
title ( ’ 16-point FFT of ci) ’ ) ; 

DFT DFT DFT 

AAA N=8 N=8 N=8 

Figure 1.1’1 Short-time spectrum analysis by FFT. 

Spectrogram: Time-frequency Representation 

A  special  time-frequency  representation is the  spectrogram which gives an  estimate 
of the  short-time, time-localized frequency  content of the signal.  Therefore the signal 
is split into segments of length N which are multiplied by a window and an  FFT is 
performed (see Fig. 1.11). To  increase the time-localization of the  short-time  spectra 
an overlap of the weighted segments  can  be  used.  A  special visual representation 
of the  short-time  spectra is the spectrogram in Fig.  1.12.  Time  increases  linearly 
across the horizontal  axis and frequency  increases  across the vertical  axis. So each 
vertical line represents  the  absolute value \ X (  f )  1 over frequency by a grey scale 
value (see Fig.  1.12).  Only frequencies up to half the sampling  frequency are shown. 
The calculation of the spectrogram from a  signal  can  be  performed by the MATLAB 
function B = SPECGRAM (x, NFFT ,Fs ,WINDOW, NOVERLAP) . 

Another  time-frequency  representation of the  short-time Fourier transforms of 
a  signal x(.) is the waterfall  representation in Fig. 1.13, which can  be  produced by 
M-file 1.8 which calls the waterfall computation  algorithm given by M-file 1.9. 

M-file 1.8 (figurel-l3.m) 
[signal,FS,NBITS]=wavread(’ton2’); 
subplot(2li);plot(signal); 
subplot (212) ; 
waterfspec(signal,256,256,512,FS,20,-100); 
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.. 
l Frequency 

Spectrogram 

Figure 1.12 Spectrogram  via FFT of weighted  segments. 

1 
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n +  

Waterfall ReDresentaiion of Short-time FFTs 

f in kHz --t 

Figure 1.13 Waterfall  representation  via FFT of weighted  segments. 

M-file 1.9 (waterf spec .m) 
f unc t ion  y y = w a t e r f s p e c ( s i g n a l , s t a r t , s t e p s , N , f S , c l i p p i n ~ o i n t , b a s e p l ~ e )  
% water fspec(   s igna l ,  s tart ,  s t e p s ,  N ,  f S ,  c l ippingpoint ,   baseplane)  

% shows shor t - t ime  spec t ra  of s i g n a l ,   s t a r t i n g  
% 
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% at  k=start,  with  increments  of STEP with  N-point  FFT 
% dynamic  range  from  -baseplane  in  dB  up  to  20*log(clippingpoint) 
% in  dB  versus  time  axis 

% 18/9/98 J. Schattschneider 
% 14/10/2000 U. Zoelzer 
echo  off ; 
if narginc7,  baseplane=-IO0 ; end 
if  narginc6,  clippingpoint=O;  end 
if narginc5,  fS=48000;  end 
if  narginc4,  N=1024;  end % default  FFT 
if narginc3, steps=round(length(signal)/25); end 
if narginc2,  start=O;  end 

% 

windoo=blackman(N); % window - default 
windoo=windoo*N/sum(windoo) ; % scaling 
Calculation  of  number  of  spectra  nos 
n=length(signal); 
rest=n-start-N; 
nos=round(rest/steps) ; 
if nos>rest/steps,  nos=nos-l;  end 
vectors  for  3D  representation 
x=linspace(O,  fS/1000  ,N+I); 
z=x-x; 
cup=z+clippingpoint; 
cdown=z+baseplane; 

signal=signa1+0.0000001; 
Computation  of  spectra  and  visual  representation 
for  i=l:l:nos, 
spekl=20 .* loglO(abs(fft(windoo . *  signal(l+start+ . . . .  
. . . . i*steps : start+N+i*steps) ) . / (N) /O .5) ; 
spek=  C-200 ; spekl (l :NI] ; 
spek=(spek>cup’).*cup’+(spek<=cup’).*spek; 
spek=(spek<cdown’).*cdown’+(spek>=cdown’).*spek; 
spek(l)=baseplane-1.0; 
spek(N/2)=baseplane-10; 
y=x-x+(i-l) ; 
if  i==l 

p=plAt3(x(l:N/2)  ,y(I:N/2)  ,spek(l:N/2),  ’k’); 
set(p,’Linewidth’,O.l); 

pp=patch(x(l:N/2),y(l:N/2),spek(l:N/2),’w’,’Visible’,’on’); 
set  (pp,  ’Linewidth’ ,O .l) ; 

end 

end ; 
set(gca,’DrawMode’,’fast’); 
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axis(  C-0.3 fS/2000+0.3 0 nos baseplane-l0 01 ; 
set(gca,’Ydir’,’reverse’); 
view (12,401 ; 

1.2.3 Digital Systems 

A digital  system is represented by an algorithm which uses the  input signal x(n) as 
a sequence (stream) of numbers  and performs mathematical  operations upon the 
input signal  such as  additions,  multiplications and delay  operations. The result of 
the algorithm is a sequence of numbers  or  the  output signal y(n). Systems which do 
not  change their behavior over time  and fulfill the superposition  property [Orf96] are 
called linear  time-invariant  (LTI)  systems.  Nonlinear  time-invariant  systems will be 
discussed  in Chapter 5. The  input/output relations for a LT1 digital  system  describe 
time  domain  relations which are based  on the following terms  and definitions: 

0 unit  impulse,  impulse  response and discrete  convolution; 

0 algorithms  and signal flow graphs. 

For each of these  definitions an equivalent  description in the frequency  domain 
exists, which will be  introduced  later. 

Unit Impulse, Impulse Response and Discrete Convolution 

0 Test  signal:  a very useful test signal  for  digital  systems is the  unit impulse 

d(n) = 
1 for W = 0 
0 for n # 0, 

which is equal to one for n = 0 and zero elsewhere (see Fig. 1.14). 

0 Impulse  response: if  we apply a unit-sample  function to a  digital  system,  the 
digital  system will lead to  an  output signal y(n) = h(n) ,  which is the so-called 
impulse  response h(n) of the digital  system. The digital  system is completely 
described by the impulse  response, which is pointed  out by the label h(n) 
inside the box, as shown in Fig. 1.14. 

Figure 1.14 Impulse  response h(n) as a time  domain  description of a digital system. 
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0 Discrete  convolution: if  we know the impulse  response h(n) of a digital  system, 
we can  calculate  the  output signal y(n)  from a freely chosen input signal ~ ( n )  
by the discrete  convolution  formula given by 

00 

y(n) = c z ( k )  . h(" - k )  = .(n) * h(n) ,  (1.8) 
k = - m  

which is often  abbreviated by the second term y(n) = x(n)*h(n).  This  discrete 
sum  formula  (1.8)  represents an  input-output  relation for a digital  system in 
the  time  domain.  The  computation of the convolution sum formula (1.8) can 
be achieved by the MATLAB function y=conv(x, h) .  

Algorithms and Signal  Flow  Graphs 

The above given discrete  convolution  formula shows the mathematical  operations 
which have to be performed to  obtain  the  output signal y(n) for a given input 
signal x(.). In  the following we will introduce  a  visual  representation called a  signal 
flow graph which represents the  mathematical  input/output  relations in a graphical 
block diagram. We discuss  some  example  algorithms to show that we only need three 
graphical  representations for the multiplication of signals by coefficients, delay and 
summation of signals. 

0 A delay of the  input signal by two  sampling  intervals is given by the  algorithm 

y(n) = .(n - 2) (1.9) 

and is represented by the block diagram  in  Fig.  1.15. 

Figure 1.15 Delay of the  input signal. 

A weighting of the  input signal by a coefficient a is given by the  algorithm 

y(n) = a .  x(.) (1.10) 

and represented by a block diagram in Fig. 1.16. 

1 a a 

- 1 0 1 2   - 1 0 1 2  

Figure 1.16 Weighting of the  input signal. 
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0 The  addition of two  input signals is given by the  algorithm 

y(n) = a1 .x1 (n)  + a2 . z2(n)  

and  represented by a block diagram in Fig.  1.17. 

1 Introduction 

(1.11) 

- 1 0 1 2  

Figure 1.17 Addition of two signals z l (n )  and z2(n) 

0 The combination of the above  algorithms  leads to  the weighted sum over 
several input  samples, which is given by the  algorithm 

1 1 1 
3 3 3 

y(n) = -x(.) + -x(. - 1) + -x(n - 2)  (1.12) 

and  represented by a block diagram in Fig. 1.18. 

x(n-2) 

- 1 0 1 2  

'13  '13 
n) = 1 x(n) + 1 x(n-1) + - x(n-2) 

3  3 L n  

- 1 0   1 2  3 

Figure 1.18 Simple  digital system. 

Transfer Function and  Frequency Response 

So far  our  description of digital  systems  has been based  on the  time  domain relation- 
ship between the  input  and  output signals. We noticed that  the  input  and  output 
signals and  the  impulse response of the  digital  system  are given in  the discrete  time 
domain. In a  similar way to  the frequency  domain  description of digital  signals by 
their  spectra given in the previous  subsection we can have a  frequency  domain de- 
scription of the  digital  system which is represented by the impulse  response h(n). 
The frequency  domain  behavior of a digital  system reflects its  ability  to pass,  reject 
and  enhance  certain frequencies  included in the  input signal spectrum.  The com- 
mon terms for the frequency  domain  behavior are  the  transfer function H ( z )  and 
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the frequency  response H ( f )  of the  digital  system.  Both  can  be  obtained by two 
mathematical  transforms  applied to  the impulse  response h(n). 

The first  transform is the 2-Transform 
cc 

X ( z )  = (1.13) 
n=-cc 

applied to  the signal z (n)  and  the second transform is the discrete-time Fourier 
transform 

M 

n=-cc 

with R = wT = 27r f / fs (1.15) 

applied to  the signal z(n).  Both  are  related by the  substitution z U ej'. If  we apply 
the Z-transform to the impulse  response h(n) of a  digital  system  according to 

cc 

(1.16) 
n=-cc 

we denote H ( z )  as  the transfer function. If  we apply  the discrete-time Fourier trans- 
form to the impulse  response h(n) we get 

Substituting (1.15) we define the frequency response of the digital  system by 

cc 

(1.17) 

(1.18) 
n=-cc 

Causal  and Stable Systems 

A realizable  digital  system has  to fulfill the following two conditions: 

Causality:  a  discrete-time  system is causal, if the  output signal y ( n )  = 0 for 
n < 0 for a given input  signal U(.) = 0 for n < 0. This  means that  the system 
cannot  react to  an  input before the  input is applied to the system. 

0 Stability:  a  digital  system is stable if 

00 

(1.19) 

holds. The sum over the  absolute values of h(n) has to be less than a fixed 
number M2 < cc. 
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Table 1.1 Z-transforms and discrete-time  Fourier  transforms of x(..). 

The stability implies that  the transfer  function  (Z-transform of impulse  response) 
and  the frequency  response  (discrete-time  Fourier  transform of impulse  response) of 
a digital  system  are  related by the  substitution z H ej'. Realizable  digital  systems 
have to be causal and stable systems. Some Z-transforms and  their discrete-time 
Fourier  transforms of a signal ~ ( n )  are given in  Table 1 .l. 

IIR and FIR Systems 

IIR systems: A system  with an infinite  impulse  response h(n) is called an  IIR 
system. From the block diagram in Fig.  1.19 we can  read the difference equation 

y ( n )  = z(n) - a1y(n - 1) - a2y(n - 2). (1.20) 

The  output signal y(n) is fed back through delay  elements and a weighted sum 
of these  delayed outputs is summed up  to  the  input signal x(.). Such a feedback 
system is also called a recursive  system. The Z-transform of (1.20) yields 

Y ( z )  = X ( z )  - a l z - l Y ( z )  - a / Y ( z )  (1.21) 
X(z) = Y ( z ) ( l  + a1z-' + a2z-2) (1.22) 

and solving for Y ( z )  /X ( z )  gives transfer  function 

(l .23) 

Figure  1.20 shows a special  signal flow graph  representation, where adders, multi- 
pliers and delay operators  are replaced by weighted graphs. 

If the  input delay line is extended up  to N - 1 delay elements and  the  output 
delay  line up  to M delay elements  according to Fig.  1.21, we can  write for the 
difference equation 

M N-l 

(1.24) 
k=l k=O 
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Figure 1.19 Simple IIR system  with input signal z(n)  and  output signal y(n). 

Figure 1.20 Signal  flow graph of digital  system  in  Fig. 1.19 with  time  domain  descrip- 
tion  in the left block diagram and corresponding  frequency  domain  description  with Z- 
transform. 

Figure 1.21 IIR system 

the  Z-transform of the difference equation 

M N-l 

Y ( z )  = -- c ah z-’YY(z) + c bh z-’XX(z), 
k = l  k=O 

(1.25) 
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and  the  resulting  transfer  function 

(1.26) 

The following M-file 1.10 shows  a block processing approach for the IIR filter algo- 
rithm. 

M-file 1.10 (fi1ter.m) 
Y = FILTER(B,A,X)  filters  the  data  in  vector  X  with  the 

filter  described  by  vectors A and B to create  the  filtered 
data Y. The  filter  is  a  "Direct  Form  I1  Transposed" 
implementation  of  the  standard  difference  equation: 
a(l)*y(n) = b(l)*x(n) + b(2)*x(n-l) + . . .  + b(nb+l)*x(n-nb) 

- a(2)*y(n-1) - . . . - a(na+l)*y(n-na) 
If  a(1) is  not  equal  to 1, FILTER  normalizes  the  filter 
coefficients  by a( l) . 

A sample-by-sample  processing  approach for a  second-order IIR filter algorithm 
is  demonstrated by the following M-file 1.11. 

M-file 1.11 (DirectFormO1.m) 
% M-File  DirectFormO1.M 
% Impulse  response  of  2nd  order  IIR  filter 
% Sample-by-sample  algorithm 
clear 
echo  on 
% 

% 
% Impulse  response  of  2nd  order  IIR  filter 

echo  off 

% Coefficient  computation 
f  g=4000 ; 
f  a=48000 ; 
k=tan(pi*fg/fa) ; 

b(l)=l/(l+sqrt(2)*k+k-2); 
b(2)=-2/(l+sqrt(2)*k+k^2); 
b(3)=l/(l+sqrt(2)*k+k-2); 
a(l)=l; 
a(2)=2*(k-2-l)/(l+sqrt(2)*k+kA2); 
a(3)=(l-sqrt(2)*k+k^2)/(l+sqrt(2)*k+k-2); 
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% Initialization  of  state  variables 
xhl=O;xh2=0; 
yhl=O;yh2=0; 

% Input  signal:  unit  impulse 
N=20; % length  of  input  signal 
x(N)=O;x(l)=l; 

% Sample-by-sample  algorithm 
for  n=l:N 
y(n)=b(l)*x(n) + b(2)*xhl + b(3)*xh2 - a(2)*yhl - a(3)*yh2; 
xh2=xhl;  xhl=x (n) ; 
yh2=yhl;  yhl=y (n) ; 
end ; 

% Plot  results 
subplot  (2,1,1) 
stem(0:l:length(x)-lyx,’.’);axis([-0.6 length(x)-l  -1.2  1.21); 
xlabel(’n  \rightarrow’)  ;ylabel(’x(n)  \rightarrow’); 
subplot  (2  1,2) 
stem(O:l:length(x)-l,y,’.’);axis([-0.6 length(x)-l -1.2 1.21); 
xlabel( ’n \rightarrow’)  ;ylabel (’y(n) \rightarrow’) ; 

The  computation of frequency response  based  on the coefficients of the  transfer 
function H ( z )  = % can be achieved by the M-file 1.12. 

M-file 1.12 (freq2.m) 
FREqZ  Digital  filter  frequency  response. 

[H,W] = FREqZ(B,A,N)  returns  the  N-point  complex  frequency 
response  vector  H  and  the  N-point  frequency  vector W in 
radians/sample  of  the  filter: 

jw  -jw - jmw 
jw B(e) b(1) + b(2)e + . . . . + b(m+l)e 

H(e) = _ _ _ _  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
jw  -jw - jnw 

A(e)  a(1) + a(2)e + . . . . + a(n+i)e 
given  numerator  and  denominator  coefficients  in  vectors B and A. 
The  frequency  response  is  evaluated  at N points  equally  spaced 
around  the  upper  half  of  the  unit  circle. 

The computation of zeros and poles of H ( z )  = B is implemented by  M-file 
1.13. 

M-file 1.13 (zp1ane.m) 
ZPLANE  2-plane  zero-pole  plot. 

ZPLANE(B,A)  where  B  and A are  row  vectors  containing  transfer 
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function polynomial coefficients plots the poles and zeros of 
B(z)/A(z).  

FIR system: A system  with  a  finite  impulse  response h(n) is called an  FIR  system. 
From the block diagram in Fig.  1.22 we can  read  the difference equation 

y(n) = bo.(.) + blz(n - 1) + baz(n - 2). (1.27) 

The  input signal ~ ( n )  is fed forward through delay elements and a weighted sum 
of these delayed inputs is summed  up to  the  input signal y(n). Such  a feed forward 
system is also called a  nonrecursive  system. The Z-transform of (1.27) yields 

Y ( z )  boX(2)  + b l z - ' X ( z )  + b z ~ - ~ X ( z )  (1.28) 
= X ( Z ) ( b o  + b1z-l + b 2 z P 2 )  (1.29) 

and solving for Y ( z )  / X ( z )  gives transfer  function 

A general FIR system in Fig. 1.23  consists of a feed forward delay line with N - 1 
delay  elements  and has the difference equation 

N - l  

y(n) = c b k  Z(?Z - k ) .  (1.31) 
k=O 

The finite  impulse  response is given by 
N--l 

h(n) = C bk 6(n - k ) ,  (l .32) 
k=O 

which shows that each  impulse of h(n)is represented by a weighted and shifted  unit 
impulse. The Z-transform of the impulse  response  leads to  the transfer  function 

N - l  

k=O 

x(n-1) = xH,(n) X 

Figure 1.22 Simple FIR system  with input signal z (n )  and  output signal y(n).  
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. 

Figure 1.23 FIR system. 

The  time-domain  algorithms for FIR  systems  are  the  same  as  those for IIR  systems 
with  the  exception that  the recursive part is missing. The previously  introduced 
M-files for IIR  systems  can  be used  with the  appropriate coefficients for FIR block 
processing or sample-by-sample processing. 

The  computation of the frequency  response H (  f )  = ( H (  f) 1 . e j L H ( f )  ( ( H (  f )  I 
magnitude  response, cp = L H (  f )  phase  response)  from the Z-transform of an  FIR 
impulse  response  according to (1.33) is shown in Fig. 1.24 and is calculated by the 
following  M-file 1.14. 

(a) Impulse  Response h(n) 
I l 0.7 I 

(b) Magnitude  Response IH(f)l 
I 

- 1 0 1 2 3 4 5  
n-l 

(c) PoleLZero  plot 

0 10 20 30 40 
fin kHz + 

O l T T - - - -  

(d) Phase  Response L H(f) 

T 
S -1 
I 
U 

-1.5 

-2 ‘ 
10 20 30 

f in kHz + 
3 

Figure 1.24 FIR system: (a) impulse  response, (b) magnitude  response, ( c )  pole/zero 
plot and  (d) phase  response  (sampling  frequency fs= 40 kHz). 
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M-file 1.14 (figurel-24.m) 
function  magphasresponse(h) 
FS=40000; 
FoSi=’Fontsize’; 
fosi=lO; 
if nargin==O 

end 
hmax=max  (h) ; 
hmin=min(h); 
dh=hmax-hmin; 
hmax=hmax+.l*dh; 
hmin=hmin-.l*dh; 

h=[-.l .l5 .3 .l5 -.l]; 

N=length(h) ; 
% denominator  polynomial: 
a=zeros(l ,N) ; 
a(1)=1; 

subplot  (221) 
stem(0:N-1,h) 
axis([-l N, hmin hmax]) 
title(’a)  Impulse  Response  h(n)’,FoSi,fosi); 
xlabel(’n  \rightarrow’,FoSi,fosi) 
grid on; 

subplot  (223) 
zplane (h , a) 
title(’c)  Pole/Zero  plot’,FoSi,fosi); 
xlabel(’Re(z)’,FoSi,fosi) 
ylabel(’Im(z)’  ,FoSi,fosi) 

subplot (222) 
[H,F] =freqz(h,a,l024,’whole’,FS); 
plot  (F/1000,  abs  (H) ) 
xlabel(’f  in kHz \rightarrow’,FoSi,fosi); 
ylabel(’IH(f) I \rightarrow’,FoSi,fosi); 
title(’b)  Magnitude  response IH(f) I ’,FoSi,fosi); 
grid on; 

subplot (224) 
plot  (F/l000  ,unwrap  (angle  (H) ) /pi) 
xlabel(’f  in kHz \rightarrow’,FoSi,fosi) 
ylabel(’\angle  H(f)/\pi  \rightarrow’,FoSi,fosi) 
title(’d)  Phase  Response  \angle  H(f)’,FoSi,fosi); 
grid on; 
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1.3 Conclusion 

In this  first  chapter  some  basic  concepts of digital  signals,  their  spectra  and  digital 
systems  have  been  introduced.  The  description is intended for persons  with  little or 
no  knowledge of digital signal processing. The inclusion of MATLAB M-files for all 
stages of processing  may serve as  a basis for further  programming in the following 
chapters. As  well as showing  simple  tools for graphical  representations of digital 
audio signals we have  calculated  the  spectrum of a signal x(.) by the use of the 
FFT M-file 

0 Xmagnitude=abs (f f t (x)) 
Xphase=angle (f f t (x) ) . 

Time-domain  processing for DAFX can  be  performed by block-based input-output 
computations which are  based on the convolution  formula (if the impulse  response 
of a system is known) or difference equations (if the coefficients a and b are  known). 
The  computations  can  be done by the following  M-files: 

0 y=conv (h, x) %length of output signal l-y =l-h  +l-x -1 
y=filter(b,a,x) %l-y =l-x 

These M-files deliver an  output vector  containing  the  output  signal y(n) in a  vector 
of corresponding  length. Of course,  these block processing  algorithms  perform their 
inner  computations  on  a sample-by-sample basis. Therefore, we have  also  shown an 
example for the sample-by-sample  programming  technique, which can  be modified 
according  to different applications: 

0 y=dafxalgori thm(paraeters ,x)  

f o r  n=i : length(x) , 
y(n)=. . . .do something algorithm with x(n) and parameters; 
end ; 

% Sample-by sample algorithm y(n)=function(parameters,x(n)) 

That is all we need for DAFX  exploration  and  programming,  good luck! 
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Chapter 2 

Filters 

P. Dutilleux, U. Zolzer 

2.1 Introduction 

The  term filter  can have a large number of different meanings. In general it can  be 
seen as a way to select certain  elements  with desired properties from a larger set. 
Let  us focus on the  particular field of digital  audio effects and  consider  a  signal in 
the frequency  domain. The signal  can  be seen as a  set of partials having different 
frequencies and  amplitudes.  The filter will perform  a selection of the  partials accord- 
ing to  the frequencies that we want to reject,  retain  or emphasize. In  other words: 
the filter will modify the  amplitude of the  partials according to their frequency. 
Once implemented,  it will turn  out  that  this filter is a linear  transformation. As an 
extension,  linear  transformations  can  be  said to be  filters. According to this new 
definition of a filter,  any  linear  operation could be said to  be  a  filter but  this would 
go far beyond the scope of digital  audio effects. It is possible to  demonstrate  what 
a filter is by using one’s voice and vocal tract.  Utter a vowel, a for example, at  a 
fixed pitch  and  then  utter  other vowels at  the same  pitch. By doing that we do  not 
modify our vocal cords but we modify the volume and  the interconnection pattern 
of our vocal tract.  The vocal cords  produce  a  signal  with  a fixed harmonic spec- 
trum whereas the cavities  act as acoustic  filters to enhance  some  portions of the 
spectrum. We have described  filters in the frequency  domain  here  because it is the 
usual way to consider them  but  they also have an effect in the  time  domain. After 
introducing  a  filter classification in the frequency  domain, we will review typical 
implementation  methods  and  the  associated effects in the  time  domain. 

The various types of filters  can  be defined according to the following classifica- 
tion: 

e Lowpass (LP) filters select low frequencies up  to  the cut-off frequency fc 
and  attenuate frequencies higher than fc.  

31 
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LP BP H(f)t Resonator 

HP BR Notch 

Figure 2.1 Filter classification. 

0 Highpass (HP) filters select frequencies higher than f c  and  attenuate fre- 
quencies below f c .  

0 Bandpass (BP) filters select frequencies between a lower  cut-off frequency 
f c l  and a  higher cut-off frequency f c h .  Frequencies below fc l  and frequencies 
higher than fch are  attenuated. 

0 Bandreject (BR) filters attenuate frequencies between a lower  cut-off fre- 
quency f,.~ and a  higher cut-off frequency f&. Frequencies below fcl and fre- 
quencies  higher than f c h  are passed. 

0 Notch filters attenuate frequencies in a  narrow  bandwidth  around  the cut-off 
frequency f c. 

0 Resonator filters  amplify frequencies in a  narrow  bandwidth  around  the  cut- 
off frequency fc .  

0 Allpass filters  pass  all frequencies but modify the  phase of the input,  signal. 

Other  types of filters (LP with  resonance,  comb,  multiple  notch ...) can be de- 
scribed as a combination of these basic elements. Here are listed  some of the possible 
applications of these  filter  types: The lowpass with  resonance is very often used in 
computer music to simulate an acoustical  resonating structure;  the highpass filter 
can remove undesired  very low frequencies; the  bandpass  can  produce effects such 
as  the  imitation of a  telephone line or of a mute on an acoustical instrument;  the 
bandreject  can divide the audible  spectrum  into two bands  that seem to be uncor- 
related. The resonator  can  be used to  add artificial  resonances to a  sound;  the  notch 
is most useful in eliminating  annoying  frequency  components;  a  set of notch  filters, 
used in combination  with the  input  signal,  can  produce a  phasing effect. 
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2.2 Basic Filters 

2.2.1 Lowpass Filter  Topologies 

A filter can be implemented in various ways. It can  be  an acoustic  filter, as in the 
case of the voice. For our  applications we would rather use electronic or  digital 
means.  Although we are  interested in digital  audio effects, it is worth  having  a 
look at well-established analog  techniques  because a large  body of methods have 
been developed in the  past to design and build analog  filters. There  are intrinsic 
design methods for digital  filters but  many  structures  can  be  adapted from existing 
analog  designs.  Furthermore, some of them have been tailored for ease of operation 
within musical applications. It is therefore of interest to  gain  ideas from these  analog 
designs in  order to build digital  filters  having  similar  advantages. We will focus on 
the second-order lowpass filter because it is the most common type  and  other  types 
can  be  derived from it. The frequency  response of a lowpass filter is shown in Fig. 2.2 .  
The  tuning  parameters of this lowpass filter are  the cut-off frequency fc and  the 
damping  factor C. The lower the  damping  factor,  the higher the resonance at  the 
cut-off frequency. 

Analog Design, Sallen & Key 

Let us remind ourselves of an analog  circuit that implements a second-order lowpass 
filter with  the  least  number of components: the Sallen & Key filter  (Figure 2.2). 

C 
Frequency  response 

H(f) 1-------+ ihighL 

Figure 2.2 Sallen & Key  second-order  analog  filter and frequency  response. 

The components ( R I ,  R z ,  C) are  related to  the  tuning parameters  as: 

These  relations  are  straightforward  but  both  tuning coefficients are coupled. It is 
therefore difficult to vary one while the  other remains constant.  This  structure is 
therefore  not  recommended when the  parameters  are  to  be  tuned dynamically and 
when low damping  factors  are  desired. 
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Digital Design, Canonical 

The canonical  second-order structure,  as shown in Fig. 2.3,  can  be  implemented by 
the difference equation 

y(n) = box(?%) + b1z(n - l) + b2x(n - 2) 

-u1y(n - 1) - uay(n - 2). (2.2) 

Figure 2.3 Canonical  second-order  digital filter. 

It can  be used for any second-order  transfer  function  according to 

In  order to modify the cut-off frequency or the damping  factor, all 5 coefficients 
have to be modified. They  can  be  computed from the specification in the frequency 
plane  or from  a prototype  analog filter.  One of the  methods  that  can be used is 
based  on the bilinear  transform [DJ85]. The following set of formulas  compute the 
coefficients for a lowpass filter: 

f c  analog cut-off frequency 

c damping  factor 

f s  sampling  frequency 
c = l/[tan(7rfc/fs)l 

(2.4) 

This  structure  has  the  advantage  that  it requires very few elementary  operations 
to process the signal  itself. It  has  unfortunately some severe drawbacks. Modifying 
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the filter tuning ( fc, 4) involves rather complex computations. If the  parameters  are 
varied continuously, the complexity of the filter is more  dependent on the coefficient 
computation than on the filtering process itself. Another  drawback is the poor  signal 
to noise ratio for low frequency  signals. Other filter structures  are available that cope 
with  these  problems. We  will again review a solution in the analog  domain  and  its 
counterpart in the  digital  domain. 

State Variable Filter, Analog 

For musical applications of filters  one wishes to have an independent  control over 
the cut-off frequency and  the  damping  factor. A technique  originating from the 
analog  computing technology can solve our  problem. It is called the  state variable 
filter (Figure 2.4). This  structure is more  expensive than  the Sallen & Key but  has 
independent  tuning components ( R f  , RC) for the cut-off frequency and  the  damping 
factors: 

Furthermore, it provides  simultaneously three  types of outputs: lowpass, highpass 
and  bandpass. 

Higtlpass  output  Bandpass  output 
0 C 0 C 

Lowpass 
0 

- - - 

output 

Figure 2.4 Analog state variable  filter. 

State Variable Filter, Digital 

The  state variable  filter  has a digital  implementation, as shown in  Fig. 2.5 [Cha80], 
where 

4 n )  input signal 
Y1 (n) lowpass output 
Y b  (n )  bandpass  output 
Y h  (R) highpass output 

and  the difference equations for the  output signals are given by 
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Highpass  output  Bandpass  output  Lowpass  output ,, 

Figure 2.5 Digital state variable filter. 

With  tuning coefficients F1 and Q1, related to  the  tuning  parameters f c  and C as: 

F1 = 2sin(rfC/ f S) Q1 = 2( (2.8) 

it  can  be shown that  the lowpass transfer  function is: 

T = F1 q = l - F l Q I  
n 

This  structure is particularly effective not only as far  as  the filtering process is 
concerned but  above  all because of the simple  relations between control  parameters 
and  tuning coefficients. One  should  consider the stability of this  filter, because 
at  higher cut-off frequencies and  larger  damping  factors  it becomes unstable. A 
“usability  limit” given by Fl < 2 - Q1  assures  the  stable  operation of the  state 
variable  implementation  [DutSl, DieOO]. In  most  musical  applications however it is 
not  a  problem  because the  tuning frequencies are usually  small  compared to  the 
sampling  frequency and  the  damping  factor is usually  set to small values [Dut89a, 
Dat971. This filter has proven its  suitability for a  large  number of applications. 
The nice properties of this filter have been exploited to produce  endless  glissandi 
out of natural  sounds  and  to allow smooth  transitions between  extreme  settings 
[Dut89b, m-Vas931. It is also used for synthesizer  applications [DieOO].  We have 
considered  here  two different digital filter structures. More are available and  each  has 
its  advantages  and drawbacks. An optimum choice can  only be made in agreement 
with  the  application [Zo197]. 

Normalization 

Filters  are usually  designed in the frequency  domain  and we have seen that they 
have an action  also in the time  domain.  Another  correlated  impact lies in the loud- 
ness of the filtered  sounds. The filter might  produce the right effect but  the result 
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might  be useless because the sound  has become too weak or too  strong.  The  method 
of compensating for these  amplitude  variations is called normalization.  Usual  nor- 
malization  methods are called L1, L2 and L ,  [Zo197]. L1 is used when the filter 
should never be overloaded under  any  circumstances. This is overkill most of the 
time. L2 is used to normalize  t,he  loudness of the signal. It is accurate for broad- 
band signals and fits  many  practical musical applications. L ,  actually  normalizes 
the frequency  response. It is best when the signal to filter is sinusoidal or periodical. 
With a  suitable  normalization scheme the filter  can prove to  be very easy to handle 
whereas  with the wrong normalization,  the filter might be rejected by musicians be- 
cause  they  cannot operate  it.  The normalization of the  state variable filter has  been 
studied in [DutSl] where several implementation schemes are proposed that lead to 
an effective implementation.  In  practice, a first-order lowpass filter that processes 
the  input signal will perform the normalization in fc and  an  amplitude correction in 
& will normalize  in  (Figure 2.6). This  normalization scheme allows us to  operate 
the filter with  damping  factors down to where the filter gain reaches about 74 
dB at fc. 

l l 
t” 

Figure 2.6 &-normalization  in fc and C for the state variable filter. 

Sharp Filters 

Apart from FIR filters (see section  2.2.3), we have so far only given examples of 
second-order  filters.  These  filters are  not  suitable for all  applications.  On  the  one 
hand,  smooth  spectral modifications are  better realized by using first-order filters. 
On  the  other  hand, processing two signal  components differently that are close 
in frequency, or imitating  t8he selectivity of our  hearing  system calls for higher 
order  filters. FIR filterss  can offer the  right selectivity but  again,  they will not  be 
easily tuned.  Butterworth filters  have attractive  features in this case. Such filters are 
optimized for a flat  frequency  response  until fc and yield a 6n dB/octave  attenuation 
for frequencies higher than f c .  Filters of order  2n  can be built out of n second-order 
sections, All sections are  tuned  to  the  same cut-off frequency f c  but each section 
has  a different damping  factor C (Table 2.1) [LKG72]. 

These  filters can be implemented  accurately in the canonical  second-order dig- 
ital filter structure  but modifying the  tuning frequency  in  real  time  can  lead to 
temporary instabilities. The  state variable structure is less accurate for high tuning 
frequencies (i.e. fc > f s / l O )  but allows faster  tuning modifications. A bandpass 
filter  comprising  a  4th-order  highpass and a 4th-order lowpass was implemented 
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Table 2.1 Damping  factors for Butterworth filters. 

2 Filters 

n 
2 I( 0.707 

C of second-order  sections 1 i ‘1 0.924 0.383 1 
10 0.988 0.891  0.707 0.454 0.156 

0.966 0.707 0.259 
0.981 0.831 0.556 0.195 

and used to  imitate a  fast  varying mute  on a trombone [Dutgl]. Higher order  filters 
(up  to  about 16)  are useful to segregate  spectral  bands or even individual partials 
within  complex  sounds. 

Behavior in the  Time Domain 

We so far considered the  action of the filters in the frequency  domain. We cannot 
forget the  time  domain because it is closely related to  it .  Narrow bandpass filters, 
or  resonant  filters even more, will induce  long  ringing  time  responses.  Filters  can 
be  optimized for their frequency  response or  time response. It is easier to grasp the 
time  behavior of FIRs than IIRs. FIRs have the drawback of a  time delay that can 
impair  the responsiveness of digital  audio effects. 

2.2.2 Parametric  AP, LP, HP, B P  and BR Filters 

Introduction 

In  this  subsection we introduce  a  special  class of parametric filter structures for 
allpass,  lowpass,  highpass, bandpass  and  bandreject filter functions.  Parametric fil- 
ter  structures  denote special  signal flow graphs where a coefficient inside the signal 
flow graph  directly  controls  the cut-off frequency and  bandwidth of the correspond- 
ing  filter.  These filter structures  are easily tunable by changing only one or two 
coefficients. They play an  important role for real-time  control  with  minimum com- 
putational complexity. 

Signal Processing 

The basis for parametric first- and second-order IIR filters is the first-  and second- 
order  allpass  filter. We will first discuss the first-order  allpass and show simple low- 
and  highpass filters, which consist of a tunable allpass filter together  with  a  direct 
path. 
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First-order allpass. A first-order  allpass  filter is given by the  transfer function 

4(z) = 
z-1 + c  
1 + cz-1 

(2.10) 

(2.11) 

The magnitude/phase  response  and  the  group delay of a first-order  allpass are 
shown in  Fig. 2.7. The  magnitude response is equal to one  and the phase  response 
is approaching -180 degrees for high frequencies. The  group delay shows the delay 
of the  input signal in samples versus frequency. The coefficient c in (2.10) controls 
the cut-off frequency of the  allpass, where the  phase response passes -90 degrees 
(see Fig.  2.7). 

Magnitude  Response,  Phase  Response. Group Delay 

-1  0 
0 0.1 0.2 0.3 0.4 0.5 

-200 ' 
0 0.1 0.2 0.3 0.4 0.5 

0 0  
0 0.1 0.2 0.3 0.4 0.5 

f/f, + 

Figure 2.7 First-order allpass filter with fc = 0.1 . fs. 

From (2.10) we can  derive the corresponding difference equation 

y(n) = cz(n) + 2(n - l) - cy(n - l), (2.12) 

which leads to  the block diagram  in  Fig. 2.8. The coefficient c occurs twice in this 
signal flow graph  and  can be adjusted  according to (2.11) to change the cut-off 
frequency. A va,riant  allpass structure with only one delay element is shown in t,he 
right part of Fig. 2.8. It is implemented by the difference equations 

(2.13) 
(2.14) 
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Direct-form structure Allpass structure 

Figure 2.8 Block diagram  for a first-order  allpass  filter. 

The resulting  transfer  function is equal to  (2.10). For simple  implementations a 
table  with a  number of coefficients for different cut-off frequencies is sufficient, but 
even for real-time  applications  this  structure offers very few computations.  In  the 
following we use this first-order  allpass  filter to perform  low/highpass  filtering. 

First-order low/highpass. A first-order lowpass filter  can be achieved by 
adding or subtracting (+/-) the  input signal  from the  output signal of a  first-order 
allpass  filter. As the  output signal of the first-order  allpass filter has a  phase  shift 
of -180 degrees for high  frequencies, this  operation  leads to low/highpass  filtering. 
The  transfer  function of a low/highpass filter is then given by 

H ( z )  = - (1 f A ( z ) )  (LP/HP +/-) l 
2 

(2.15) 

(2.16) 

(2.17) 

where  a tunable  first-order allpass 4(z)  with  tuning  parameter c is used. The plus 
sign (+) denotes the lowpass operation  and  the minus  sign (-) the highpass  opera- 
tion. A block diagram in Fig. 2.9 represents  the  operations involved in performing 
the low/highpass  filtering. The allpass  filter  can  be  implemented by the difference 
equation (2.12) as shown in Fig. 2.8. 

Figure 2.9 Block diagram of a first-order  low/highpass  filter. 

The  magnitude/phase response and  group delay are  illustrated for low- and high- 
pass  filtering  in  Fig.  2.10. The -3dB  point of the  magnitude response for lowpass and 
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Magnitude  Response,  Phase  Response,  Group  Delay  Magnitude  Response,  Phase  Response,  Group  Delay 
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-10 

0 0.1 0.2 0.3 0.4 0.5 

flf, + flf, + 

Figure 2.10 First-order low/highpass filter  with fc = O . l f s  

highpass is passed at  the cut-off frequency. With  the help of the allpass  subsystem 
in  Fig. 2.9 tunable low- and highpass  systems are achieved. 

Second-order allpass. The  implementation of tunable  bandpass  and  band- 
reject  filters  can  be achieved with  a  second-order  allpass  filter. The transfer  function 
of a second-order  allpass filter is given by 

(2.18) 

(2.19) 

(2.20) 

The  parameter d adjusts  the cut-off frequency and  the  parameter c the  bandwidth. 
The  magnitude/phase response and  the  group delay of a second-order  allpass are 
shown in Fig. 2.7. The magnitude  response is again  equal to one  and  the  phase 
response  approaches -360 degrees for high frequencies. The cut-off frequency WC de- 
termines  the point  on the  phase curve, where the  phase response passes -180 degrees. 
The width  or slope of the phase transition  around  the cut-off frequency is controlled 
by the  bandwidth  parameter W B .  From (2.18) the corresponding difference equation 

y(n) = -cz(n) + d(l - c)z(n - 1) + z(n - 2) 
-d(l  - c)y(n - 1) + cy(n - 2) (2.21) 
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can  be  derived, which leads to  the block diagram in Fig. 2.12. The cut-off frequency 
is controlled by the coefficient d and  the  bandwidth by coefficient c. 

Magnitude Response,  Phase  Response, Group  Delay 

-10 
0 0.1 0.2 0.3 0.4 0.5 

-400 L J 
0 0.1 0.2 0.3 0.4 0.5 

v i s  --t 

Figure 2.11 Second-order allpass filter  with fc = O . l f s  and f b  = 0.022fs. 

Figure 2.12 Block diagram for a second-order  allpass  filter. 
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Second-order bandpass/bandreject. Second-order  bandpass and  bandreject 
filters  can  be  described by the following transfer  function 

H ( z )  = 5 [l ‘F A(z)] (BP/BR -/+) 1 
(2.22) 

(2.23) 

(2.24) 

(2.25) 

where a tunable  second-order  allpass A(z)  with  tuning  parameters c and d is used. 
The plus sign (+) denotes  the  bandpass  operation  and  the minus sign (-) the  band- 
reject  operation.  The block diagram  in  Fig. 2.13 shows the  bandpass  and  bandreject 
filter implementation  based  on  a  second-order  allpass  subsystem,  which  can  be  im- 
plemented by the  signal flow graph of Fig. 2.12. The  magnitude/phase response and 
group delay are  illustrated in Fig. 2.14  for both filter types. 

Figure 2.13 Second-order  bandpass and bandreject  filter. 

Second-order low/highpass  filters. The coefficients for second-order low- 
and  highpass  filters given by the  transfer  function of (2.3)  are shown in Table 2.2. 
A control of single coefficients for adjusting  the cut-off frequency is not possible. 
A complete set of coefficients is necessary, if the cut-off frequency is changed.  The 
implementation of these  second-order low- and  highpass filters can  be achieved by 
the difference equation (2.2) and  the filter structure in Fig. 2.3. 

Table 2.2 Filter  coefficients for second-order  lowpass/highpass  filters [Zo197] . 
lowpass  (second-order)  with K = tan (7rfc/fs) 

bo a2 a1 b2 bl  
K2 2 K 2  

1+&K+K2 
K 2  

I + & K + K ~  I + & K + K ~  I + & K + K ~  I + & K + K ~  
2(K”- l )  I - & K + K ~  

highpass  (second-order)  with K = tan (rfc/fs)  
bo 

I+&K+K~ 
~ - & K + K ~  

I+&K+K~ I + & K + K ~  I + & K + K ~  I+&K+K~ 

a 2  a1 b2 b l  
1 -2 1 2 ( K L - l )  
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Magnitude  Response,  Phase  Response,  Group  Delay  Magnltude  Response, Phase Response,  Group  Delay 
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Figure 2.14 Second-order bandpasslbandreject 
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filter with fc = O . l f s  and fb = 0.022fs. 

Series connection of first- and second-order filters. If several  filters are 
necessary for spectrum  shaping, a series connection of first- and second-order  filters 

is performed, which is given by the  product of the single transfer  functions 

(2.26) 

(2.27) 

(2.28) 

A series  connection of three  stages is shown in Fig. 2.15. The resulting difference 
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Stage 1 Stage 2 Stage 3 

Figure 2.15 Series  connection of firstfsecond-order  stages. 

equation  can  be  split  into  three difference equations as given by 

stage 1 
y1(n) = h f z (n )  + b;lz(n - l) - a;lyl(n - 1) (2.29) 

.2(.> = Y1 (n) (2.30) 
y2(.) = bi2.2(n) + b;2z2(n - 1) + b;%2(n - 2) 

-a, ya(n - 1) - a;2y2(n - 2) S 2  (2.31) 

23(72) = Y2(n) (2.32) 
y(n) = b;3.3(n) + b?323(n - 1) + b;323(n - 2) 

-43y(n - 1) - 43y(n  - 2).  (2.33) 

stage 2 

stage 3 

Musical Applications 

The simple  control of the cut-off frequency and  the  bandwidth of these  parametric 
filters  leads to very efficient implementations for real-time  audio  applications.  Only 
second-order low- and  highpass  filters need the  computation of a complete  set of 
coefficients. The series connection of these filters can  be  done very easily as shown 
in  the previous paragraph. 

2.2.3 FIR Filters 

Introduction 

The  digital filter that we have  seen  before is said to have an infinite impulse  response. 
Because of the feedback  loops  within the  structure,  an  input  sample will excite 
an  output signal whose duration is dependent  on  the  tuning  parameters  and  can 
extend over a fairly long  period of time.  There  are  other filter structures  without 
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T 

Figure 2.16 Finite  Impulse  Response Filter. 

feedback  loops (Figure 2.16). These  are called finite  impulse  response  filters (FIR), 
because the response of the filter to a  unit  impulse lasts only for a fixed period 
of time.  These  filters allow the building of sophisticated  filter  types where strong 
attenuation of unwanted frequencies or decomposition of the signal into several 
frequency bands is necessary. They typically  require  more  computing power than 
IIR  structures  to achieve similar  results but when they  are implemented in the  form 
known as fast  convolution they become competitive,  thanks to  the  FFT algorithm. 
It is rather unwieldy to  tune these  filters  interactively. As an example,  let us briefly 
consider the vocoder  application. If the frequency bands  are fixed, then  the FIR 
implementation  can  be  most effective but if the frequency bands have to be  subtly 
tuned by a performer,  then  the  IIR  structures will certainly prove superior [Mai97]. 
However, the filter structure  in  Fig. 2.16  finds  widespread  applications for head- 
related  transfer  functions  and  the  approximation of first  room reflections, as will be 
shown in  Chapter 6. For applications where the impulse  response of a  real  system 
has been  measured, the  FIR filter structure  can  be used directly to simulate  the 
measured  impulse  response. 

Signal Processing 

The  output/input  relation of the filter structure in Fig.  2.16 is described by the 
difference equation 

N-l 

y(n) = c bi . z(n - i )  (2.34) 
i=O 

= boz(n) + b1z(n - 1) + . . . + b,Ai_1z(n - N + l ) ,  (2.35) 

which is a weighted sum of delayed input samples. If the  input signal is a  unit 
impulse 6(n), which is one for n = 0 and zero for n # 0, we get the impulse 
response of the system  according to 

N-l 

h(n) = c bi .6(n - i ) .  (2.36) 

A graphical  illustration of the impulse  response of a 5-tap  FIR filter is shown in 
Fig. 2.17. The Z-transform of the impulse  response gives the transfer  function 

i = O  

N-l 

(2.37) 
i=O 
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Figure 2.17 Impulse  response of an  FIR filter. 

and with z = ejn the frequency  response 

H(ej")  = bo + ble-j" + b2e-j2" + . . . + b ~ - l  . e- j (N-l)n (2.38) 
with 0 = 2rf  / fs  = WT. 

Filter design. The  filters  already described  such as LP, HP, BP and BR are also 
possible with  FIR filter structures (see Fig. 2.18). The N coefficients b o , .  . . , bN-1 
of a nonrecursive filter have to be  computed by special design  programs,  which  are 
discussed in all DSP text books. The N coefficients of the impulse  response can 
be  designed to yield a linear phase  response,  when  the coefficients fulfill certain 
symmetry  conditions.  The  simplest  design is based  on the inverse discrete-time 
Fourier transform of the ideal lowpass  filter, which leads to  the impulse  response 

h(n) = - .  2fc sin [ W C / f S  (n - +l)] 
f s  2rfclfs (. - F) ,n = 0 , .  . . , N - 1. (2.39) 

To  improve the frequency  response this impulse  response  can  be  weighted by an 
appropriate window function like Hamming or Blackman  according to 

(2.40) 
(2.41) 

If a lowpass filter is designed and  an impulse  response h ~ p ( n )  is derived, a frequency 
transformation of this lowpass filter leads to highpass,  bandpass  and  bandreject 
filters (see Fig.  2.18). 

Figure 2.18 Frequency transformations: LP and frequency  transformations to BP and 
HP. 
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Frequency transformations  are performed in the  time  domain by taking  the 
lowpass  impulse  response h ~ p ( n )  and  computing  the following equations: 

0 LP-HP 

0 LP-BP 

hBp(n) = 2 h L p ( n ) .  cos [ 2n- ;( 71 - - N i l ) ]  n = o ,  ... , N - 1 (2.43) 

0 LP-BR 

- hsp(n)  72 = o , . .  . , N  - 1. (2.44) 

Another  simple  FIR filter design is based  on  the FFT algorithm  and is called fre- 
quency  sampling.  Design  examples for audio  processing with  this design  technique 
can  be  found in [Zo197]. 

Musical Applications 

If linear  phase  processing is required,  FIR filtering offers magnitude  equalization 
without  phase  distortions.  They allow real-time  equalization by making  use of the 
frequency  sampling  design  procedure [Zo197] and  are  attractive equalizer counter- 
parts  to  IIR  filters,  as shown in [McG93].  A  discussion of more  advanced  FIR  filters 
for audio processing can  be  found  in [Zo197]. 

2.2.4 Convolution 

Introduction 

Convolution is a generic  signal  processing operation like addition  or  multiplication. 
In  the realm of computer  music  it  has  nevertheless  the  particular  meaning of im- 
posing a spectral  or  temporal  structure  onto  a  sound.  These  structures  are usually 
not defined by a set of few parameters,  such  as  the  shape  or  the  time response of a 
filter,  but given  by  a  signal  which lasts  typically a few seconds or more.  Although 
convolution has been  known and used for a very  long time in the signal  processing 
community,  its significance for computer music and  audio processing has grown  with 
the availability of fast  computers  that allow long  convolutions to be  performed in a 
reasonable  period of time. 
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Signal Processing 

We could say in general that  the convolution of two signals means  filtering the  one 
with  the  other.  There  are several ways of performing  this  operation.  The  straight- 
forward  method is a direct  implementation in a  FIR filter structure  but  it is com- 
putationally very ineffective when the impulse  response is several thousand  samples 
long. Another  method, called the  fast  convolution, makes  use of the FFT algorithm 
to  dramatically  speed  up  the  computation.  The  drawback of the  fast convolution 
is that  it  has a processing  delay  equal to  the length of two FFT blocks, which is 
objectionable for real-time  applications  whereas the FIR method  has  the  advantage 
of providing a result  immediately  after  the first sample  has  been  computed.  In  or- 
der  to  take  advantage of the FFT algorithm  while  keeping  the  processing  delay to a 
minimum,  low-latency  convolution  schemes  have  been  developed  which are  suitable 
for real-time  applications  [Gar95, MT991. 

The  result of convolution can  be  interpreted in both  the frequency and  time 
domains. If U(.) and b(n )  are  the two  convolved signals, the  output  spectrum will be 
given  by the  product of the two spectra S ( j )  = A ( f ) . B ( f ) .  The  time  interpretation 
derives from the fact that if b(n )  is a pulse at time k, we  will obtain a copy of u(n) 
shifted at time ko, i.e. s(n)  = a(n  - k). If b(n) is a  sequence of pulses, we  will 
obtain a copy of U(.) in correspondence to every  pulse, i.e. a rhythmic,  pitched, 
or  reverberated  structure,  depending  on t,he pulse distance. If b(n )  is pulse-like, we 
obtain  the  same  pattern  with a filtering effect. In this case b(n )  should  be interpreted 
as  an impulse  response.  Thus  convolution will result  in  subtractive  synthesis, where 
the frequency shape of the filter is determined by a real  sound. For example the 
convolution  with  a bell sound will be  heard  as filtered by the resonances of the bell. 
In  fact the bell sound is generated by a  strike  on the bell and  can  be considered as 
the impulse  response of the bell. In this way  we can  simulate  the effect of a  sound 
hitting  a bell, without  measuring  the resonances and designing the filter. If both 
sounds a ( n )  and b ( n )  are complex in time  and frequency, the  resulting  sound will 
be  blurred  and will tend  to lack the original  sound’s  character. If both  sounds  are of 
long duration  and each  has a strong  pitch  and  smooth  attack,  the  result will contain 
both  pitches  and  the  intersection of their  spectra. 

Musical Applications 

The  sound  example  “quasthal”  [m-quasthal]  illustrates  the use of the impulse re- 
sponse  as a way  of characterizing a linear  system.  In  this  example,  a spoken  word 
is convolved  with a series of impulses which are derived  from  measurements of 2 
loudspeakers  and of 3 rooms. The  first  loudspeaker, a small studio  monitor, al- 
ters  at  least  the  original  sound.  The second  loudspeaker, a spherical  one, colors 
the sound  strongly.  When the sound is convolved  with the impulse  responses of a 
room,  it is projected in the  corresponding  virtual  auditory  space [DMT99]. A dif- 
fuse reverberation  can  be  produced by convolving with  broad  band  noise  having 
a  sharp  attack  and  exponentially decreasing amplitude.  Another  example  features 
a tuba glissando  convolved by a series of snare-drum  strokes.  The  tuba is trans- 
formed in something like a tibetan  trumpet playing in the  mountains.  Each  stroke 
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of the  snare  drum  produces a copy of the  tuba  sound. Since  each stroke is noisy 
and  broadband,  it  acts like a  reverberator.  The series of strokes  acts like several 
diffusing boundaries  and  produces  the  type of echo that can  be  found in natural 
landscapes  [DMT99,  m-tubg5snal. 

The convolution can  be used to  map a rhythm  pattern  onto a sampled  sound.  The 
rhythm  pattern  can  be defined by positioning  a  unit  impulse at each  desired time 
within a signal block. The convolution of the  input  sound  with  the  time  pattern will 
produce  copies of the  input  signal at each of the  unit impulses. If the  unit impulse 
is replaced  by  a  more  complex  sound,  each  copy will be modified in its  timbre  and 
in its  time  structure. If a snare  drum  stroke is used, the  attacks will be  smeared 
and  some diffusion will be  added [m-gendsna]. The convolution  has an effect both 
in  the  frequency  and in the  time  domain. Take  a  speech  sound  with sharp frequency 
resonances  and  a  rhythm  pattern defined by a series of snare-drum  strokes.  Each 
word will appear  with  the  rhythm  pattern,  also  the  rhythm  pattern will be  heard 
in each  word  with the frequency  resonances of the  initial speech  sound  [m-chu5sna]. 

The convolution as a tool for musical  composition  has  been  investigated by 
composers  such  as  Horacio Vaggione  [m-Vag96, Vag981 and  Curtis  Roads [Roa97]. 
Because the convolution has a combined effect in  the  time  and frequency  domains, 
some  expertise is necessary to foresee the  result of the combination of two  sounds. 

2.3 Equalizers 

Introduction and  Musical Applications 

In  contrast t o  lowlhighpass  and  bandpasslreject  filters, which attenuate  the audio 
spectrum  above or below a cut-off frequency, equalizers shape  the  audio  spectrum 
by enhancing  certain  frequency  bands while others  remain unaffected. They  are  built 
by a series connection of first-  and  second-order  shelving  and  peak  filters, which are 
controlled  independently (see Fig. 2.19). Shelving filters boost or cut  the low or high 
frequency bands  with  the  parameter cut-off frequency fc and  gain G. Peak filters 
boost or cut mid-frequency bands  with  parameters cut-off frequency fc, bandwidth 
fb and  gain G. One  often  used filter type is the  constant Q peak  filter.  The Q factor 
is defined by the  ratio of the  bandwidth  to cut-off frequency Q = k. The cut-off 
frequency of peak  filters  are  then  tuned, while keeping the Q factor  constant.  This 
means  that  the  bandwidth is increased  when  the cut-off frequency is increased and 
vice versa.  Several  proposed  digital filter structures for shelving  and  peak filters can 
be  found in the  literature  [Whi86, RM87, Dut89a, HB93, Bri94, Orf96,Orf97, Zo1971. 

Applications of these  parametric  filters  can  be  found  in  parametric  equalizers, 
octave  equalizers ( fc=31.25, 62.5, 125, 250, 500, 1000, 2000, 4000,  8000, 16000 Hz) 
and  all  kinds of equalization  devices in mixing consoles, outboard  equipment  and 
foot pedal controlled stomp boxes. 
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Cut-off frequency f, Cut-off frequency f,  Cut-off  frequency f, Cut-off  frequency f, 
Gain G in dB  Bandwidth  f  Bandwidth  f 

Gain G  in d d  
Gain G  in dB 

Gain G  in d d  

Figure 2.19 Series  connection of shelving and peak  filters. 

2.3.1 Shelving Filters 

First-order Design 

First-order  low/high  frequency  shelving  filters [Zo197] can  be  described by the  trans- 
fer function 

H ( z )  = 1 + - [l + &A(z)]  (LF/HF +/-) H0 
2 

(2.45) 

with  the first-order  allpass 

(2.46) 

The block diagram  in  Fig. 2.20 shows a first-order low/high-frequency shelving 

Figure 2.20 First-order low/high-frequency  shelving  filter. 
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filter, which  leads to  the following difference equations: 

y1 (n) aB/Cz(n)  + - 1) - aB/cyl  (n - 1) (2.47) 

?An> = 2 [.(n) Yl(n)l+ 4.). H0 (2.48) 

The  gain G in dB for low/high  frequencies can  be  adjusted by the  parameter 

H0 = V' - 1, with V. = 1OGl2'. (2.49) 

The cut-off frequency  parameter U B  for boost  and a c  for cut  can  be  calculated  as 

(2.50) 

(2.51) 

The cut-off frequency  parameters for boost  and  cut for a first-order  high-frequency 
shelving  filter [Zo197] are  calculated by 

(2.52) 

(2.53) 

Magnitude  responses for a  low-frequency  shelving filter are  illustrated in the left 
part of Fig. 2.21 for several cut-off frequencies and  gain  factors.  The slope of the 
frequency  curves for these  first-order  filters  are  with 6 dB per  octave. 

Second-order Design 

For  several  applications especially in advanced  equalizer  designs the slope of the 
shelving filter is further  increased by second-order  transfer  functions.  Design  formu- 
las for second-order  shelving  filters  are  given  in  Table  2.3  from [Zo197]. Magnitude 
responses  for  second-order  low/high  frequency  shelving  filters  are  illustrated  in the 
right  part of Fig. 2.21 for two cut-off frequencies and several gain  factors. 

2.3.2 Peak Filters 

A second-order  peak filter [Zo197] is given by the  transfer  function 

Ho 
2 

H ( z )  = 1 + - [l - (2.54) 

where 
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Table 2.3 Second-order  shelving  filter  design  with K = tan (rfC/fs) [Zo197]. 

low-frequency  shelving  (boost V0 = loG/”) 

I + J Z K + K ~  
2(K2-1) 

I I I I 

low-frequency  shelving (cut V. = 

I 

high-frequency  shelving  (boost V0 = loG/”) 

I I I I 

high-frequency  shelving (cut V0 = 10-G/20) 

bo I bl I b2 a2 a1 

First-order  Shelving  Filters  Second-order  Shelving  Filters 

f i n H z  + f i n H z  + 

Figure 2.21 Frequency  responses  for  first-order and second-order  shelving  filters. 

is a second-order  allpass  filter. The block diagram  in Fig. 2.22 shows the second- 
order  peak  filter, which leads to the following difference  equations: 

y1(n) = -uqcz (n )  + d(1- uB/c)z(n - 1) + z (n  - 2) 
(2.56) 
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:+ 

Figure 2.22 Second-order peak filter. 

The center/cut-off  frequency parameter d and  the coefficient H0 are given by 

(2.58) 
(2.59) 
(2.60) 

The  bandwidth f b  is adjusted  through  the  parameters ag and a c  for boost and  cut 
and  are given by 

(2.61) 

(2.62) 

This  peak filter offers almost  independent  control of all three musical parameters 
center/cut-off  frequency,  bandwidth and gain.  Another  design  approach from [Zo197] 
shown in  Table 2.4 allows direct  computation of the five coefficients for a second- 
order  transfer  function  as given in the difference equation (2.2). 

Frequency  responses for several  settings of a  peak  filter  are shown in Fig. 2.23. 
The left part shows a variation of the gain  with a fixed center  frequency and  band- 
width. The right part show for fixed gain and center  frequency  a  variation of the 
bandwidth  or Q factor. 
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Table 2.4 Peak  filter  design with K = tan (.-fc/fs) [Zo197]. 

peak (boost v0 = loG/”) 
bo 

I + ~ K + K ~  ~ + & K + K z  I + & K + K ~  1 + x K + K 2  

a2 a1 62 bl 

I f ~ K f K 2  

I++K+K~ m Qm 

I - - ~ K + K ~  Z(K2-1) I - P K f K ’  2(K2-1) Q m  

peak (cut v0 = 

bo 1 bz a1 
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10 
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Second-order Peak Filters 
Parameter:  Gain  Factor 
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Second-order  Peak  Filters 
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Figure 2.23 Frequency  responses  second-order  peak  filters. 

Time-varying Filters 
The  parametric  filters discussed in  the previous sections allow the  time-varying 
control of the filter parameters  gain, cut-off frequency and  bandwidth  or Q factor. 
Special  applications of time-varying  audio filters will be  shown in the following. 

2.4.1 Wah-wah Filter 

The wah-wah effect is produced  mostly by foot-controlled signal  processors  contain- 
ing  a  bandpass filter with variable centerlresonant frequency and  a small bandwidth. 
Moving the pedal  back  and  forth  changes the  bandpass  cut-offlcenter frequency. 
The “wah-wah” effect  is then mixed  with the direct  signal  as  shown in Fig. 2.24. 
This effect leads to a spectrum  shaping  similar to speech and  produces a speech 
like “wah-wah”  sound. If the  variation of the  center frequency is controlled by the 
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Figure 2.24 Wah-wah:  time-varying bandpass filter. 

input signal, a low-frequency oscillator is used to change the center frequency. Such 
an effect is called an auto-wah  filter. If the effect is combined  with  a low-frequency 
amplitude  variation, which produces a tremolo,  the effect is denoted a tremolo-wah 
filter.  Replacing the  unit delay in the  bandpass filter by an M tap delay leads to  the 
M-fold  wah-wah  filter [Dis99], which is shown  in  Fig. 2.25. M bandpass filters are 
spread over the entire  spectrum  and simultaneously  change  their  center frequency. 
When a white noise input signal is applied to  an M-fold wah-wah filter, a spectro- 
gram of the  output signal shown in Fig. 2.26 illustrates the periodic  enhancement 
of the  output  spectrum. Table 2.5 contains  several  parameter  settings for different 
effects. 

Figure 2.25 M-fold wah-wah filter. 

Table 2.5 Effects with M-fold wah-wah filter [Dis99]. 

Wah-Wah i 1 i -/3kHz i 200Hz 1 ~ , _... 

1 M-fold Wah-Wah I 5-20 I 0.51- I 200-500Hz \ l I ,  l 

Bell effect I 100 I 0.5/- I lOOHz 1 

2.4.2 Phaser 

The previous effect relies on  varying the center  frequency of a bandpass filter. An- 
other effect uses notch filters: phasing. A set of notch  filters, that can  be realized 
as a cascade of second-order IIR sections, is used to process the  input signal. The 
output of the notch  filters is then combined with the direct  sound. The frequen- 
cies of the notches are slowly varied using a low-frequency oscillator  (Figure 2.27) 
[Smi84]. “The  strong  phase  shifts  that exist around  the  notch frequencies combine 
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Figure 2.26 Spectrogram of output signal of a time-varying M-fold wah-wah  filter [DisSS]. 

with the phases of the direct  signal  and  cause  phase  cancellations or enhancements 
that sweep up  and down the frequency  axis" [Orf96]. Although  this effect does  not 
rely  on a delay  line,  it is often  considered to go along  with  delay-line  based  effects 
because the sound effect is  similar to  that of flanging. An extensive  discussion  on this 
topic is found  in  [Str83]. A different  phasing  approach is shown in  Figure 2.28. The 
notch  filters  have  been  replaced by second-order  allpass  filters  with  time-varying 
center  frequencies. The  cascade of allpass  filters  produces  time-varying  phase  shifts 
which lead to cancellations  and  amplifications of different  frequency  bands when 
used in  the feedforward and feedback  configuration. 

Figure 2.27 Phasing. 
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Figure 2.28 Phasing with time-varying  allpass  filters. 

2.4.3 Time-varying  Equalizers 

0 Time-varying  octave bandpass filters, as shown in Fig. 2.29, offer the possi- 
bility of achieving wah-wah-like effects. The spectrogram of the  output signal 
in Fig. 2.30 demonstrates  the  octave spaced  enhancement of this  approach. 

Figure 2.29 Time-varying  octave filters. 

0 Time-varying  shelving and  peak filters: the special  allpass  realization of shelv- 
ing and  peak filters has shown that a  combination of lowpass,  bandpass and 
allpass  filters gives access to several  frequency bands inside such a filter struc- 
ture.  Integrating level measurement  or envelope followers (see Chapter 5) into 
these  frequency bands  can  be used for adaptively  changing the filter param- 
eters  gain, cut-off/center  frequency and  bandwidth or Q factor.  The com- 
bination of dynamics  processing, which will be discussed in Chapter 5, and 
parametric filter structures allows the  creation of signal  dependent  filtering 
effects with  a  variety of applications. 
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Time 

Figure 2.30 Spectrogram of output  signal for time-varying  octave  filters. 

Feedback  cancellers, which are  based on  time-varying  notch  filters,  play an 
important role in sound  reinforcement  systems. The  spectrum is continuously 
monitored  for  spectral  peaks  and a very  narrow-band  notch  filter is applied 
to  the signal  path. 

2.5 Conclusion 

Filtering  is  still  one of the most  commonly  used effect tools for sound  recording 
and  production. Nevertheless, its successful  application is heavily  dependent  on the 
specialized skills of the  operator.  In  this  chapter we have  described  basic  filter  al- 
gorithms  for  time-domain  audio  processing.  These  algorithms  perform the filtering 
operations by the computation of difference  equations. The coefficients for the dif- 
ference  equations  are  given  for  several  filter  functions  such as lowpass,  highpass, 
bandpass,  shelving  and  peak  filters. Simple  design  formulas  for  various  equalizers 
lead to  efficient implementations  for  time-varying  filter  applications.  The combi- 
nation of these  basic  filters  together  with the signal  processing  algorithms of the 
following chapters allows the building of more  sophisticated effects. 
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Sound and Music 

[m-chu5sna]  chu5sna:  vocoder  speech  convolved  with snare-drum  strokes. Demo 
Sound.  DAFX  Sound  Library. 

[m-gendsna]  gendsna: snare-drum  rhythm  pattern is mapped  onto  a gender  sound. 
Demo  Sound.  DAFX  Sound Library. 

[m-Mai97] M. Maiguashca:  Reading  Castaiieda.  CD.  Wergo2053-2, zkm 3 edition, 
1997. 

[m-Pie99] F.  Pieper:  Das Effekte Praxisbuch.  GC  Carstensen, 1999. CD. Tr. 1, 
35, 36. 

[m-quasthal]  quasthal:  convolution of speech  with  impulse  responses.  Demo  Sound. 
DAFX  Sound  Library. 
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Chapter 3 

Delays 

P. Dutilleux, U. Zolzer 

3.1 Introduction 
Delays can  be experienced in acoustical  spaces. A sound wave reflected by a wall 
will be  superimposed  on  the  sound wave at the source. If the wall is far away, such 
as a cliff, we  will hear  an echo. If the wall is close to  us, we will notice the reflec- 
tions  through  a modification of the sound color. Repeated reflections can  appear 
between  parallel  boundaries.  In a room,  such reflections will be called flatter echo. 
The  distance between the  boundaries  determines  the delay that is imposed to each 
reflected sound wave. In a  cylinder, successive reflections will develop at  both  ends. 
If the cylinder is long, we will hear an  iterative  pattern  whereas, if the cylinder is 
short, we will hear a pitched  tone.  Equivalents of these  acoustical  phenomena  have 
been  implemented as  signal  processing units. 

3.2 Basic Delay Structures 

3.2.1 FIR Comb Filter 

The network that simulates a single delay is called the  FIR comb filter. The  input 
signal is delayed by a  given time  duration.  The effect  will be  audible only when 
the processed  signal is combined (added)  to  the  input  signal, which acts  here  as 
a reference. This effect  has, 2 tuning  parameters:  the  amount of time delay T and 
the  relative  amplitude of the delayed signal to that of the reference signal.  The 
difference equation  and  the  transfer  function  are given by 

y(n) = z(n) +gs(n - M )  

H ( z )  = 1 + g z - M .  
with M = r / f s  

63 
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Figure 3.1 FIR comb filter and magnitude  response. 

The  time  response of this filter is made  up of the  direct  signal  and  the delayed 
version. This  simple  time  domain  behavior  comes  along  with  interesting  frequency 
domain  patterns. For  positive  values of g, the filter amplifies all frequencies that 
are  multiples of 1 / ~  and  attenuates  all frequencies that lie in between.  The  transfer 
function of such  a filter shows a series of spikes and it looks like a comb  (Fig. 3.1). 
That is  why this  type of filter is called a comb  filter. For negative  values of g,  the 
filter attenuates frequencies that  are multiples of l/' and amplifies those that lie 
in between. The gain varies between 1 f g and 1 - g [Orf96]. The following M- 
file 3.1 demonstrates a sample-by-sample  based FIR comb  filter. For plotting  the 
output  signal use the  command stem(0 : length(y) -1, y) and for the  evaluation of 
the  magnitude  and  phase response use the  command f reqz (y , I). 

M-file 3.1 (firc0mb.m) 
x=zeros(100,1);x(1)=1; % unit impulse signal of length 100 

Delayline=zeros(lO,l);% memory allocation for length IO 
f o r  n=l:length(x); 
y(n)=x(n)+g*Delayline(lO); 
Delayline=[x(n) ;Delayline(l: IO-l)] ; 
end ; 

g=o. 5; 

As well as  acoustical  delays, the  FIR comb filter has  an effect both  in  the  time 
and frequency  domains. Our  ear is more  sensitive to  the one aspect or to  the  other 
according to  the  range where the  time delay is set. For larger  values of T, we can  hear 
an echo that is distinct from the direct  signal. The frequencies that  are amplified by 
the comb are so close to each other  that we barely identify the  spectral effect. For 
smaller  values of T, our  ear  can  no  longer  segregate the  time events but  can  notice 
the  spectral effect of the comb. 

3.2.2 IIR Comb Filter 

Similar to  the endless reflections at  both  ends of a cylinder, the  IIR comb filter 
produces  an endless series of responses y(n) to  an  input x(.). The  input signal 
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circulates in a delay line that is fed back to  the  input. Each  time the signal goes 
through  the delay line it is attenuated by g.  It is sometimes necessary to scale the 
input signal by c in  order to compensate for the high  amplification  produced by the 
structure.  It is implemented by the  structure shown in Fig. 3.2 with  the difference 
equation  and  transfer function given by 

positive 

negative 
coefficient 

I * 
Frequency 

Figure 3.2 IIR comb filter and  magnitude response. 

Due to  the feedback loop, the  time response of the filter is infinite. After each 
time delay r a copy of the  input signal will come out  with  an  amplitude g p  where 
p is the number of cycles t,hat  the signal  has gone through  the delay line. It can 
readily  be  seen, that ( g (  <I= 1 is a  stability  condition.  Otherwise the signal would 
grow endlessly. The frequencies that  are affected by the  IIR comb filter are similar 
to those affected by the  FIR comb filter. The gain varies between 1/(1 - g) and 
1/(1 + g ) .  The main differences between the  IIR comb and  the  FIR comb is that 
the gain grows very high and  that  the frequency  peaks  get  narrower as 19) comes 
closer to 1 (see Fig. 3.2). The following M-file 3.2 shows the implementation of a 
sample-by-sample  based IIR comb  filter. 

M-file 3.2 (iirc0mb.m) 
x=zeros(100,l);x(i)=1; % unit impulse signal of length 100 

Delayline=zeros(lO,l); % memory allocation f o r  length l 0  
for n=l:length(x); 
y(n)=x(n)+g*Delayline(lO) ; 
Delayline=[y(n) ;Delayline(l: IO-l)] ; 
end ; 

g=o. 5; 

3.2.3 Universal Comb Filter 

The combination of FIR  and  IIR comb  filters  leads to  the universal  comb  filter. 
This is simply an allpass  filter (see Fig. 2.8) where the one  sample  delay  operator 
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z-' is replaced by the M sample delay operator z P M  and  an additional  multiplier 
FF shown in Figure 3.3. The special  cases for differences in feedback parameter  FB, 
feedforward parameter FF and blend parameter BL are given in Table 3.1. M-file 
3.3 shows the implementation of a sample-by-sample  universal  comb  filter. 

I - -  I 

Figure 3.3 Universal comb filter. 

Table 3.1 Parameters for  universal comb filter 
I BL I FB I FF 

FIR comb  filter I X I 0 I X 
I I I 

IIR comb  filter 1 1 I X 1 0 
I allpass I a I -a I l I 

I 

delay 1 0 1 0 ( 1  

M-file 3.3 (unic0mb.m) 
x=zeros(IOO,l);x(1)=1; % unit  impulse  signal of length 100 
BL=O .5; 

FF=i ; 
M=lO ; 
Delayline=zeros(M,l); % memory  allocation  for  length IO 
f o r  n=l : length(x) ; 

FB=-O .5 ; 

xh=x(n)+FB*Delayline(M) ; 
y(n)=FF*Delayline(M)+BL*xh; 
Delayline=[xh;Delayline(l:M-l)]; 

end ; 

The extension of the  above universal  comb  filter to a  parallel  connection of N 
comb  filters is shown in Figure 3.4. The feedback, feedforward and blend coefficients 
are now NxN matrices to mix the  input  and  output signals of the delay network. 
The use of different parameter  sets leads to  the applications shown in Table 3.2. 

3.2.4 Fractional  Delay  Lines 

Variable-length  delays of the  input signal are used to simulate  several  acoustical 
effects. Therefore,  delays of the  input signal  with  noninteger values of the  sampling 
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U 

Figure 3.4 Generalized structure of parallel  allpass comb filters. 

Table 3.2 Effects  with  generalized  comb  filter. 

I 1 delay BL 1 FB 1 FF 1 
1 

0 o < x < 1  1 
X 0 

reverb matrix  matrix matrix 

interval are necessary. A delay of the  input signal by M samples  plus  a  fraction of 
the normalized  sampling  interval  with 0 5 frac 5 1 is given by 

g(n) = x(n - [ M  + frac]) (3.6) 

and can  be  implemented by a fractional delay shown in Fig. 3.5. 

I 
M-l M ' M+l 

M-l  M M+l 

Interpolation 

Figure 3.5 Fractional  delay  line  with interpolation. 

Design tools for fractional  delay filters can  be  found in [LVKL96]. An interpo- 
lation  algorithm  has to compute  the  output  sample g(n), which lies in between the 
two samples at  time  instants M and M + 1. Several  interpolation  algorithms  have 
been  proposed for audio  applications: 
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0 linear  interpolation  [Dat97] 

y(n) = .(n - [M + I])frac + z(n - M)(1 - frac) (3.7) 

0 allpass  interpolation  [Dat97] 

y(n) = z (n  - [M + l])frac + z (n  - M)(1 - frac) - y(n - 1)(1- frat) (3.8) 

0 sinc  interpolation [FC98] 

0 fractionally  addressed  delay lines [Roc98, Roc001 

0 spline  interpolation [Dis99] 

y(n) = z (n  - [ M +  l ] ) .  - frac3 
6 

+ z(n - M ) .  

+ .(n - [M - l]) . 

(1 + f r a ~ ) ~  - 4 . frac3 
6 

(2 - f r a ~ ) ~  - 4(1 - f r a ~ ) ~  
6 

+ z (n  - [M - 21) . (1 - frac) 
6 

They  all  perform  interpolation of a fractional  delayed  output  signal  with different 
computational  complexity  and different performance  properties, which are discussed 
in [RocOO]. The choice of the  algorithm  depends  on  the specific application. 

3.3 Delay-based Audio  Effects 

3.3.1 Vibrato 

When a car is passing by, we hear a pitch  deviation  due to  the doppler effect [Dutgl]. 
This effect  will be  explained in another  chapter  but we can keep in mind that  the 
pitch  variation is due to the  fact  that  the  distance between the source  and  our  ears 
is being  varied.  Varying the  distance  is, for our  application, equivalent to varying 
the  time delay. If we keep on varying periodically the  time delay we  will produce a 
periodical  pitch  variation.  This is precisely a vibrato effect. For that purpose we need 
a delay line and a low-frequency  oscillator to drive  the delay time  parameter. We 
should  only  listen to  the delayed  signal.  Typical  values of the  parameters  are 5 to 10 
ms as average  delay-time  and 5 to 14 Hz rate for the low-frequency oscillator (Figure 
3.6)  [And95, Whi931.  M-file 3.4 shows the implementation for vibrato [Dis99]. 

M-file 3.4 (vibrato .m) 
1 Vibrato 
function y=vibrato(y,SAMPLERATE,Modfreq,Width) 
ya-alt=O; 
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Figure 3.6 Vibrato. 
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Delay=Width;  basic  delay  of  input  sample  in  sec 
DELAY=round(Delay*SAMPLERATE); % basic  delay  in # samples 
WIDTH=round(Width*SAMPLERATE); % modulation  width  in # samples 
if  WIDTH>DELAY 
error(’de1ay  greater  than  basic  delay ! ! ! ’ ) ;  
return; 

end 
MODFREQ=Modfreq/SAMPLERATE; % modulation  frequency  in # samples 
LEN=length(x) ; % # of  samples  in  WAV-file 
L=2+DELAY+WIDTH*2; % length of the  entire  delay 
Delayline=zeros(L,l); % memory  allocation  for  delay 
y=zeros(size(x)) ; % memory  allocation  for  output  vector 
for  n=l : (LEN-l) 

M=MODFREQ; 
MOD=sin(M*2*pi*n) ; 
ZEIGER=I+DELAY+WIDTH*MOD; 
i=f  loor  (ZEIGER) ; 
frac=ZEIGER-i; 
Delayline=[x(n)  ;Delayline(l:L-l)] ; 

y(n,l)=Delayline(i+l)*frac+Delayline(i)*(i-frac); 

%y(n,i)=(Delayline(i+l)+(l-frac)*Delayline(i)-(l-frac)*ya~alt); 
%ya-alt=ya(n, 1) ; 

%y(n,I)=Delayline(i+l)*frac-3/6 
x .  . . . +Delayline (i) * ( (i+f  rac)  ^3-4*frace3) /6 
x . .  .+Delayline(i-l)*( (2-frac)-3-4*(i-frac)-3)/6 
%....+Delayline(i-2)*(l-frac)-3/6; 
X3rd-order  Spline  Intierpolation 

%---Linear Interpolation----------------------------- 

%---Allpass  Interpolation------------------------------ 

%---Spline Interpolat;ion------------------------------- 

end 

3.3.2 Flanger, Chorus,  Slapback,  Echo 

A few popular  effects  can  be  realized  using the comb  filter.  They  have  special  names 
because of the  peculiar  sound effects that they  produce.  Consider the FIR comb 
filter. If the delay is in  the  range 10 to 25 ms, we  will hear a quick  repetition  named 
slapback  or  doubling. If the delay is greater  than 50 ms we  will hear an echo. If 
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the  time delay is short (less than  15  ms)  and if this delay time is continuously 
varied with a low frequency  such as 1 Hz, we will hear  the flanging effect. If several 
copies of the  input  signal  are delayed in  the  range 10 to  25 ms with  small  and 
random  variations  in the delay  times, we will hear  the chorus effect, which  is a 
combination of the  vibrato effect with  the  direct  signal (see Table 3.3 and Fig. 3.7) 
[Orf96, And95, Dat971. These effects can  also  be  implemented  as IIR comb  filters. 
The feedback will then  enhance  the effect and  produce  repeated  slapbacks or echoes. 

Table 3.3 Typical  delay-based  effects. 

[ Delay range (ms) I Modulation I Effect name 
(TYP.1 (TYP.) 
0 ... 20 Resonator 
0 ... 15 

Slapback 25 ... 50 
Chorus  Random 10 ... 25 

Flanging Sinusoidal 

> 50 Echo 

Figure 3.7 Chorus. 

Normalization. We saw in 2.2.1 that  it is important  to  compensate for the 
intrinsic  gain of the filter structure.  Whereas in practice  the  FIR comb filter does 
not  amplify the signal by more than 6 dB,  the  IIR comb filter can yield a very  large 
amplification  when 191 comes close to 1. The L2 and L ,  norm  are given by 

L2 = 1/J1-s” L ,  = 1/(1- 191). (3.10) 

The  normalization coefficient c = l/L,,  when  applied,  ensures that no  overload 
will occur  with, for example, periodical input signals. c = 1/L2  ensures that  the 
loudness will remain  approximatively  constant for broadband signals. 

A standard effect structure was proposed by Dattorro  [Dat97]  and is shown 
in Fig.  3.8. It is based  on  the  allpass filter modification  towards  a  general  allpass 
comb,  where the fixed delay line is replaced by a  variable-length  delay line. Dattorro 
[Dat97]  proposed  keeping  the  feedback tap of the delay line fixed, that means  the 
input  signal  to  the delay line xh(n) is delayed by a fixed integer  delay K and  with 
this zh(n - K )  is weighted and fed back.  The delay K is the center tab delay of 



3.3 Delay-based  Audio  Effects 71 

BL 

Figure 3.8 Standard effects  with  variable-length  delay  line. 

the variable-length  delay line for the feed forward path.  The  control signal MOD(n) 
for changing the  length of the delay line can  either  be  a  sinusoid  or  lowpass noise. 
Typical  settings of the  parameters  are given in Table 3.4. 

Table 3.4 Industry standard audio effects.  [Dis99] 

11 BL 1 FF I FB I DELAY I DEPTH 1 MOD 
0-3 ms 0.1-5  Hz  Sine 
0-2 ms 0.1-1  Hz  Sine 

(white) Chorus (-0.7)  1-30 ms 1-30 ms lowpass  noise 
Doubling 0.7 lJ.7 10-100 ms 1-100 ms lowpass  noise 

3.3.3 Multiband Effects 

New interesting  sounds  can  be  achieved  after  splitting  the signal into several fre- 
quency bands, for example,  lowpass, bandpass  and  highpass signals, as shown in 
Fig. 3.9. 

Figure 3.9 Multiband  effects. 

Variable-length  delays are  applied  to  these signals with  individual  parameter 
settings  and  the  output signals are weighted and  summed  to  the  broad-band signal 
[FC98, Dis991.  Efficient frequency  splitting  schemes  are available from  loudspeaker 
crossover  designs and  can  be  applied for this  purpose  directly.  One of these tech- 
niques uses complementary filtering [Fli94, Orf961, which consists of lowpass filtering 
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and  subtracting  the lowpass  signal  from the  broad-band  signal  to derive the high- 
pass  signal, as shown in  Fig. 3.10. The lowpass  signal is then  further processed by a 
following stage of the  same  complementary  technique to  deliver the  bandpass  and 
lowpass  signal. 

x ( n ) o ~ ~ ~ ~ ~ i c !  

High 

LP1 
Low 

LP2 

Figure  3.10 Filter bank for multiband effects. 

3.3.4 Natural Sounding Comb Filter 

We have made  the  comparison between  acoustical cylinders and  IIR comb filters. 
This  comparison  might  seem  inappropriate  because  the  comb  filters  sound metallic. 
They  tend  to amplify greatly  the high  frequency  components and  they  appear  to 
resonate much too long  compared to  the acoustical  cylinder. To find an  explanation, 
let us consider the  boundaries of the cylinder. They reflect the acoustic waves with 
an  amplitude  that decreases  with  frequency. If the comb filter should  sound like 
an  acoustical  cylinder,  then  it  should also have a frequency-dependent  feedback 
coefficient g(f). This frequency  dependence  can  be realized by using a first order 
lowpass filter in the feedback  loop (see Fig. 3.11) [Moo85]. 

Figure 3.11 Lowpass IIR comb  filter. 

These  filters  sound  more  natural  than  the  plain IIR comb  filters.  They find appli- 
cation  in  room  simulators.  Further refinements  such as fractional delays and com- 
pensation of the frequency-dependent  group-delay  within  the  lowpass filter make 
them  suitable for the  imitation of acoustical  resonators.  They  have  been  used for 
example to  impose a definite  pitch  onto  broadband  signals  such as sea waves or to 
detune fixed-pitched instruments such as a Celtic harp [m-Ris92]. M-file 3.5 shows 
the  implementation for a  sample-by-sample  based  lowpass  IIR  comb  filter. 

M-file 3.5 (1piircomb.m) 
x=zeros(l00,l);x(l)=1; % unit  impulse  signal of length 100 
g=o.5; 
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b-O=O. 5; 
b-i=0.5; 
a-i=0.7; 
xhold=O;yhold=O; 
Delayline=zeros(iO,l); % memory allocation for length 10 
for n=i : length(x) ; 

yh(n)=b-O*Delayline(lO)+b-i*xhold-a_l*yhold; 

yhold=yh(n) ; 
xhhold=Delayline(lO) ; 
y (n) =x (n)  +g*yh(n) ; 
Delayline= cy (n) ; Delayline (l : 10-1) 1 ; 

Ist-order difference equation 

end ; 

3.4 Conclusion 
Delays are used in audio  processing to solve several practical  problems, for example 
delay compensation for sound  reinforcement  systems, and  as basic  building blocks 
for delay-based  audio effects, artificial  reverberation  and physical models for in- 
strument  simulation.  The variety of applications of delays to  spatial effects will be 
presented in Chapter 6. 

This brief introduction  has  described  some of the basic delay structures, which 
should  enable the reader to implement and  experiment  with delay algorithms  on 
their own. We have focused Qn  a  small  set of important delay applications  such as 
echo, vibrato, flanger and chorus. We have pointed  out  the  important combination 
of delays and filters and  their time-varying  application.  These basic building blocks 
may serve as a  source of ideas for designing new digital  audio effects. 

Sound and Music 
[m-Ris92] J.-C.  Risset:  Lurai, pour  harpe celtique et bande.  Radio  France, 
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[m-Pie99] F. Pieper:  Das Effekte Praxisbuch. Delay, Kammfilter, Phaser,  Vibrato, 
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1999. 
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Chapter 4 

Modulators and 
Demodulators 

P. Dutilleux, U. Zolzer 

4.1 Introduction 

Modulation is the process by which parameters of a sinusoidal  signal  (amplitude, 
frequency and  phase)  are modified or varied by an audio  signal. In  the realm of 
telecommunications the word modulate means: “to shift the frequency spectrum 
of a signal to another  frequency band”. Numerous  techniques have been designed 
to achieve this goal and some have found  applications in digital  audio effects. In 
the field of audio processin,g these  modulation  techniques are mainly used with 
very low frequency  shifts of the  audio  signal.  In  particular,  the variation of control 
parameters for filters or delay lines can  be  regarded as  an  amplitude  modulation 
or  phase  modulation of the  audio signal.  Wah-wah,  phaser and tremolo are typical 
examples of amplitude  modulation  and  vibrato, flanger and  chorus are examples 
for phase  modulations of th’e  audio  signal.  To  gain  a  deeper  understanding of the 
possibilities of modulation .techniques we will first  introduce  simple schemes for 
amplitude  modulation, single side band  modulation  and  phase  modulation  and  point 
out  their use for audio effects. The combination of these  modulators will lead to more 
advanced  digital  audio effects, which will be  demonstrated by several  examples.  In 
a further section we will describe several demodulators, which extract  the incoming 
signal or  parameters of the incoming signal for further effects processing. 
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4.2 Modulators 

4.2.1 Ring Modulator 

In  the ring modulation (RM) the  audio signal x(.) is multiplied by a sinusoid 
m(n) with  carrier  frequency fc. In  the  analog  domain  it was pretty difficult to 
do  it  properly  but  within a computer it is straightforward [Ste87] since it is a  mere 
multiplication. The  input signal is called the  modulator s(n) and  the second operand 
is called the carrier m(n): 

If m(n) is a sine wave of frequency fc, the  spectrum of the  output y(n) is made up of 
two copies of the  input  spectrum:  the lower side band (LSB) and  the  upper side  band 
(USB). The LSB is reversed in frequency and  both  sidebands  are centered  around 
fc (Figure 4.2). Depending  on the width of the  spectrum of s(n) and on the carrier 
frequency, the side bands  can  be  partly  mirrored  around  the origin of the frequency 
axis. If the  carrier signal  comprises  several spectral  components,  the  same effect 
happens  with each  component.  Although  the  audible  result of a  ring  modulation 
is fairly  easy to comprehend for elementary  signals, it gets very complicated  with 
signals  having  numerous partials.  The  carrier itself is not  audible in this kind of 
modulation.  When  carrier  and  modulator  are sine waves of frequencies f c  and fz, 
one hears  the  sum  and  the difference frequencies fc + fz and fc - fz [Ha195]. 

Figure 4.1 Ring  modulation of a  signal ~ ( n )  by a sinusoidal  carrier-signal m(n). 

Figure 4.2 Ring  modulation of a  signal z (n )  by a  sinusoidal  carrier-signal m(n). The 
spectrum of the modulator ~ ( n )  (a) is shifted around the carrier  frequency (b). 

When the  input signal is periodic  with  fundamental  frequency fo, a  sinusoidal 
carrier of frequency f c  produces  a  spectrum  with  amplitude lines at  the frequencies 
Ik fo&fcl [De 001. A musical  application of this effect is applied in the piece “Ofanim” 
by Lucian0  Berio. The first  section is dominated by a duet between a child voice 
and a  clarinet. The  transformation of the child voice into a clarinet was desired. For 
this  purpose a  pitch  detector  computes  the  instantaneous  frequency fo(n) of the 
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voice. Then  the child voice passes through  a  ring  modulator, where the frequency of 
the carrier fc is set  to fo(n)/2. In  this case odd  harmonics prevail which  is similar 
to  the sound of a clarinet in the low register  [VidSl].  Notice that  in order to  better 
represent the  characteristic  articulations of the  clarinet  and  to  eliminate  typical 
vocal portamento, a sample-and-hold  unit is inserted  after  the  pitch  detector for 
holding the  current  pitch  until  the successive one  has  been  established. 

4.2.2 Amplitude Modulator 

The  amplitude  modulation (.AM) was easier to realize with  analog  electronic  means 
and  has  therefore been in use for a much  longer time.  It  can  be implemented by 

y(n) = [l + am(n)] . x(..) (4.2) 

where it is assumed that  the peak  amplitude of m(n) is 1. The Q: coefficient deter- 
mines the  depth of modulation.  The  modulation effect  is maximum  with a = 1 and 
the effect  is disengaged when a = 0. A typical  application is with  an  audio  signal  as 
carrier x(.) and  a low-frequency  oscillator (LFO)  as  modulator m(.) (Figure 4.3). 
The  amplitude of the  audio signal varies according to  the  amplitude of the LFO, 
and  it is heard  as  such. 

(audio) 
Carrier 

a 1 x(n) 

Modulaior 
(LFO) m(n) 

Figure 4.3 Typical application of AM. 

When  the  modulator is an  audible signal and  the  carrier  a sine wave of frequency 
fc ,  the  spectrum of the  output y(t) is similar to  that of the  ring  modulator except 
that  the carrier  frequency can be also heard.  When  carrier  and  modulator  are sine 
waves of frequencies fc  and fx, one hears  three  components:  carrier, difference and 
sum  frequencies ( f c  - f z ,  fc, f c  + fx). One  should  notice that due to  the  integration 
time of our  hearing  system  the effect  is perceived in a different manner  depending 
on  the frequency range of the signals. A modulation  with  frequencies below 20 
Hertz will be  heard  in  the  time  domain  (variation of the  amplitude,  tremolo in 
Fig. 4.4) whereas modulations by high  frequencies will be  heard as distinct  spectral 
components (LSB, carrier, TJSB). 

4.2.3 Single-Side Band Modulator 

The  upper  and lower side bands  carry  the  same  information  although organized 
differently. In  order to save bandwidth  and  transmitter power,  radio-communication 
engineers  have  designed the single-side band (SSB) modulation  scheme  (Fig. 4.5). 
Either  the LSB or the USB is transmitted.  Phase  shifted versions by 90" of the 
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Low-frequency  Amplitude  Modulation (fc=20 Hz) 
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Figure 4.4 Tremolo  effect by AM. 

Figure 4.5 Single  side band modulator  with  compensation  filter CF and Hilbert  filter 
(90” block). 

modulating  audio signal z(n) are  denoted by 2(n) and of the  carrier signal m(n) by 
h ( n )  and  are produced by Hilbert  transform  filters [Orf96]. The  upper  and lower 
side  band  signals  can  be  computed as follows: 

USB(n) = .(.)m(.) - i ( n ) h ( n )  
LSB(n) = z(n)m(n) + 2(n)h(n) .  
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Magnitude  response of compensation  filter 
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Figure 4.6 Delay compensation and Hilbert filter. 

A  discrete-time  Hilbert  transform  can  be  approximated by a FIR filter with the 
zero-phase impulse  response 

a(.) = 1 - cos(.irn) = { 2/?) for n odd 
.irn for n even. 

These coefficients are multiplied  with  a  suitable window function of length N ,  for 
example a Hamming window, and shifted  right by to make the filter causal. 
Acceptable  quality  can  be achieved with N M 60. Note that  the use of the  FIR 
Hilbert filter requires  a delay in the direct path for the  audio  and  the carrier  signal. 
Figure 4.6 shows an example  with the compensation delay of 30 samples and a 
FIR Hilbert  filter of length N = 61. This effect is typically used with a sine wave 
as carrier of frequency fc.  The use of a complex oscillator for m(n) simplifies the 
implementation. By using positive or negative frequencies it is then possible to 
select the USB or  the LSB. The  spectrum of ~ ( n )  is frequency  shifted up or down 
according to fc. The results  are non-harmonic  sound effects: a plucked-string  sound 
is heard,  after processing, like a drum  sound.  The modification in pitch is much 
less than  expected,  probably because our  ear recovers pitch  information from the 
frequency difference between partials  and  not only from the lowest partial of the 
tone  [Dutgl]. 
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4.2.4 Frequency and Phase Modulator 

The frequency  modulation  (FM) is widely used for broadcasting  and  has  found in- 
teresting  applications for sound  synthesis [Roa96]. The continuous-time  description 
of an angle  modulated  carrier  signal is given by 

x P M / F M  (t) = cos[2rfct + 4(t)] (4.6) 

where A, is the amplitude of the signal and  the  argument of the cosine is given by 
carrier  frequency f, and  the  modulating signal m(t) according to 

For phase  modulation  (PM)  the phase 4(t) is directly  proportional to the modu- 
lating signal m(t), while for frequency  modulation the phase 4(t)  is the  integral of 
the  modulating signal m(t). Some examples of frequency and phase  modulation  are 
shown in Fig.  4.7.  In the first  example the modulating  signal is a sinusoid which 
shows that  the resulting  FM  and PM signals are  the  same.  The second example  (c) 
and  (d) shows the difference between FM and  PM, where the modulating  signal is 
now a bipolar pulse signal. The last  example in (e)  and (f)  shows the result of a 
ramp  type signal. The main  idea  behind using these  techniques is the control of the 
carrier  frequency by a  modulating  signal m(n). We especially notice from Fig.  4.7 
the possibility to change the  carrier frequency by a sinusoid and a ramp signal. 

Using angle  modulat,ion for audio effects is different from the previous  discussion, 
where a modulating  signal m(n) is used to modify the  phase  4(t) of a cosine of fixed 
carrier  frequency f,. By phase  modulation we mean the direct modification of the 
phase of the  audio signal by a  control parameter  or  modulating signal m(n). A phase 
modulator for an audio  signal  can  be  regarded as a system which performs a phase 
modulation of the audio  input signal x(n). The phase  modulator  system  can  be 
described by a  time-variant  impulse  response h(n) and leads to a phase  modulated 
output signal z p ~ ( n )  according to 

The result for phase  modulation  (PM) of the signal z (n)  can  then  be  written as 

Y(n) = z P M ( n )  = z(n - m(n>) (4.11) 

where m(n) is a continuous  variable, which changes every discrete  time instant n. 
Therefore m(n) is decomposed into  an integer and a fractional part [Dat97]. The 
integer part is implemented by a series of M unit  delays, the fractional  part is 
approximated by interpolation  filters  [Dat97, LVKL96, Zo1971, e.g. linear  interpo- 
lation,  spline  interpolation  or  allpass  interpolation (see Fig.  4.8). The discrete-time 
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Figure 4.7 Examples of angle modulation. 
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M , frac symbol 

. .  %("-M) x(n-(M+l) +(M+?) 

t 
m(n)=M + frac 

Figure 4.8 Phase  modulation by  delay  line modulation. 

Fourier transform of (4.11) yields 

Y(,j") XPM(,j") = x(,j"),-mW (4.12) 

which  shows the phase  modulation of the  input  signal by a time-variant  delay line 
m(n). The phase  modulation is performed by the  modulating  signal m(.). 

For sine type  modulation, useful for vibrato effects, the  modulation signal can 
be  written  as 

m(n) = M + DEPTH. sin(wMnT). (4.13) 

For a sinusoidal  input  signal  the so-called resampling  factor for sine type  modulation 
can  be  derived  as 

~ ( n )  = - = 1 - DEPTH.   WMTCOS(WM~T) .  WI 
W 

(4.14) 

The  instantaneous  radian frequency is denoted by W I  and  the  radian frequency of 
the  input sinusoid is denoted by W .  The  resampling  factor is regarded  as  the  pitch 
change  ratio in [Dat97]. For sine type  modulation  the  mean value of the  resampling 
factor a(n)  is one. The consequence is an  output signal, which has  the  same  length 
as  the  input  signal,  but  has  a  vibrato  centered  around  the  original  pitch. 

For ramp  type  modulation  according to  

m(n) = M =k SLOPE. 72, (4.15) 

the resampling  factor a(n)  for the sinusoidal input  signal is given by 

a(n)  = = 1 SLOPE. 
WI (4.16) 

The  output  signal is pitch  transposed by a factor a and  the  length of the  output 
data is altered by the  factor l/a. This  behavior is useful for pitch  transposing 
applications. 

4.3 Demodulators 
Each  modulation  has  a  suitable  demodulation scheme. The  demodulator for the 
ring  modulator uses exactly  the  same scheme, so no new  effect is to be  expected 
there.  The  demodulator for the  amplitude  detector  is called an  amplitude follower 
in  the  realm of digital  audio effects. Several  schemes are available, some are inspired 
from  analog  designs,  some  are  much easier to realize using  digital  techniques.  These 
demodulators  are comprised of three  parts: a detector,  an  averager  and  a  scaler. 
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4.3.1 Detectors 

The detector  can  be a half-wave rectifier d h ( t ) ,  a full-wave rectifier d f  ( t ) ,  a  squarer 
d r ( t )  or an instantaneous envelope detector dq(t). The first  two  detectors are directly 
inspired by analog  designs.  They are still useful to achieve effects having  typical 
analog  behavior. The  third  and  fourth  types  are much easier to realize in the digital 
domain  (Figure 4.9). The four  detectors  are  computed as follows: 

input signal 
Hilbert  transform of x ( n )  
= max[O, x(.)] 

= Ix(n)I 
= x 2 ( n )  
= x2  (n) + p 2  (n) (4.17) 

Figure 4.9 Detectors: (a) half-wave, (b) full-wave, ( c )  squarer, (d) instantaneous  envelope. 

4.3.2 Averagers 

In  the  analog  domain,  the averager is realized with  a  resistor-capacitor (RC) network 
and in the digital  domain using a  first  order lowpass filter.  Both structures  are 
characterized by a  time-constant T. The filter is implemented as: 

9 = exP[-l/(.fs~)l 
d(n)  = detector  output 

A n )  = (1 - g ) d ( n )  + g1J(n - 1) (4.18) 

The time-constant  must  be chosen in accordance  with the application. A short 
time-constant is suitable when fast  variations of the  input signal  must  be followed. 
A larger  time-constant is better  to  measure  the long-term  amplitude of the  input 
signal. This averager is nevertheless  not  suitable for many  applications. It is often 
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Figure 4.10 RMS (Root Mean Square)) detectors. (a) single time-constant; (b) attack 
and release time-constants. 

necessary to follow short  attacks of the  input signal. This calls for a very small 
time-constant, 5 ms  typically. The  output of the averager will then  react very fast 
to  any  amplitude  variation, even to  the intrinsic  variations  within a period of a low 
frequency  signal. We understand  that we need an averager  with  two  time-constants: 
an  attack time-constant 7, and a release time-constant T ~ .  To distinguish it from 
the basic  averager, we  will call this  one  the AR-averager. McNally has proposed 
an implementation  having  two fixed coefficients [McN84, 231973 and  Jean-Marc  Jot 
has  an  alternative where  a single coefficient is varied according to  the relationship 
between the  input  and  the  output of the averager  (Figure  4.10): 

ga = e x ~ [ - l / ( f s ~ a ) l  
gr = exp[-l/(fs.r,)1 

d(n) detector  output 
(4.19) 

(4.20) 

4.3.3 Amplitude Scalers 

The  outputs of the systems  described  above are all  different.  In  order to get  measures 
that  are comparable  with  each  other,  it would be necessary to scale the  outputs. 
Although  scaling schemes are typically defined for sine waves, each type of signal 
will require a different scaling  scheme. To build  a RMS detector  or an  instanta- 
neous  envelope detector, a root  extractor would still  be necessary, but building an 
accurate device can  be difficult in analog  and  computationally  intensive in digital. 
Fortunately,  it is often  possible to  avoid the root  extraction by modifying the circuit 
that makes  use of the averager output, so that  it works fine with  squared  measures. 
For these  practical  reasons  the  scaling is taken  into  account most of the  time within 
the device that follows the averager output. If this device is a display, then  the 
scaling  can  be  done by changing the display  marks. 

4.3.4 Typical Applications 

Well-known devices or  typical  applications  relate to  the previous schemes as follows: 
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Envelooe  Difference  tone 
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Figure 4.11 Instantaneous envelope detector as applied to detect a  difference  tone that 
is  produced by two  sine  waves. 

0 The AM-detector  comprises the half-wave rectifier and of the basic  averager. 

0 The Volume-Meter (VU-meter) is an AM-detector. It measures the average 
amplitude of the audio  signal. 

0 The  Peak  Program Meter (PPM) is, according to DIN45406, a full-wave rec- 
tifier followed by an AR-averager with 10 ms integration-time  and 1500 ms 
release-time. 

0 The RMS detector,  as found in electronic  voltmeters, uses the squarer  and  the 
basic averager. 

0 A  sound level meter uses a RMS  detector  along  with an AR-averager to mea- 
sure impulsive signals. 

0 The RMS  detector  associated  with an AR-averager is the best choice for am- 
plitude follower applications  in  vocoders,  computer music and live-electronics 
[Dut98b, m-Fur931. 

0 Dynamics  processors use various  types of the above  mentioned schemes in 
relation to  the effect and  to  the quality that  has  to  be achieved. 

0 The instantaneous envelope detector,  without averager, is useful to follow the 
amplitude of a signal  with the finest resolution. The  output contains  typi- 
cally audio  band  signals. A particular  application of the e(t) detector is the 
amplification of difference tones  (Figure 4.11) [Dut96, m-MBa951. 

4.4 Applications 
Several  applications of modulation  techniques for audio effects are presented  in the 
literature  [Dut98a, War98, Dis991.  We  will  now summarize  some of these effects. 
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4.4.1 Vibrato 

The cyclic variation of the pitch of the  input signal is the basic  application of the 
phase  modulator described in the previous  section (see Fig. 4.12). The variation is 
controlled by a low-frequency oscillator. 

m(n)=M+DEPTH.sin(onT) 

Figure 4.12 Vibrato based on a phase modulator. 

4.4.2 Stereo Phaser 

The application of a SSB modulator for a  stereo  phaser is described in [War98]. 
Figure 4.13 shows a SSB modulator performed by a  recursive  allpass  implementation 
of a Hilbert  filter. The phase difference of 90” is achieved through special designed 
allpass  filters.  A further effect with  this  approach is a rotating speaker effect, if you 
connect the  output signals yh(n) and y ~ ( n )  via DACs to  loudspeakers. 

Figure 4.13 Stereo phaser  based on SSB modulation [War98]. 

4.4.3 Rotary Loudspeaker  Effect 

Introduction 

The  rotary  loudspeaker effect was first used for the electronic  reproduction of organ 
instruments.  Figure 4.14 shows the configuration of a rotating bi-directional  loud- 
speaker  horn  in  front of a  listener. The  sound in the listener’s ears is altered by 
the Doppler effect, the directional  characteristic of the  speakers,  and phase effects 
due  to  air turbulence. The Doppler effect raises and lowers the  pitch according to 
the  rotation  speed.  The  directional  characteristic of the  opposite  horn  arrangement 
performs an intensity  variation in the listener’s  ears. Both  the pitch  modification 
and  the  intensity  variation  are performed by speaker A and  in  the  opposite direction 
by speaker B. 
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intensity  pitch 

0" 360" ($l 0" 360" ($l 

Figure 4.14 Rotary loudspeaker [DZ99]. 

Signal Processing 

A combination of modulation  and delay line modulation  can  be used for a rotary 
loudspeaker effect simulation [DZ99], as shown in  Fig. 4.15. The simulation makes 
use of a modulated delay line for pitch  modifications and  amplitude  modulation 
for intensity  modifications. The simulation of the Doppler effect of two  opposite 
horns is done by the use of two delay lines modulated  with 180 phase  shifted signals 
in vibrato configuration (see Fig.  4.15). A directional  sound  characteristic  similar 
to  rotating speakers  can  be achieved by amplitude  modulating  the  output signal 
of the delay lines. The modulation is synchronous to  the delay modulation in a 
manner,  that  the back moving horn  has lower pitch and decreasing  amplitude. At the 
return point the pitch is unaltered  and  the  amplitude is minimum. The movement 
in direction to  the listener  causes a raised  pitch and increasing  amplitude. A stereo 
rotary  speaker effect  is perceived due  to unequal  mixing of the two delay lines to 
the left and  right channel output. 

sin(wnT) l+sin(onT) A 4 sin(wnT) l+sin(onT) 71 -(Ml+fracl) pFY 
0.7 

B 

z -(M2+frac2) t.Q X 

Figure 4.15 Rotary loudspeaker  simulation [DZ99]. 
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Musical  Applications 

By imprinting  amplitude  and  pitch  modulations as well as some  spatialization,  this 
effect makes the sounds  more lively. At lower rotation speeds it is reminiscent of the 
echoes in a cathedral whereas a t  higher rotation speeds it  gets a  ring  modulation 
flavor. This effect is known as “Leslie” from the  name of Donald E. Leslie, who 
invented it in the early  forties. It was licensed to electronic  organ  manufacturers 
such as Baldwin,  Hammond or Wurlizer but it has also  found  applications for other 
musical instruments such as  the  guitar or even the voice (”Blue  Jay Way” on the 
Beatles LP “Magical  Mystery  Tour” [Sch94].) A  demonstration of a Leslie simu- 
lator  can  be  heard  on [m-Pie99]. This effect can  also  be  interpreted as a rotating 
microphone  between  two  loudspeakers. You may  also  imagine that you are  sitting 
on  a  merry-go-round and you pass by two  loudspeakers. 

4.4.4 SSB Effects 

Single-sideband  modulation  can  be used as a special effect for detuning of percussion 
instruments  or voices. The harmonic  frequency  relations are modified by using this 
technique.  Another  application is time-variant filtering: first use SSB modulation 
to shift the  input  spectrum,  then  apply filtering  or  phase  modulation and  then 
perform the  demodulation of the signal, as shown in Fig. 4.16 [Dis99, DZ991. The 
frequency  shift of the  input signal is achieved by a low-frequency sinusoid.  Arbitrary 
filters  can  be used in between modulation  and  demodulation.  The  simulation of the 
mechanical vibrato  bar of an electric guitar  can  be achieved by applying  a  vibrato 
instead of a  filter [DZ99]. Such  a vibrato  bar  alters  the pitch of the lower strings 
of the  guitar  in  larger  amounts  than  the higher  strings  and  thus a  non-harmonic 
vibrato  results.  The SSB  appoach  can  also  be used for the  construction of modified 
flangers. 

t t 

sin(2nfT) U 
Figure 4.16 SSB modulation-filtering-demodulation: if a vibrato is performed instead of 
the filter a mechanical vibrato  bar simulation is achieved. 

Further  applications of SSB modulation  techniques for audio effects are pre- 
sented in [Dut98a, War981. 

4.4.5 Simple  Morphing:  Amplitude Following 

Among the many different meanings that  the word “morphing”  can  have,  let  us 
now consider its first  meaning:  imposing a feature of one  sound  onto  another.  The 
amplitude envelope, the  spectrum  as well as  the  time  structure  are  features  that  can 
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be  morphed.  Morphing  the  amplitude  envelope  can  be  achieved by the  amplitude 
follower whereas  morphing a, spectrum or a  time  structure  can  be achieved by the 
use of convolution. 

Introduction 

Envelope following  is one of the various methods developed to  breathe more life into 
synthetic  sounds.  The  amplitude envelope of a control  signal,  usually  coming  from  a 
real  acoustical  source, is measured  and used to control  the  amplitude of the  synthetic 
sounds. For example,  the  amplitude envelope of speech can be  used to  control  the 
amplitude of broadband noise. Through  this process the noise seems to have  been 
articulated like  voice. A  refinement of this  method  has led to  the development of 
the vocoder  where the same  process is applied in each of the frequency bands in 
which the voice as well as  the noise are  divided. 

An audio effect is achieved when the  amplitude of an  input signal is modified by 
a  predefined amplitude envelope or according to  the  amplitude of another  signal. 
In the  latter case the process is called amplitude following. 

Signal Processing 

If an  amplitude envelope is used, the  input  signal is multiplied by the  output of 
the envelope generator. If a control signal is used, its envelope  has to be  measured 
before it  can  be multiplied  with the  input  signal.  When  an  accurate  measurement is 
desired, a RMS detector should  be used. However, signals from  acoustic  instruments 
have  usually fairly limited amplitude  variations  and  their  loudness  variations  are 
more  dependent  on  spectrum  modifications  than  on  amplitude modifications. If the 
loudness of the  output signal  has  to  be similar to  that of the controlling signal, 
then  an  expansion of the  dynamic of the  controlling  signal should  be  performed. An 
effective way to  expand  the  dynamic by a  factor 2 is to eliminate  the  root  extraction 
from the scaler and use a much  simpler MS (Mean  Square)  detector. 

I 
I 

Scaler - 
I ,  

# I  

I Decay  time-constant 
Attack  time-constant 

Figure 4.17 The amplitude of an input signal z(n) is  controlled by that of another  signal 
z,(n). The amplitude of the  input signal  is  first  leveled  before the modulation by the 
amplitude  measured on the controlling  signal. 
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Musical Applications and  Control 

In “Swim, swan”, Kiyoshi F‘urukawa has  extended  the  sound of a clarinet by ad- 
ditional  synthetic  sounds.  In  order to link  these  sounds  intimately to  the clarinet, 
their  amplitude is controlled by that of the  clarinet.  In  this case, the  input  sound 
is the  synthetic  sound  and  the controlling  sound is the clarinet. The mixing of the 
synthetic  sounds  with  the  clarinet is done in the acoustic  domain of the performance 
space [m-F‘ur93]. 

The  amplitude  variations of the controlling  signal  applied to  the  input signal 
produce an effect that is perceived in the  time  domain or in the frequency domain, 
according to  the frequency  content of the modulating  signal. For sub-audio  rates 
(below 20 Hz) the effect will appear in the  time  domain  and we will call it “am- 
plitude following’’ l whereas for audio  nlodulation  rates  (above 20 Hz), the effect 
will be perceived in the frequency  domain and will be recognized as  an amplitude 
modulation. 

If the control  signal  has a large bandwidth,  the  spectrum of the  amplitude will 
have to be  reduced by the averager.  Typical  settings for the decay time  constant 
of the averager are in the range of 30 to 100 ms. Such values will smooth  out  the 
amplitude signal so that  it remains in the  sub-audio  range. However, it is often 
desired that  the  attacks,  that  are present in the control  signal, are  morphed  onto 
the  input signal as  attacks  and  are  not  smoothed  out by the averager.  This is why it 
is recommended to use a shorter  attack  time  constant  than  the decay time  constant. 
Typical values are  in  the  range of l to 30 ms. 

The  amplitude  variations of the  input signal could be  opposite to those of the 
controlling  signal, hence reducing the  impact of the effect or  be similar and provoke 
an expansion of the dynamic.  In  order to get  amplitude  variations at  the  output 
that  are similar to those of the controlling  signal, it is recommended to process the 
input signal through a compressor-limiter  beforehand [Ha195, p. 401. 

In his work “Diario  polacco”, Luigi Nono specifies how the singer should move 
away from her  microphone  in  order to produce  amplitude modifications that  are 
used to control the  amplitude of other  sounds [Ha195, p. 67-68]. 

Applying an  amplitude envelope  can  produce  interesting  modifications of the 
input  signal.  Take, for example,  the  sustained  sound of a  flute  and  apply  iteratively 
a triangular  amplitude envelope. By varying the slopes of the envelope and  the 
iteration  rate,  the original  sound  can be affected by a  tremolo or a Flatterzunge 
and evoke percussive instruments [Dut88]. Such sound  transformations  are reminis- 
cent of those  (anamorphoses) that  the early  electroacoustic  composers were fond of 
[m-Sch98]. 

4.5 Conclusion 

In  this  chapter we introduced the concepts of modulators  and  demodulators  in re- 
lation to digital  audio effects. Although well known in  communication  engineering 
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and  already successfully used for music  synthesizers,  the special emphasis  on  modu- 
lation  and  demodulation  can  also help to clarify the  importance of these  techniques 
in the field of audio effects. The  interaction of modulators/demodulators with  filters 
and delays is one of the  the  fundamental processes for many audio effects occurring 
in the real  world.  Several  applications of modulators  and  demodulators may  serve 
as examples for experiments  and  further research. 
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Chapter 5 

Nonlinear Processing 

P. Dutilleux, U. Zolzer 

5.1 Introduction 

Audio effect algorithms for dynamics  processing, valve simulation,  overdrive  and dis- 
tortion for guitar  and recording  applications,  psychoacoustic  enhancers  and  exciters 
fall into  the  category of nonlinear processing. They  create  intentional or uninten- 
tional  harmonic  or  inharmonic  frequency  components which are  not  present in the 
input  signal.  Harmonic  distortion is caused by nonlinearities  within  the effect de- 
vice. Most of these signal processing  devices are controlled by varying parameters 
and  simultaneously  listening to  the  output signal and  monitoring  the  output  signal 
by a level meter. A lot of listening  and  recording experience is necessary to obtain 
sound  results which are preferred by most  listeners.  The  application of these sig- 
nal  processing  devices is an  art of its own and of course  one of the  main  tools  for 
recording  engineers and musicians. 

Nonlinear  processing/processors is the  term for signal processing  algorithms or 
signal processing  devices in the  analog or digital  domains  which deliver an  output 
signal  as a sum of sinusoids y(n) = A0 + A1 sin(2xflTn) + A2 sin(2.2nflTn) + . . . + 
AN sin(N . 2xflTn), if the  input signal is a sinusoid of known amplitude  and fre- 
quency  according to x(.) = A sin(2xflTn). A linear system will deliver the  output 
signal y ( n )  = Aout sin(2xfl Tn+cp,,t) which again is a  sinusoid  where the  amplitude 
is modified by the  magnitude repsponse ( H ( f l ) (  of the  transfer  function  according 
to Aout = ( H ( f 1 ) l  . A and  the  phase response (Pout = pin + LH(f1) is modified by 
the  phase LH( f l )  of the  transfer  function. Block diagrams in Fig. 5.1 showing both 
input  and  output signals of a  linear  and a nonlinear  system illustrate  the difference 
between both  systems. A measurement of the  total harmonic  distortion gives an 

93 
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Figure 5.1 Input and output signals of a  linear and nonlinear  system. The output signal 
of the linear  system  is  changed  in  amplitude and phase. The  output signal of the nonlinear 
system is strongly shaped by the nonlinearity and consists of a sum of harmonics, as shown 
by the spectrum. 

indication of the nonlinearity of the system.  Total  harmonic  distortion is defined by 

which is  the  square  root of the  ratio of the  sum of powers of all harmonic  frequencies 
above the  fundamental frequency to  the power of all harmonic  frequencies  including 
the  fundamental frequency. 

We  will discuss nonlinear  processing in three  main musical  categories.  The first 
category  consists of dynamic  range  controllers where the  main  purpose is the con- 
trol of the signal  envelope  according to some  control  parameters.  The  amount of 
harmonic  distortion  introduced by these  control  algorithms  should  be  kept  as low 
as possible. Dynamics  processing algorithms will be  introduced in section 5.2. The 
second  class of nonlinear  processing is designed for the  creation of strong  harmonic 
distortion  such  as  guitar  amplifiers,  guitar effect processors,  etc.  and will be  intro- 
duced in section 5.3. These  nonlinear  processors  can  be  described by a linear part 
and  a  nonlinear  part.  The  linear  part consists of the  impulse response and  the non- 
linear  part is a combination of a nonlinear  function f[x(n)] of the  input  signal ~ ( n )  
and  linear  systems in front  and  behind  this  nonlinearity.  The  theory  and  simulation 
of nonlinear  systems will be discussed in section 5.3.1. The  third  category  can  be 
described by the  same  theoretical  approach  and is represented by signal processing 
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devices called exciters  and  enhancers.  Their  main field of application is the  creation 
of additional  harmonics for a subtle improvement of the main  sound  characteristic. 
The  amount of harmonic  distortion is usually  kept  small to avoid a pronounced 
effect. Exciters  and  enhancers  are based  on psycho-acoustic fundamentals  and will 
be discussed in section 5.4. 

5.2 Dynamics  Processing 

Dynamics  processing is performed by amplifying devices where the gain is automat- 
ically controlled by the level of the  input signal. We  will discuss  limiters, compres- 
sors,  expanders  and noise gates. A good introduction to  the  parameters of dynamics 
processing  can  be  found in [Ear761 (pp. 242-248). 

Dynamics processing is based  on an amplitude/level  detection scheme sometimes 
called an envelope follower, an algorithm to derive  a  gain  factor from the result of 
the envelope follower and a  multiplier to  weight the  input signal (see Fig. 5.2). The 
envelope follower calculates the mean of the absolute values Ix(n)l over a predefined 
time  interval.  The  output  to  input relation is usually  described by the  characteristic 
curve y(n) = f[z(n)] as shown in Fig. 5.2. Certain  thresholds  are defined for a 
change of the  output  to  input behavior. For the given example the  output is limited 
to y(n) = f0 .5  for Ix(n)l > 0.5 and y(n) = z(n) for Ix(n)l 5 0.5. The lower path 
consisting of the envelope detector  and  the following processing to derive the gain 
factor g(n) is usually call the side chain path. Normally, the gain  factor is derived 
from the  input signal, but  the side  chain path can  also be connected to  another 
signal for controlling the gain  factor of the  input signal. 

Signal Processing 

A detailed  description of a dynamic  range  controller is shown in Fig. 5.3. It consists 
of a  direct path for delaying the  input signal and a  side  chain path.  The side  chain 
path performs  a level measurement and a subsequent  gain  factor  calculation which 
is then used as a  gain  factor for the delayed input signal. The level measurement is 
followed  by a static function and a part for the  attack  and release time  adjustment. 
Besides the  time signals x ( n ) ,  f (n) ,  g(n) and y(n) the corresponding  signal levels 
X ,  G and Y are  denoted.  These level values are  the  logarithm of the root mean 
square xrms(n) (RMS value) or  peak value xpeak(n) of the  time signals according 
to X = 20-  log,,,(.). The multiplication g ( n )  = g ( n ) .  z(n - D) at  the  output of the 
dynamic  range  controller  can  be  regarded as an addition  in  the  logarithmic  domain. 
This  means Y = X + G in dB. The calculation of the time-variant  gain  factor g(n) 
is usually  performed  with  a  logarithmic level representation,  because  the  human 
sensitivity of loudness follows a  logarithmic  relation. The delay of D samples in the 
direct  path allows for the  time delay of the side  chain  processing, which is mainly 
made up of the level measurement and  the  attack  and release time  adjustments. 

The  static function for the  output level versus the  input level (in  dB)  and  the 
calculations are shown in the left part of Fig. 5.4. Inside this  representation the 
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Figure 5.2 Block  diagram of a nonlinear  signal  processing  device  with  envelope detector. 
The lower  plots  show the input signal z(n) ,  the envelope of z(n) ,  the derived  gain  factor 
g ( n )  and  the  output signal y(n). 
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Figure 5.3 Block  diagram of a dynamic  range  controller [Zo197]. 
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Figure 5.4 Static characteristic of a dynamic  range  controller [Zo197]. 

thresholds for limiting (LT limiter  threshold), compression (CT compressor  thresh- 
old), expansion (ET expander  threshold)  and noise gate ( N T  noise gate  threshold) 
are  denoted. In the right part of Fig. 5.4 the  input level versus the gain level (in 
dB) is shown which clearly shows the four regions of operation. For the description 
of the  static function two further  parameters, namely the slope factor S = 1 - 
and  the compression factor R = = are used. The compression factor R 
represents the  fraction of input level change ALI to  output level change ALo. With 
the help of Fig. 5.5 for Compression the  equation Y = CT + h ( X  - C T )  and  the 
equation R = = t an& can  be  derived. 
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Figure 5.5 Static Characteristic:  definition of slope S and ratio R [Zo197]. 

Typical values for compression factor  and slope  factor for the four regions of 
operation  are: 

Limiter R = m  
Compressor 1 < R < m 
Linear part R = l  
Expander 0 < R < 1 
Noise gate R = O  

S = l  
o <  S < l  

S = o  
-m< S < o  

S =-m. 
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The calculation of the control  parameter f ( n )  in the  logarithmic  domain F in 
dB can  be performed by simple  line  equations [Zo197, RZ95] given by 

Limiter FL = -LS(X  - L T )  + CS(CT - LT)  
Compressor FC = -CS(X - C T )  
Linear part Flin = 0 
Expander FE = -ES(X - E T )  
Noise gate FNG = - N S ( X  - N T )  + ES(ET - N T ) .  

The dynamic behavior of a  dynamic  range  controller is influenced by the level 
measurement  approach  (with  attack AT and release time RT for peak  measurement 
and  averaging  time TAV for RMS measurement)  and  further  adjusted  with special 
attack/release  times which can  be achieved by the  systems shown in Figures 5.6 
and 5.7. 

AT 

I A 

TAV 

Figure 5.6 RMS and peak  measurement  (envelope  detector/follower) for a dynamic  range 
controller  [McN84,  261971. 

Figure 5.7 Dynamic  filter: attack and release time  adjustment for a  dynamic  range  con- 
troller [McN84,  Z6197]. 

These envelope  detectors/followers  can  also be used for other musical applica- 
tions. The calculation of the  attack  time  parameter is carried out by 
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where t is the  time  parameter in seconds and T is the sampling  period. The release 
time  parameter RT and  the averaging parameter TAV can  be  computed by the 
same  formula by replacing  AT by ~ R T  or tTAV, respectively. Further  details  and 
derivations  can  be  found in [McN84, 261971. The  output  factor f ( n )  of the  static 
function is used as  the  input signal to  the dynamic  filter  with  attack  and release 
times in Fig.  5.7. The  output signal g ( n )  is the gain  factor for weighting the delayed 
input signal x ( n  - D )  as shown in Fig. 5.3. In  the following sections some special 
dynamic  range  controllers  are discussed in detail. 

5.2.1 Limiter 

The functional  units of a limiter are shown in Fig. 5.8. The purpose of the limiter 
is to provide  control over the high peaks in the signal and  to change the dynamics 
of the signal as  little  as possible. A limiter makes use of peak level measurement 
and should  react very quickly to extensions of the limiter  threshold.  Typical  para- 
meters for a  limiter are  AT = 0.02 . . .0.04. . .10.24 msec and tRT = l . . . l30  . . .5000 
msec for the peak  measurement and tAT = 0.02..  .0.04.. .10.24 msec and ~ R T  = 
1. . .130. .  .5000 msec for the  attack/release  time  adjustment.  The fast attack  and 
release of a limiter allow t,he volume reduction  as  soon  as  the  signal crosses the 
threshold. By lowering the peaks, the overall signal  can  be  boosted. Beside limiting 
single instrument  signals,  limiting is also  often  performed  on the final mix of a 
multichannel  application. 

Figure 5.8 Block diagram of a limiter [Zo197]. 

The following M-file 5.1  may serve as an example of a sample-based  limiter 
implementation. 

M-file 5.1 (1imiter.m) 
% Limiter.m 
anzahl=220; 
f o r  n=l : anzahl, 

x (n)=o. 2*sin (n/5) ; 
end ; 
f o r  n=anzahl+l:2*anzahl; 

end ; 
x(n)=sin(n/5) ; 
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slope=l ; 
tresh=0.5; 
rt=O .Ol; 
at=O. 4; 

xd(l)=O; 
for  n=2:2*anzahl; 

a=abs(x(n))-xd(n-l); 
if a<O,  a=O;  end; 
xd(n)=xd(n-l)*(l-rt)+at*a; 
if  xd(n)>tresh, 

f (n)=lO-(-slope*(loglO(xd(n))-logiO(tresh))); 
% linear  calculation  of  f=iO-(-LS*(X-LT)) 

else  f (n)=l; 
end ; 

y (n) =x (n) *f (n) ; 
end ; 

Figure 5.9 demonstrates  the behavior of the  time signals  inside a limiter configura- 
tion of Fig. 5.8. 

A variant for a hard  limiter is given by the following M-file 5.2 which makes use 
of lowpass  filtering the absolute value \ x ( n ) \  by a second  order Butterworth filter 
to  obtain  the gain  factor g(n) [Ben97]. 

M-file 5.2 (hard-limiter .m) 
function  y=hard-limiter(x,  limit) 
% Hard  sound  limiter,  limit - normalized  limit 
g=filter(le-5*[0.45535887 0.91071773849  0.455358871, . . .  
. . . [l -1.99395528  0.9939734941 , abs (x) ; 
1 detects  the  envelope  of  the  signal  with  a  second  order 

h=h/max  (h) ; 
for  n=l:length(x) 

Butterworth  filter,  cut  off  frequency 30 Hz 

if  h(n)>limit  %if the  signal  envelope  is  above  the  limit 

end ; 
x(n)=x(n)*limit/g(n) ; 

end ; 
y=x ; 

5.2.2 Compressor and Expander 

A dynamic  range controller for compression and expansion is shown in Fig. 5.10. 
The gain  factor  calculation is based  on an RMS measurement and some  computa- 
tions in the logarithmic  domain.  Typical  parameters for compressors and  expanders 
are tAT = 5 msec and ~ R T  = 130 msec for the RMS measurement  and tAT = 
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Figure 5.9 Signals  for limiter. 

0.16.. . S . .  .2600 msec and tRT = 1. .  .130 . .  .5000 msec for the  attacklrelease  time 
adjustment.  The  programming is similar to  the implementation for the  limiter from 
the previous  subsection. 

Range Detector 

-F 
Figure 5.10 Block  diagram of a compressor/expander [Zo197]. 

A different method of implementation is given  by [Ben97], which follows the 
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comp>0  comp=O O<comp<-l 
expander  compressor 

Figure 5.11 Block  diagram of a compressor/expander  [Ben97]. 

block diagram  in  Fig. 5.11. The corresponding M-file 5.3 illustrates  the implemen- 
tation. 

M-file 5.3 (c0mpexp.m) 
function y=compexp(x,comp,release,attack,a,Fs) 
% Compressor/expander 
% comp - compression: O>comp>-i, expansion: O<comp<i 
% a  - filter parameter <l 
h=filter([(l-a)-2], [l.OOOO -2*a a-21 ,abs(x)); 
h=h/max (h) ; 
h=h.-comp; 

y=y*max(abs(x)>/max(abs(y)) ; 
y=x. *h; 

Compressors are used for reducing the  dynamics of the  input signal.  Quiet parts 
or low levels of a signal are  not modified but high levels or loud parts  are reduced 
according to  the  static curve. The result is that  the difference between the loud and 
quiet  parts is lessened, and  thus  the overall signal level can  be  boosted,  and  thus 
the signal is made louder. Expanders  operate on low level signals and increase the 
dynamics of these low level signals. This leads to a lively sound  characteristic. 

5.2.3 Noise Gate 

The functional  units of a noise gate  are shown in  Fig. 5.10. The decision to activate 
the  gate is based  on a peak  measurement which leads to a fade in/fade  out of the 
gain  factor g ( n )  with  appropriate  attack  and release times. The  input  to  the  time 
constant  system is set to zero if the  input level falls below the noise gate  threshold, 
and is set to  one if the  input level exceeds the noise gate level. The M-file 5.4 
demonstrates  an  implementation  with a hold time [Ben97]. 

M-file 5.4 (noisegt .m) 
function y=noisegt(x,holdtime,ltrhold,utrhold,release,attack,a,Fs) 
%y=noisegt(x,holdtime,ltrhold,utrhold,release,attack,a,Fs); 

% holdtime - time  in  seconds  the sound level  has  to be below the 
noise gate  with  hysteresis 

% threshhold value  before the  gate is activated 
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Figure 5.12 Block diagram of a noise gate [Zo197]. 

% ltrhold - threshold  value  for  activating  the  gate 
% utrhold - threshold  value  for  deactivating  the  gate > ltrhold 
% release - time  in  seconds  before  the  sound  level  reaches  zero 
% attack - time  in  seconds  before  the  output  sound  level  is  the 
% same  as  the  input  level  after  deactivating  the  gate 
% a  - pole  placement  of  the  envelope  detecting  filter <l 
% Fs - sampling  frequency 
rel=round(release*Fs);  %number  of  samples  for  fade 
att=round(attack*Fs);  %number  of  samples  for  fade 
g=zeros(size(x)) ; 
lthcnt=O; 
uthcnt=O; 
ht=round(holdtime*Fs) ; 
h=filter(  [(1-a)"2], [l.OOOO -2*a  a-21 ,abs(x)) ;%envelope  detection 
h=h/max (h) ; 
for  i=l:length(h) 

% Value  below  the  lower  threshold? 
if  (h(i)<=ltrhold) 1 ((h(i)<utrhold) & (lthcnt>O)) 

lthcnt=lthcnt+l; 
uthcnt=O; 
if  lthcnt>ht 

% Time  below  the  lower  threshold  longer  than  the  hold  time? 
if  lthcnt>(rel+ht) 
g(i)=O; 

else 
g(i)=l-(lthcnt-ht)/rel; % fades  the  signal  to  zero 

end ; 

g(i)=O; 

g(i)=l; 

elseif  ((icht) 8! (lthcnt==i)) 

else 

end ; 
elseif  (h(i)>=utrhold) I ((h(i)>ltrhold) & (uthcnt>O)) 

1 Value  above  the  upper  threshold  or  is  the  signal  being  faded  in? 
uthcnt=uthcnt+l; 
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if  (g(i-i)<l) 
% Has  the  gate  been  activated or isn't the  signal  faded  in  yet? 

g(i)=max(uthcnt/att,g(i-l)); 

g(i)=i; 
end ; 
lthcnt=O ; 

g(i)=g(i-l) ; 
lthcnt=O; 
uthcnt=O; 

else 

else 

end ; 
end ; 
y=x . *g ; 
y=y*max(abs(x))/max(abs(y)); 

The  main use of a  noise gate is to eliminate  noise  when  the  desired  signal is not 
present.  The noise gate  attenuates only the soft signals. A  particular  application 
is found  when  recording a drum  set.  Each element of the  drum  set  has a different 
decay  time.  When  they  are  not  manually  damped,  their  sounds  mix  together  and 
the result is no longer  distinguishable.  When  each  element is processed by a noise 
gate, every  sound can  automatically  be  faded  out  after  the  attack  part of the  sound. 
This  results in an overall cleaner  sound. 

Further  implementations of limiters,  compressors,  expanders  and noise gates  can 
be  found  in [Orf96] and in [Zo197] where special combined DRCs are also discussed. 

5.2.4 De-esser 

A de-esser is a signal  processing  device for processing  speech and vocals. It consists 
of a bandpass filter tuned  to  the frequency range between 2-6 kHz to detect  the 
level of the signal in this frequency band. If a certain  threshold is exceeded, the 
amount of gain is used to control  the  gain  factor of a peak-  or notch-filter tuned  to 
the  same  frequency  band.  The  peak- or notch-filter is in the direct  signal  path (see 
Fig. 5.13). As an  alternative  to  the  bandpass/notch  filters,  highpass  and shelving 
filters  are used with  good  results. In order  to  make  the de-esser more  robust  against 
input level changes  the  threshold  should  depend  on  the overall level of the  signal - 
that  is, a relative  threshold [NieOO]. 

Applications of de-essers are  mainly in the field of speech and vocal  processing 
to  avoid  high  frequency  sibilance.  Here, quite  fast  time  constants  are  used. An- 
other  application is the feedback  reduction in sound  reinforcement  systems  where 
adaptively  changing  notch frequencies and  gain  factors  are  required. 
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Gain factor 

Level  Detection 

Figure 5.13 Block diagram of a de-esser. 

5.2.5 Infinite  Limiters 

In  order  to  catch  overshoots from a compressor and  limiter,  a  clipper - or infinite 
limiter - may  be  used [NieOO]. Another  reason for using an infinite limiter is that 
the average level rises. The  infinite  limiter is a nonlinear operation working  directly 
on  the waveform  by flattening  the  signal above  a  threshold.  The  simplest  one is 
hard clipping which  generates  lots of high order  harmonics. A gentler infinite lim- 
iter is the soft clipper which rounds the signal shape before the absolute clipping 
threshold.  The  rounding typically consists of a low order polynomial and  therefore 
the  harmonic  spectrum rolls off faster [NieOO]. 

Due to  the  fact  that  the signal  processing takes place in the  digital  domain,  not 
only  harmonic  distortion  but also aliasing  distortion is generated. Aliasing distortion 
sounds  metallic  and is not really good.  Although infinite limiting  should  be  avoided 
during mix  down of multi-channel  recordings  and  recording sessions, several CDs 
make use of infinite limiting or saturation (see wave  file in Fig. 5.14 and  listen  to 
Carlos  Santana/Smooth  [m-San99]). 

signal h C zoom in 

0.5  0.5 

0 0 

-0.5  -0.5 

-1 -1 
0 5 10 15 0 200 400 600 

n +  
X lo4 n-, 

Figure 5.14 Infinite  limiting (Santana - “Smooth”). 
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5.3 Nonlinear  Processors 

There  are  two  approaches  towards nonlinear  processing for audio  applications.  The 
first  approach is driven by musical applications of nonlinear effects and  the second is 
driven by the reduction of nonlinear  behavior especially in the field of loudspeakers. 
We cover the first  approach of nonlinear effects for musical processing, where topics 
from  nonlinear  modeling of physical  systems play an  important role. Therefore, we 
investigate  approximation  and  simulation  techniques for nonlinear  processors and 
will show simple  implementation schemes for nonlinear  processors. Special nonlinear 
waveshaping  techniques for sound  synthesis  can  be  found  in  [Bru79, Arf79, De 841. 

5.3.1 Basics of Nonlinear  Modeling 

Digital  signal  processing is mainly  based  on  linear  time-invariant  systems. The as- 
sumption of linearity  and  time invariance is certainly valid for a  variety of technical 
systems, especially for systems  where  input  and  output signals are  bounded to  
a specified amplitude  range. In  fact  several  analog  audio  processing devices have 
nonlinearities like valve amplifiers,  analog effect devices, analog tape recorders, 
loudspeakers  and at  the  end of the chain the human  hearing  mechanism. A 
compensation  and  the  simulation of these  nonlinearities need nonlinear  signal  pro- 
cessing and of course a theory of nonlinear  systems.  From  several models for dif- 
ferent  nonlinear  systems discussed in the  literature  the  Volterra series expansion 
is a suitable  approach, because it is an extension of the linear  systems  theory. 
Not  all  technical and physical  systems  can be described by the Volterra series 
expansion, especially systems  with  extreme  nonlinearities. If the inner structure 
of a nonlinear  system is unknown,  a  typical  measurement  set-up, as shown in 
Fig. 5.15, with  a  pseudo-random  signal as  the  input signal and recording the  out- 
put signal is used. Input  and  output signals allow the calculation of the linear 
impulse  response hl(n) by cross-correlation and kernels  (impulse  responses) of 
higher order h2 (721, n2), h3 (nl ,122, n3), . . . , hN(n1, . . . , n ~ )  by higher  order cross- 
correlations. The linear  impulse  response hl(n) is a  one-dimensional, h2(n1,7~2) is 
a  two-dimensional and hN(nl, .  . . , n ~ )  is an N-dimensional kernel. An  exhaustive 
treatment of these  techniques  can be found in [Sch80]. These N kernels can  be used 

sync 0 - 

Figure 5.15 Measurement of nonlinear systems. 
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for an  N-order  Volterra  system model  given by 

N 

i= 1 
M 

v1=0 v.N=o 

Figure 5.16 shows the block  diagram  representing (5.3). 

Figure 5.16 Simulation of nonlinear  systems by an N-order  Volterra  system  model. 

A further simplification [Fra97] is possible if the kernels can  be  factored  according 
to 

hi(nI,n2;.. ,ni) =hf(nl)hf(nz).'.hf(ni). (5.4) 

Then (5.3) can  be  written  as 

which  is shown in block  diagram  representation in Fig. 5.17. This  representation 
shows several advantages especially from the  implementation  point of view,  be- 
cause  every  subsystem can  be realized by a  one-dimensional  impulse  response or 
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Figure 5.17 Simulation of nonlinear  systems by an N-order Volterra  system model  with 
factored kernels. 

the equivalent  representations we have discussed in the previous  chapters. At the 
output of each  subsystem we have to perform the O i  operation  on  the corres- 
ponding output signals. The discussion so far  can  be  applied to nonlinear  systems 
with  memory, which means that besides  nonlinearities  linear  filtering  operations 
are also  included.  Further  material  on nonlinear  audio  systems  can  be  found in 
[Kai87,  RH96,  Kli98,  FUB+98]. 

A simulation of a  nonlinear  system  without memory, namely static nonlinear 
curves,  can  be  done by a  Taylor  series  expansion given by 

N 

y(n) = f [x(.)] = c b2xi(n). 
i=O 

Static nonlinear  curves  can  be  applied  directly to  the  input signal, where each input 
amplitude is mapped  to  an  output  amplitude according to the nonlinear  function 
y = f [x(.)] (see Fig.  5.18). If one  applies  a  squarer  operation to  the  input signal of 
a given bandwidth,  the  output signal y(n) = x2(n) will double its  bandwidth. As 
soon  as  the highest  frequency  after  passing  a  nonlinear  operation exceeds half the 
sampling  frequency f s / 2 ,  aliasing will fold this frequency back to the base band. In 
some effect applications  additional  aliasing  distortions  might  be helpful, especially 
for extreme  distortions in metal music. This  means  that for digital  signals we first 
have to  perform  over-sampling of the  input signal before applying  any nonlinear 
operation  to  the  input signal in order to avoid any  aliasing  distortions.  This over- 
sampling is shown in Fig.  5.18  where  first  up-sampling is performed and  then  an 
interpolation  filter HI is used to suppress  images up  to  the new sampling  frequency 
L fs. Then  the nonlinear operation can  be  applied followed  by a  band-limiting filter 
to f s /2  and down-sampling. 

As can  be  noticed, the  output  spectrum only contains frequencies up  to f s / 2 .  
Based  on this fact the  entire nonlinear  processing  can be performed  without over- 
sampling  and down-sampling by the system shown in  Fig. 5.19 [SZ99]. The  input 
signal is split into several  lowpass versions which are forwarded to  an individual 
nonlinearity. The  output signal is a weighted combination of the individual output 
signals  after  passing a nonlinearity. With  this  approach  the problem of aliasing is 
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Nonlinearity 

109 

Figure 5.18 Nonlinear  processing by over-sampling  techniques. 

Figure 5.19 Nonlinear  processing by band-limiting input range [SZSS]. 

avoided and  an equivalent  approximation to  the over-sampling  technique is achieved. 
A comparison  with  our  previous discussion on  factored  Volterra kernels shows also 
a close connection. As a conclusion for a  special static nonlinearity  applied to  an 
input  signal,  the  input signal has  to be  filtered by a lowpass of cut-off frequency 
f s / ( 2  . order of the Taylor series),  otherwise  aliasing  distortions will occur. 

5.3.2 Valve Simulation 

Valve or tube devices dominated  signal  processing  during the first part of the  last 
century  and have experienced  a revival in audio  processing every decade since their 
introduction  [Bar98, Ham731. One of the most commonly used effect for electric 
guitars is the amplifier and especially the valve amplifier. The typical  behavior 
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of the amplifier and  the  connected loudspeaker  cabinet  have  demonstrated  their 
influence on the sound of rock music over the  past decades. Besides the two most 
important  guitars, namely the Fender Stratocaster  and  the Gibson Les Paul, several 
valve amplifiers  have  helped in creating  exciting  sounds from these classic guitars. 

Introduction 

Vintage valve amplifiers. An  introduction to valve amplifiers and  their history 
can  be  found in [Fli93, Bar981 where several  comments  on  sound  characteristics  are 
published. We  will concentrate on the most important amplifier manufacturers over 
the past  and  point  out some  characteristic  features. 

0 Fender: The Fender  series of guitar amplifiers goes back to  the year 1946 
when the first  amplifiers were introduced.  These were based  on standard  tube 
schematics  supplied by the manufacturers of tubes. Over the years modifica- 
tions of the  standard design approach were integrated in response to musi- 
cians’  needs and proposals. The range of Fender  amplifiers is still  expanding 
but also  reissues of the originals are very popular  with  musicians. The sound 
of Fender  amplifiers is the “classic tube sound”. For more  information’ we 
refer to [Fli93]. 

0 Vox: The sound of the VOX AC30/4 is best  characterized by guitar player 
Brian  May in [PD93]  where he states  “the  quality at low levels is broad  and 
crisp  and  unmistakebly valve like, and  as  the volume is turned  up  it slides into 
a pleasant, creamy  compression and  distortion”.  There is always a  ringing 
treble  quality  through all level settings of the  amp.  The real ‘‘soul of the 
amp” comes out if you play it  at full volume and  control your sound  with 
the volume knob of your guitar.  The  heart of the  sound  characteristic of the 
VOX AC30/4 is claimed to be the use of EL84s, NFB  and  cathode-biasing 
and Class  A  configuration. The four  small EL84s should  sound  more lively 
than  the bigger EL34s. The sound of VOX AC30 can be found  on  recordings 
by Brian May, Status  Quo, Tom Petty  and  Bryan Adams. 

Marshall: The Fender  Bassman  5F6 was the basis for the Marshall JTM 
45. The differences between both  are discussed in [Doy93] and  are claimed 
to be the  output transformers,  speakers,  input valve and feedback circuit, 
although  the  main  circuit  diagrams  are nearly  identical. The sound of Marshall 
is characterized by an aggressive and “crunchy”  tone  with  brilliant  harmonics, 
as Eric  Clapton  says, “I was probably  playing full volume to get that sound” 
[Doy93]. Typical  representatives of the  early  Marshall  sound  are  Jimi Hendrix, 
Eric  Clapton,  Jimmy  Page  and Ritchie  Blackmore. 

Mesa-Boogie: Two  cascaded  pre-amp  stages and a master volume for the 
power amp is the basis for Mesa-Boogie amps. An ambassador for Mesa-Boogie 
sound is Carlos  Santana. 

lhttp://www.fender.Com, http://www.ampwares.com 
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Signal  Processing 

The  sound of a valve amplifier is based  on a combination of several important 
factors.  First of all the  main processing features of valves or  tubes  are  important 
[Bar98, Ham731. Then  the amplifier circuit  has  its influence on  the  sound  and,  last 
but  not  least,  the chassis and  loudspeaker  combination  play  an  important role in 
sound  shaping. We  will discuss all three  factors now. 

Valve basics. Z'r-iode valves [Rat95, RCA591 consisting of three  electrodes, 
namely the  anode,  cathode  and  gate,  are considered as having a warm and soft 
sound  characteristic.  The  main  reason for this is the nonlinear transfer  function for 
anode  current versus input  gate voltage of the  triode which is shown in Fig. 5.20. 
This  nonlinear  curve  has a quadratic  shape. An input  signal  represented by the 
gate  voltage VG delivers an  anode  output  current I A  = f(Uc) representing  the  out- 
put  signal.  The  corresponding  output  spectrum shows a second  harmonic  as well 
as  the  input frequency. This second  harmonic  can  be  lowered in amplitude when 
the  operating  point of the nonlinear  curve is shifted  right  and  the  input  voltage 
is applied to  the more linear region of the  quadratic  curve.  The  dc  component in 
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Figure 5.20 Triode:  nonlinear  characteristic  curve I A  = f(lJc) and nonlinear  effect  on 
input signal. The  output spectrum consists of the fundamental input frequency and a 
second  harmonic  generated by the quadratic curve of the triode. 
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the  output signal  can  be  suppressed by a subsequent  highpass  filter.  Note  also the 
asymmetrical soft clipping of the negative halves of the  output sinusoid, which is 
the result of the  quadratic  curve of the  triode.  Input  stages of valve amplifiers  make 
use of these  triode valves. A  design parameter is the  operating point which controls 
the  amplitude of the second  harmonic. 

Pentode valves, which consist of five electrodes, are mainly used in the power 
amp  stage  [Rat95, RCA591. They have a static  characteristic like an S-curve shown 
in Fig. 5.21 which shows the  anode  output  current I A  versus the  input  gate voltage 
VG. If the  entire  static  characteristic curve is used, the  output signals is compressed 
for higher input  amplitudes leading to a symmetrical soft clipping. The correspond- 
ing output  spectrum shows the creation of odd  order harmonics. For lower input 
amplitudes  the  static  characteristic curve  operates in a nearly  linear  region, which 
again shows the control of the nonlinear  behavior by properly  selecting the oper- 
ating  point. Several static  characteristic curves  can be chosen to achieve the S-like 
curve of pentodes. 

Nonlinear  Characteristic of a Pentode 
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Figure 5.21 Pentode: nonlinear characteristic curve I A  = ~ ( U G )  and nonlinear effect  on 
input signal. 

The technical parameters of valves have wide variation, which leads to a wide 
variation of sound  features,  although selected valves with  small  changes of para- 
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Splitter Transformer  Cabinet 

Power 
AMP 

Figure 5.22 Main stages of a valve  amplifier.  Upper  left  plot  shows  signal after pre- 
amplifier,  lower  left  plot  shows  signal after phase splitter, upper  right  plot  shows  signal 
after power  amplifier and lower right  plot  shows  signal after output transformer. 

meters  are of course available. All surrounding  environmental  parameters like hu- 
midity  and  temperature have their influence as well. 

Valve  amplifier circuits. Valve amplifier circuits  are based  on the block  dia- 
gram in Fig. 5.22. Several  measured signals from  a  VOXAC30 at different stages of 
the signal flow path  are also displayed. This will  give an indication of typical  signal 
distortions  in valve amplifiers. The  main  stages of a  valve amplifier are given below: 

0 the  input  stage consists of a  triode  circuit providing the  input  matching fol- 
lowed  by a  volume  control for the  next  stages. 

0 the tone  control  circuitry is based  on  low/high  frequency  shelving filters. 

0 the  phase  inversion/splitting  stage for providing  symmetrical power amp feed- 
ing.  This  phase  splitter delivers the original input for the  upper power amp 
and  a  phase  inverted replica of the  input for the lower power amp. 

0 the power amp  stage  performs  individual amplification of the original and 
the phase  inverted replica in a class A, class B or class C configuration (see 
Fig. 5.23). Class A is shown in the  upper left plot, where the  output signal is 
valid all the  time.  Class B performs  amplification  only for one half wave and 
class C  only for a  portion of one half wave.  Class A and class AB (see lower 
part of Fig. 5.23) are  the  main configurations for guitar power amplifiers. For 
class AB operation  the working  point lies in between class A and class B. The 
signals after amplification in both  parts of the power amplifier are shown. 

0 the  output  transformer, shown in Fig. 5.24, performs the  subtraction of both 
waveforms delivered by the power amplifiers which  leads to  the  output signal 
I A ~  - I A ~  as shown in Fig. 5.23. The nonlinear  behavior of transformers is 
beyond the scope of this discussion. 
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Class  B 

t '  
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Figure 5.23 Power  amplifier  operation (upper plots:  left  class A, middle  class B, right 
class C, lower plot:  class AB operation). 

Figure 5.24 Power  amplifier stage and output transformer. 

the chassis and  the  loudspeakers  are  arranged in several combinations  ranging 
from 2x12 to 4x10 in closed or open  cabinets.  Simulations of these  components 
can  be  done by impulse  response  measurements of the loudspeaker  and  cabinet 
combination. 

As well as  the discussed  topics the influence of the power  supply  with valve rectifier 
(pp. 51-54 in [vdL97]) is claimed to  be of importance. A soft reduction of the power 
supply  voltage  occurs  when in a high  power operation  short  transients need a high 
current.  This power  supply effect leads to a soft clipping of the  audio signal. 
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Figure 5.25 VOX AC30/4 spectra at different  stages: (a) input stage, (b) output phase 
splitter, (c) output power amp and  (d)  output of transformer. 

The corresponding spectra of the signals for the VOX AC30/4  measurements 
are shown in Fig. 5.25. The distortion  characteristic  can be visualized by the wa- 
terfall  representation of short-time FFTs for a  chirp  input signal in Fig. 5.26. The 
individual  distortion  components for the second up  to  the fifth harmonic  are shown 
in Fig.  5.27 for each  signal in the VOX AC30/4 amplifier. 

Musical Applications 

Musical applications of valve amplifiers can  be  found  on  nearly every recording fea- 
turing  guitar  tracks. Ambassadors of innovative guitar players  from the blues to 
early rock period are B.  B.  King,  Albert  King and Chuck Berry, who mainly used 
valve amplifiers for their  warm  and soft sound.  Representatives of the classic rock 
period  are  Jimi Hendrix [m-Hen67a, m-Hen67b, m-Hen681, Eric  Clapton [m-Cla67], 
Jimmy  Page  [m-Pag69],  Ritchie  Blackmore [m-Bla70], Jeff  Beck [m-Bec89] and  Car- 
los Santana [m-San99]. All make  extensive use of valve amplification and special 
guitar effect units.  There  are also players from the new classic period like Eddie 
van Halen,  Steve  Ray  Vaughan and Steve Morse up to  the new guitar heroes  such 
as Steve  Lukather, Joe  Sartriani,  Gary Moore,  Steve Vai and  Paul  Gilbert, who are 
using effect devices together  with valve amplifiers. New guitar amplifier designs with 
digital  preamplifiers are ba,sed on  digital modeling technology,2 where a modeling 
of classic valve amplifiers is performed  together  with new valve-based algorithms 
for guitar  and bass guitar processing. 
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Figure 5.26 Short-time FFTs (waterfall representation) of VOXACSO with a chirp input 
signal. The amplifier is operating with full volume setting. 

Valve microphones,  preamplifiers and effect devices  such as  compressors,  limiters 
and  equalizers  are  also used for vocal  recordings  where the  warm  and  subtle effect 
of valve  compression  is  applied. A lot of vocalists prefer recording  with  valve  con- 
denser  microphones  because of their  warm low end  and  smooth  top  end frequency 
response. Also the recording of acoustical  instruments such as  acoustic  guitars,  brass 
instruments  and  drums benefit from  being  processed  with valve outboard devices. 
Valve processors  also  assist the mixing  process for individual  track  enhancing  and 
on  the  mix  buses.  The  demand for valve outboard effects and classic mixing  con- 
soles used in  combination  with  digital  audio  workstations  has led back to  entire 
valve  technology  mixing consoles. For the variety of digital  audio  workstations a lot 
of plug-in  software  modules for valve  processing are available on the marketplace. 

5.3.3 Overdrive, Distortion and Fuzz 

Introduction 

As pointed  out in the section  on valve simulation,  the  distorted electric guitar is a 
central  part of rock  music. As  well as the  guitar amplifier as a major  sound effect 
device, several  stomp boxes  (foot-operated  pedals)  have  been  used by guitar play- 
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Figure 5.27 VOX AC30 - Distortion  components  versus  signal  level at different  stages. 

ers for the creation of their  typical guitar  sound.  Guitar heroes like Jimi  Hendrix 
have  made use of several  small  analog effect devices to achieve their  unmistakable 
sound. Most of these effect devices have  been used to create  higher  harmonics for 
the  guitar sound in a faster way and at a much lower sound level compared to 
valve amplifiers. In this  context  terms like overdrive,  distortion, fuzz and buzz are 
used. Several definitions of overdrive,  distortion and fuzz for musical applications 
especially in  the  guitar player world are a~a i l ab le .~  For our discussion we will de- 
fine overdrive as a  first state where a  nearly  linear  audio effect device at low input 
levels  is driven by higher input levels into  the nonlinear region of its  characteristic 
curve. The operating region is in the linear region as well as in the nonlinear region 
with a smooth  transition. The main  sound  characteristic is of course from the non- 
linear part. Overdrive has a warm and  smooth  sound.  The second state is termed 
distortion, where the effects device mainly  operates in the nonlinear region of the 
characteristic  curve  and reaches the  upper  input level, where the  output level is 
fixed to a maximum level. Distortion covers a wide tonal  area  starting beyond tube 
warmth to buzz saw effects. All metal  and grunge  sounds fall into  this category. 
The  operating  status of fuzz is represented by a completely nonlinear  behavior of 
the effect device with a sound  characterized by the  guitar player terms  “harder” 
and  “harsher”  than  distortion. Fuzz also  means  not  clear,  distinct,  or precise and 

3A Musical  Distortion  Primer by R.G. Keen  on  http://www.geofec.corn 
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unpredictable. The fuzz effect is generally used on single-note  lead lines. 

Signal Processing 

Symmetrical soft clipping. For overdrive  simulations a symmetrical soft clipping 
of the  input values has  to be  performed.  One possible approach for a soft saturation 
nonlinearity [Sch80] is given by 

for 0 5 x 5 1/3 

for 2/3 5 x 5 1. 
for 113 5 x 5 213 (5.7) 

The  static  input  to  output relation is shown in Fig. 5.28. Up to  the threshold of 1/3 
the  input is multiplied  by  two and  the  characteristic curve is in its linear region. 
Between input values of 1/3 up  to 2/3, the  characteristic curve  produces a soft 
compression  described by the middle term of equation (5.7). Above input values of 
2/3 the  output value is set to one. The corresponding M-file 5.5 for overdrive with 
symmetrical soft clipping is shown next. 

M-file 5.5 (symc1ip.m) 
function y=symclip(x) 
% y=symclip(x) 
% "Overdrive" simulation with  symmetrical  clipping 
% x - input 
N=length(x) ; 
th=1/3; % threshold  for symmetrical soft clipping 

for  i=i:l:Ny 
% by  Schetzen  Formula 

if  abs(x(i))< thy y(i)=2*x(i);end; 
if  abs(x(i))>=th, 

if  x(i)> 0, y(i)=(3-(2-x(i)*3)  .^2)/3; end; 
if  x(i)< 0, y(i)=-(3-(2-abs(x(i))*3) .^2)/3; end; 

end ; 
if  abs(x(i))>2*th, 

if  x(i)> 0, y(i)=i;end; 
if  x(i)< 0, y(i)=-1;end; 

end ; 
end ; 

Figure 5.29 shows the waveforms of a simulation  with  the above  described  char- 
acteristic  curve  and a sinusoid of 1 kHz. In the  upper left plot the  output signal from 
sample 0 up  to 250 is shown which corresponds to  the  saturated  part of the charac- 
teristic  curve. The  tops  and  bottoms of the sinusoid run  with a soft curve  towards 
the  saturated  maximum values. The upper  right  plot shows the  output signal from 
sample 2000 up  to 2250, where the maximum values are in the soft clipping region of 
the characteristic  curve.  Both the negative and  the positive top of the sinusoid are 
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Static  characteristic: y=f(x) 

-1 -0.5 0 0.5 1 
X 

-25/ -30 -30  -20 

X in dB 
-10 

Figure 5.28 Static characteristic curve of symmetrical  soft  clipping  (right part shows 
logarithmic output value  versus input value). 
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Figure 5.29 Short-time FFTs (waterfall  representation) of symmetrical  soft  clipping for 
a decaying  sinusoid of 1 kHz. 

rounded  in  their  shape.  The lower waterfall representation  shows the  entire decay of 
the sinusoid  down to -12 dB. Notice the  odd  order  harmonics  produced by this non- 
linear  symmetrical  characteristic  curve, which appear in the nonlinear  region of the 



120 5 Nonlinear Processing 

characteristic  curve  and  disappear  as soon as  the lower threshold of the soft com- 
pression is  reached. The  prominent  harmonics  are  the  third  and  the fifth harmonic. 
The slow increase or decrease of higher  harmonics is the  major  property of sym- 
metrical soft clipping. As soon as simple hard clipping without  a soft compression 
is performed,  higher  harmonics  appear  with significant higher levels (see Fig. 5.30). 
The discussion of overdrive and  distortion  has so far only  considered the  creation 
of harmonics for a single sinusoid as  the  input signal. Since  a single guitar  tone 
itself consists of the  fundamental frequency  plus all odd  and even  order  harmonics, 
the  sum of sinusoids are always  processed by a  nonlinearity.  The  nonlinearity  also 
produces  sum  and difference frequencies, which sound  very  disturbing.  The  control 
of these  sum  and difference frequencies  goes  beyond the  current  treatment of the 
subject. 
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Figure 5.30 Short-time FFTs (waterfall representation) of symmetrical hard clipping for 
a decaying  sinusoid of 1 kHz. 

Asymmetrical clipping. We have already discussed the  behavior of triode valves 
in the  previous  section which  produce  an  asymmetrical overdrive. One  famous  repre- 
sentative of asymmetrical clipping is the Fuzz Faze which was used by Jimi  Hendrix. 
The basic analog  circuit is shown in Fig. 5.314 and  consists only of a few components 
with two transistors in a  feedback arrangement.  The  output signals for various input 
levels are  presented in Fig. 5.32 in  conjunction  with  the  corresponding  spectra for 

4The Technology of the Fuzz Face by R.G. Keen on http://www.geofex.com 
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Figure 5.31 Analog  circuit of Fuzz Face. 
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Figure 5.32 Signals and corresponding spectra of Fuzz Face. 

level. For low level input signals the typical second harmonic of a triode valve can 
be  noticed  although the  time signal shows no  distortion  components.  With  increas- 
ing  input level the second harmonic  and all even order  harmonics as well as odd 
order  harmonics appear.  The  asymmetrical clipping  produces  enhanced even order 
harmonics as shown in the  third row of Fig. 5.32. Notice that only the top of the 
positive  maximum values are clipped. As soon as  the  input level further increases, 
the negative part of the waveform is clipped. The negative  clipping level  is  lower 
than  the positive clipping value and so asymmetrical clipping is performed.  When 
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both  positive  and  negative  clipping levels are  exceeded,  the  odd  order  harmonics 
come up  but  the even order  harmonics  are  still  present. 

Short-time  Fourier  transforms  (in waterfall representation) for an increasing 1 
kHz sinusoid together  with two  waveforms are shown in Fig. 5.33. 
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Figure 5.33 Short-time FFTs (waterfall representation) of Fuzz Face  for  an  increasing 
1 kHz sinusoid. The upper plots show  segments of samples  from the complete  analysed 
signal. 

A proposal for asymmetrical clipping [Ben971 used for tube simulation is given 
by 

Q # 0 , ~  # Q. 

The underlying  design  parameters for the  simulation of tube  distortion  are based  on 
the  mathematical model [Ben971 where  no distortion  should occur  when the  input 
level is  low (the  derivative of f(x) has  to  be f’(0) X 1 and f(0) = 0). The  static 
characteristic  curve  should  perform clipping and  limiting of large  negative  input 
values and  approximately  linear for positive values. The  result of equation  (5.8) is 
shown in Fig. 5.34. 

The following M-file 5.6 performs  equation  (5.8)  from [Ben97]. To  remove the  dc 
component  and  to  shape higher  harmonics,  additional  lowpass  and  highpass  filtering 
of the  output signal is performed. 
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Static characteristic: y=f(x) 
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Figure 5.34 Static  characteristic  curve of asymmetric  soft  clipping  for  tube  simulation 
Q = -0.2 and dist = 8. 

M-file 5.6 (tube.rn) 
function  y=tube(x,  gain, Q, dist,  rh, r l ,  mix) 
% y=tube(x,  gain, Q, dist, rh, rl, mix) 
% "Tube  distortion"  simulation,  asymmetrical  function 
% x - input 
% gain - the  amount  of  distortion, >0-> 
% Q - work  point.  Controls  the  linearity  of  the  transfer 

% dist - controls  the  distortion's  character,  a  higher  number  gives 

1 rh - abs(rh)<i,  but  close  to 1. Placement  of  poles  in  the HP 

% rl - O<rl<l.  The  po.Le  placement  in  the  LP  filter  used  to 

% mix - mix  of  original  and  distorted  sound,  l=only  distorted 
q=x*gain/max(abs(x));  %Normalization 
if Q==O 

% function  for  low  input  levels,  more  negative=more  linear 

% a  harder  distort  ion, >O 

% filter  which  removes  the DC component 

% simulate  capacitances  in  a  tube  amplifier 

z=q./(l-exp(-dist*q)); 
for  i=l:length(q)  %Test  because  of  the 
if  q(i)==Q  %transfer  function's 
z(i)=l/dist; %O/O value  in Q 

end ; 
end ; 

z=(q-Q)./(l-exp(-dist*(q-Q)))+Q/(l-exp(dist*Q)); 
for  i=i:length(q)  %Test  because  of  the 

else 

if  q(i)==Q  %transfer  function's 

end ; 
z(i)=l/dist+Q/(l-exp(dist*Q)); %O/O value  in Q 
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end ; 
end ; 
y=mix*z*max(abs(x))/max(abs(z))+(l-mix)*x; 
y=y*max (abs (x) ) /max(abs (y) ; 
y=filter( C1 -2 l] [l -2*rh rh-23 ,y>; %HP filter 
y=filter( Cl-rll C1 -rll ,y>; %LP filter 

Short-time  FFTs  (waterfall  representation) of this  algorithm  applied  to a 1 kHz 
sinusoid are shown in  Fig. 5.35. The waterfall  representation shows strong even 
order  harmonics  and  also  odd  order  harmonics. 
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Figure 5.35 Short-time FFTs (waterfall representation) of asymmetrical soft clipping. 

Distortion. A nonlinearity  suitable for the simulation of distortion [Ben971  is  given 
by 

The M-file 5.7 for performing  equation (5.9) is shown next. 

M-file 5.7 (fuz2exp.m) 
function y=f uzzexp (x gain mix) 
% y=fuzzexp(x, gain, mix) 
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% Distortion based on  an  exponential  function 
% x - input 

% mix - mix of original and distorted  sound, l=only distorted 
q=x*gain/max(abs(x)); 
z=sign(-q).*(l-exp(sign(-q) .*q)); 
y=mix*z*max(abs(x))/max(abs(z))+(l-mix)*x; 
y=y*max(abs(x))/max(abs(y)); 

gain - amount of distortion, >0-> 

The  static  characteristic curve is illustrated  in  Fig. 5.36 and  short-time FFTs of a 
decaying 1 kHz sinusoid are shown in Fig. 5.37. 
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Figure 5.36 Static characteristic  curve of exponential  distortion. 

Musical Applications 

There  are a lot of commercial stomp effects for guitarists on the market  place. 
Some of the most  interesting  distortion devices for guitars  are  the Fuzz Face which 
performs  asymmetrical  clipping  towards  symmetrical soft clipping and  the  Tube 
S ~ r e a m e r , ~  which performs  symmetrical soft clipping6  The Fuzz Face was used 
by Jimi Hendrix and  the Tube Screamer by Stevie  Ray  Vaughan. They  both offer 
classical distortion  and  are well known because of their famous  users. It is impossible 
to explain the  sound of a distortion  unit  without  listening  personally to  it.  The 
technical  specifications for the sound of distortion  are missing, so the only way to 
choose a distortion effect  is  by a comparative  listening  test. 

’The Technology of the Tube Screamer by R.G. Keen on http://www.geofex.com 
6GM Arts Homepage http://www.chariot.net.au/-gmarts/ampovdrv.htm 
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Figure 5.37 Short-time FFTs (waterfall representation) of exponential  distortion 

5.3.4 Harmonic  and  Subharmonic  Generation 

Introduction 

Harmonic  and  subharmonic  generation  are  performed by simple  analog or  digital 
effect devices  which  should  produce an octave  above  and/or  an  octave below a single 
note. Advanced  techniques to achieve  pitch  shifting of instrument  sounds will be 
introduced  in  Chapter 7. Here, we will focus  on  simple  techniques, which lead to 
the  generation of harmonics  and  subharmonics. 

Signal Processing 

The  signal processing algorithms for harmonic  and  subharmonic  generation  are 
based  on  simple  mathematical  operations like absolute value computation  and 
counting of zero crossings, as shown in  Fig. 5.38 when an  input sinusoid has  to 
be  processed (first row shows time  signal  and  corresponding  spectrum). 

The second row of Fig. 5.38 demonstrates half-wave  rectification,  where positive 
values are  kept  and  negative values are set to zero. This  operation  leads  to  the 
generation of even order  harmonics.  Full-wave  rectification,  where  the  absolute  value 
is taken from the  input sequence,  leads to even  order  harmonics  as  shown in the  third 
row of Fig. 5.38. Notice the absence of the  fundamental frequency. If a  zero  crossing 
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Figure 5.38 Signals and corresponding spectra of halve-wave  rectification,  full-wave  rec- 
tification and octave  division. 

counter is applied to  the half-wave or  the full-wave rectified signal, a predefined 
number of positive wave parts  can  be  set  to zero to achieve the signal in the  last 
row of Fig. 5.38. This  signal  has  a  fundamental  frequency which  is one  octave lower 
than  the  input frequency in the  first row of the figure, but also shows  harmonics of 
this new fundamental frequency. If appropriate lowpass  filtering is applied to such 
a signal,  only the  fundamental frequency  can be  obtained which is then  added  to 
the  original  input signal. 

Musical Applications 

Harmonic  and  subharmonic  generation is mostly  used  on single note lead lines, 
where an  additional  harmonic or subharmonic frequency  helps to enhance  the oc- 
tave effect. Harmonic  generators  can be found in stomp boxes for guitar or bass 
guitar  and  appear  under  the  name octaver. Subharmonic  generation is often  used 
for solo and  bass  instruments to  give them  an  extra  bass  boost or simply a fuzz bass 
character. 
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5.3.5 Tape Saturation 

Introduction and  Musical Application 

The special  sound  characteristic of analog tape recordings has been acknowledged 
by a  variety of producers  and musicians in the field of rock music. They prefer 
doing  multi-track  recordings  with  analog  tape-based  machines  and  use the special 
physics of magnetic tape recording as  an analog effects processor for sound design. 
One  reason for their preference for analog  recording is the fact that magnetic tape 
goes into  distortion  gradually [Ear761 (pp. 216-218) and produces  those  kinds of 
harmonics which help  special  sound effects on  drums,  guitars  and vocals. 

Signal Processing 

Tape  saturation  can  be  simulated by the already  introduced  techniques for valve 
simulation. An input level derived weighting curve is used for generating a gain 
factor which is used to compress the  input signal. A variety of measurements of 
tape recordings  can  help  in the design of such  processing devices. An example of the 
input/output behavior is shown in Fig. 5.39 and a short-time FFT of a sinusoid input 
signal  in  Fig. 5.40 illustrates a tape  saturation  algorithm. For low-level inputs  the 
transfer  characteristic is linear  without  any  distortions.  A  smooth soft compression 
simulates the gradually  increasing  distortion of magnetic  tape. 

Figure 5.39 Tape saturation: input and output signal (left) and static characteristic curve. 

5.4 Exciters  and Enhancers 

5.4.1 Exciters 

Introduction 

An exciter is a signal  processor that emphasizes or de-emphasizes  certain frequen- 
cies in order to change a signal's  timbre. An exciter  increases  brightness  without 
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Figure 5.40 Tape saturation: short-time FFTs (waterfall representation) for  decaying 
sinusoid of 1 kHz. 

necessarily adding  equalization. The result is a  brighter,  “airier”  sound  without the 
stridency that can  sometinles  occur by simply boosting  the  treble.  This is often 
accomplished with  subtle  amounts of high-frequency distortion,  and sometimes, by 
playing around  with  phase  shifting. Usually there will only be one  or  two  parame- 
ters, such as exciter mix and exciter frequency. The former  determines how much 
“excited”  sound  gets  added to  the  straight sound,  and  the  latter  determines  the 
frequency at which the exciter effect starts [Whi93,  And95, Dic87, WG941. 

This effect  was discovered by the Aphex  company  and  “Aural  Exciter” is a 
trademark of this company. The medium and  treble  parts of the original  signal are 
processed by a nonlinear  circuit that generates  higher  overtones.  These  components 
are  then mixed to some extent  to  the original  signal.  A  compressor at the  output 
of the nonlinear  element  makes the effect dependent  on the  input signal. The ini- 
tial  part of percussive sounds will be  more  enriched than  the following part, when 
the compressor  limits the effect depth.  The enhanced  imaging or spaciousness is 
probably the result of the phase rotation within the filter [Alt90]. 

Signal Processing 

Measurement  results of the  APHEX  Aural  Exciter  are shown in  Fig.  5.41 and in 
Fig. 5.42 where the genera.tion of a second harmonic is clearly visible. The  input 
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signal is a chirp  signal  with  an  increasing  frequency  up to 5 kHz. Signal  processing 
techniques to achieve the effect have already been  discussed in  the  previous  sections. 
The effect is created in the side  chain path  and is mixed  with the  input  signal. 

Figure 5.41 Block  diagram of the psycho-acoustic  equalizer  APHEX  Aural  Exciter and 
frequency  response. 
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Figure 5.42 Short-time FFTs (waterfall representation) of a psycho-acoustic  equalizer. 

Musical Applications 

The  applications of this effect are widespread  and  range  from single instrument 
enhancement to  enhancement of mix  buses and  stereo signals. The effect increases 
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the presence and  clarity of a single instrument  inside a mix and helps to  add  nat- 
ural brightness to stereo  signals. Applied to vocals and speech the effect increases 
intelligibility. Compared to equalizers the  sound level is only increased slightly. The 
application of this effect only makes sense if the  input signal lacks high frequency 
contents. 

5.4.2 Enhancers 

Introduction 

Enhancers  are signal  processors which combine equalization  together  with  nonlinear 
processing. They  perform  equalization  according to  the fundamentals of psycho- 
acoustics [ZF90] and  introduce a  small  amount of distortion in a just noticeable 
manner. An introduction to  the ear’s own nonlinear  distortions,  sharpness,  sensory 
pleasantness and roughness  can be also  be  found  in [ZF90]. A lot of recording 
engineers and musicians  listen  under  slightly  distorted  conditions  during  recording 
and mixing sessions. 

Signal Processing 

As an example of this class of devices the block diagram  and  the frequency  response 
of the SPL vitalizer are shown in Fig. 5.43. This effect processor has also a side 
chain path which performs  equalization  with  a strong bass  enhancement,  a mid- 
frequency cut  and a high-frequency boost.  The  short-time FFT of the  output signal 
when a  chirp  input signal is applied is shown in Fig. 5.44. The resulting  waterfall 
representation  clearly shows higher  harmonics  generated by this effect processor. 

T 

Process X + 
Harmonics (Mix) 

enter Freq.) 

Figure 5.43 Block diagram of the psycho-acoustic  equalizer SPL Vitalizer  and  frequency 
response. 

Further  refinements of enhancers  can  be achieved through  multiband  enhancers 
which split the  input signal into several  frequency  bands.  Inside  each frequency band 
nonlinear processing plus  filtering is performed. The  output signals of each frequency 
band  are weighted and summed up  to form the  output signal (see Fig. 5.45). 

Musical Applications 

The main  applications of such effects are single track processing as a substitute for 
the equalizers inside the  input channels of mixing consoles and processing of final 
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Figure 5.44 Short-time FFTs (waterfall representation) of psycho-acoustic  equalizer SPL 
Vitalizer. 

W. 

Figure 5.45 Multiband  enhancer  with  nonlinear  processing  in  frequency  bands. 

mixes. The  side  chain processing  allows the  subtle mix of the effects signal  together 
with  the  input  signal.  Further  applications  are  stereo  enhancement for broadcast 
stations  and  sound  reinforcement. 

5.5 Conclusion 

The most  challenging  tools for musicians and  sound engineers are  nonlinear pro- 
cessors such  as  dynamics  processors, valve simulators  and  exciters.  The successful 
application of these  audio processors depends  on  the  appropriate  control of these 
devices. A variety of interactive  control  parameters influences the  resulting  sound 
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quality. 
The  primary  purpose of this  chapter is to  enable  the  reader  to  attain a fun- 

damental  understanding of different types of nonlinear  processors and  the special 
properties of nonlinear  operations  applied  to  the  audio  signal. Dynamics  processors 
need a careful consideration of the  interaction of thresholds  and  time-constants  to 
achieve sonic purity  and avoid aliasing distortion.  On  the  other  hand nonlinear  pro- 
cessors are used for the simulation of valve amplifiers or nonlinear audio  systems, 
where  a special kind of nonlinearity  provides a sound  distortion  with  accepted  sound 
characteristic. We have  presented  the basics of nonlinear  modeling and focused on 
the  combination of filters  and  nonlinearities.  Several  applications  demonstrate  the 
importance of nonlinear processors. The basic building  blocks of the previous  chap- 
ters such as  filters,  delays  and  modulators/demodulators  are  particularly useful for 
exploring new improved  nonlinear processors. 
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Chapter 6 

Spatial Effects 

D. Rocchesso 

6.1 Introduction 

The  human  peripheral  hearing  system  modifies the sound  material  that is trans- 
mitted  to  the higher levels in  the  brain,  and  these modifications are  dependent 
on the incoming  direction of the acoustic waves. From the modified  sound signals 
several features  are collected in a set of spatial cues, used by the  brain  to infer 
the  most likely position of the  sound source. Understanding  the cues  used by the 
hearing  system  helps the audio  engineer to  introduce some artificial features in the 
sound  material  in  order  to  project  the  sound  events in space. In the first half of this 
chapter,  the  most  important techniques for sound  projection  are  described]  both for 
individual  listeners  using  hea.dphones  and for an  audience  listening  through a set of 
loudspeakers. 

In  natural  listening  conditions,  sounds  propagate from a source to a  listener  and 
during  this  trip  they  are widely modified by the environment.  Therefore]  there  are 
some spatial effects imposed by the physical and  geometric  characteristics of the 
environment to  the sound signals arriving at the listener’s ears.  Generally  speaking] 
we refer to the kind of processing operated by the environment  as  reverberation.  The 
second half of this  chapter  illustrates  these  kinds of effects and describes audio pro- 
cessing techniques that have  been  devised to  imitate  and  extend  the  reverberation 
that occurs  in  nature. 

The  last section of the  chapter  describes a third  category of spatial effects that is 
inspired by the  natural  spatial processing of sounds. In this miscellaneous  category 
we list all the filtering effects that  are designed to change the  apparent source width, 
the spaciousness of a  sound field, and  the  directivity of a loudspeaker  set. Moreover] 
the  geometric  and physical  characteristics of reverberating enclosures are used as 
design features for generalized  resonators to be  used as  part of sound  synthesis 
algorithms. 

137 
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The  importance of space  has been largely  emphasized  in  electro-acoustic compo- 
sitions,  but  sophisticated  spatial  orchestrations  often  result in poor musical messages 
to  the listener.  Indeed,  space  cannot be  treated  as a composition parameter in the 
same way as pitch  or  timbre  are  orchestrated,  just because  space for sounds is not an 
“indispensable attribute” [KVOl] as  it is for images. This relative weakness is well 
explained if  we think of two  loudspeakers  playing the same  identical  sound  track: 
the listener will perceive  one apparent source. The phenomenon is analogous to two 
colored spotlights that fuse to give one  new, apparent, colored spot. In fact, color 
is considered  a  non-indispensable attribute for visual  perception. However, just  as 
color is a very important  component in visual arts,  the correct use of space  can play 
a fundamental role in music  composition, especially in  improving the effectiveness 
of other musical parameters of sound, such as  pitch,  timbre,  and intensity. 

6.2 Basic Effects 

6.2.1 Panorama 

Introduction 

Using a  multichannel  sound  reproduction  system we can  change the  apparent posi- 
tion of a virtual  sound source just by feeding the channels  with the  same signal and 
adjusting  the  relative  amplitude of the channels. This  task is usually  accomplished, 
as part of the mixdown  process, by the sound  engineer for each  sound  source,  thus 
composing  a panorama of acoustic  events  in the  space  spanned by the loudspeakers. 

Acoustic and Perceptual Foundations 

For  reproduction  via  multiple  loudspeakers,  it is important  to  take some specific 
aspects of localization into  account. In fact, different and sometimes  contradictory 
cues come into play  when  multiple  sources radiate  coherent or  partially  coherent 
signals  [Bla83]. Particularly  important is the case of a listener  hearing  signals  ar- 
riving  from the sources only at slightly different levels and times.  In this case the 
sources will cooperate to provide  a single sound  event  located at  a place different 
from the source  locations. For larger differences in the incoming  signal the  virtual 
sound  images tend  to collapse onto one of the real  sources. The precedence effect 
(see section  6.2.2) is largely  responsible for this phenomenon. 

Figure 6.2 shows the kind of curves that  it is possible to draw  from  experi- 
ments  with a standard  stereo layout (i.e. central  listener and angle of  60’ with  the 
loudspeakers, as in Fig. 6.1) and  with  broadband impulses as test  signals [Bla83]. 
Figure  6.2.a shows the perceived displacement for a given level difference. Figure 
6.2.b shows the perceived displacement for a given time difference. The curve for 
level difference is well approximated by the Blumlein law [Bla83] 
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Figure 6.1 Stereo  panning. B is the angle of the apparent  source  position. 

or by the  tangent law 

where g L  and g L  are  the gains to  be applied to  the left and right  stereo  channels, 
0 is the angle of the virtual  source  position,  and 81 is the angle formed by each 
loudspeaker  with the  frontal  direction. In [Pu197] it is shown that  the tangent law 
results from a vector  formulation of amplitude  panning (see section  6.4.3). This 
formulation, as well as  the curves of Fig. 6.2 are mainly valid for broadband  signals 
or at  low frequencies (below 500-600 Hz). For narrowband  signals at higher  frequen- 
cies the curves  are  quite  dif€erent and  the curve for time differences can even be 
nonmonotonic [Bla83]. 
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Figure 6.2 Perceived  azimuth of a virtual sound  source  when a standard stereo layout  is 
driven  with  signals that only  differ  in  level (a) or  in time delay (b). 
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Signal Processing 

In  a  standard  stereo  loudspeaker  set-up  it is assumed that  the listener  stands in 
central  position  and forms an angle 201 with the two  loudspeakers (see Fig. 6.1). 
Two  gains gL and gR should  be  applied to  the left and  right  channel, respectively, 
in order  to  set  the  apparent  azimuth at the desired  value 8. A unit-magnitude two- 
channel  signal,  corresponding to  the  central  apparent source  position (0 = 0), can 
be  represented by the column  vector 

Jz 
U = [  + ]  ’ 

so that  the gains to be  applied to  the two  channels in order to  steer  the sound  source 
to  the desired  azimuth  are  obtained by the  matrix-vector  multiplication: 

[ i: ] = Aeu. 

The  matrix A0 is a rotation  matrix. If 01 = 45” the  rotation  matrix  takes  the form 

Ae= [ cos0 sin0 
- sin0 cos0 1 ’ 

so that when 0 = only  one of the two  channels is non zero. It is easily verified 
that  the  rotation by matrix (6.5) corresponds to applying  the  tangent law (6.2) 
to  the configuration  with 91 = 45”. Amplitude  panning by means of a rotation 
matrix preserves the loudness of the  virtual  sound  source while moving its  apparent 
azimuth.  In  contrast,  linear cross-fading  between the two  channels  does  not  preserve 
the loudness  and  determines  a “hole in the middle” of the  stereo  front. 

The  matrix-based  panning of equation (6.4) is suited  to  direct  implementation 
in  Matlab.  The M-file 6.1 implements  the  amplitude  panning between an  initial  and 
a final angle. 

M-file 6.1 (matpan.m) 
initial-angle = -40; %in  degrees 
final-angle = 40; %in  degrees 
segments = 32; 
angle-increment = (initial-angle - final-angle)/segments * pi / 180; 

lenseg = floor(length(monosoud)/segments) - 1; 
pointer = l; 
angle = initial-angle * pi / 180; %in  radians 

% in radians 

for  i=l:segments 
A =[cos(angle) , sin(ang1e) ; -sin(angle),  cos(ang1e)l; 
x = [monosound(pointer:pointer+lenseg); 

monosound(pointer:pointer+lenseg)]; 
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y = Cy, A * XI; 
angle = angle  + angle-increment;   pointer = po in te r  + lenseg; 

end ; 

The monophonic input  sound  (stored in array monosound) is segmented  in  a  num- 
ber segments of blocks and each block is rotated by means of a matrix-by-vector 
multiplication. 

In  practice, the steering  angle 8 does  not necessarily correspond to  the perceived 
localization  azimuth. The perceived location is influenced by the frequency  content 
of sound. Some theories of “directional  psychoacoustics” have been developed in 
the  past  in  order to  drive the  rotation  matrices  with  the  appropriate coefficients 
[Ger92a].  Accurate  implementations use frequency-dependent rotation  matrices, at  
least  discriminating between low (less than  about 500 Hz) and high (between 500 
Hz and 3500 Hz) frequency  components  [PBJ98]. We  will discuss directional psycho- 
acoustics in further  detail in section 6.4.4, in the  context of Ambisonics surround 
sound. 

Music Applications and  Control 

Stereo  panning  has been applied to recordings of almost every music genre.  In 
some cases, the panoramic  knob of domestic hi-fi systems  has been exploited as 
an  artistic resource. Namely, the composition  HPSCHD by John Cage and Lejaren 
Hiller appears  in  the record [m-Cag69] accompanied by a sheet  (unique for each 
record  copy)  containing  a  computer-generated score for the listener.  In the score, 
panoramic  settings  are  listed at  intervals of 5 seconds  together  with values for the 
treble  and bass  knobs. 

6.2.2 Precedence Effect 

Introduction 

In a stereo  loudspeaker set-up, if  we step  to one  side of the  central position and 
listen to a monophonic music program, we locate  the  apparent  sound source in the 
same  position as our closest loudspeaker, and  the  apparent position  does  not move 
even if the  other channel is significantly louder.  The fact that  the  apparent source 
collapses into one of the loudspeakers is due  to  the precedence effect, a well-known 
perceptual  phenomenon that can  be  exploited in certain musical situations. 

Acoustic and Perceptual Foundations 

Our hearing  system is very sensitive to  the direction of the first  incoming wavefront, 
so that conflicting cues  coming  after the first  acoustic  impact  with the source  signal 
are likely to be  ignored. It seems that  spatial processing is inhibited for a few tens 
of milliseconds after the occurrence of a well-localized acoustic  event [Gri97]. This 
is the precedence effect [Bla83]. Clearly, the first wavefront is related to a transient 
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in sound  production,  and  transients  are  wideband  signals  exciting a wide frequency 
range where the directional  properties of the  outer  ear (see section 6.3.4)  can  be 
used to give a hint of incoming  direction. 

Signal Processing 

In  a  standard  stereo  loudspeaker  set-up,  with  the  listener  in  central  position  as in 
Fig. 6.1,  a  monophonic  source  material that feeds both  loudspeakers  with  the  same 
loudness  can  be  moved  towards  one of the  loudspeakers  just by inserting  some  delay 
in the  other  channel.  Figure  6.2.b shows the  qualitative  dependency of the  apparent 
azimuth  on  the  relative delay  between  channels. The  actual  curve  strongly  depends 
on the kind of sounds  that  are played [Bla83]. 

A simple  circuit  allowing a joint  control of panorama  and precedence effect  is 
shown in Fig.  6.3.  The  variable-length  delay lines should  allow  delays up  to  lms. 

Figure 6.3 Control of panorama and precedence  effect. 

Music Applications and  Control 

In a live electro-acoustic  music  performance, it is often  desirable to  keep  all the 
apparent  sound  sources in the  front, so that  they merge nicely, both acoustically 
and visually, with  the  sounds coming  from  acoustic instruments  on  stage. However, 
if only the  front  loudspeakers  are playing it might  be difficult to provide  all the 
audience  with a well-balanced sound, even at the  seats  in  the  rear. A good  solution, 
called transparent  amplification by Alvise  Vidolin  [RV96], is to feed the  rear loud- 
speaker  with a delayed  copy of the  front signals. The precedence effect  will ensure 
that  the  apparent location is on  stage  as long as  the delay of the  rear signals is a t  
least  as long as  the  time  taken by sounds to go from the  stage  to  the  rear loud- 
speakers.  Given the  length of the room L and  the speed of sound c M 340m/s,  the 
delay in seconds  should be  about 

L T o = - .  (6.6) 
c 
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6.2.3 Distance and Space Rendering 

Introduction 

In digital audio effects, the control of apparent  distance  can  be effectively introduced 
even in monophonic  audio  systems.  In fact,  the impression of distance of a sound 
source is largely  controllable by insertion of artificial wall reflections or reverberant 
room  responses. 

Acoustic and Perceptual Foundations 

There  are  no reliable cues for distance  in anechoic or open  space.  Familiarity  with 
the  sound source  can  provide  distance cues related  with  air  absorption of high fre- 
quency. For instance,  familiarity  with  a musical instrument  tells us what  the average 
intensity of its  sounds  are when coming from a  certain  distance.  The  fact that tim- 
bra1 qualities of the instrument will change when playing  loudly  or  softly is also a cue 
that helps with the identification of distance.  These cues seem to vanish when using 
unfamiliar  sources  or  synthetic  stimuli that do  not resemble any physical sounding 
object. Conversely, in an enclosure the  ratio of reverberant to direct  acoustic  energy 
has proven to  be a  robust  distance cue [Bla83]. It is often  assumed that in a  small 
space the  amplitude of the reverberant  signal  changes  little  with  distance,  and that 
in a large  space it is roughly  proportional to l / d E  [Cho71]. The direct  sound 
attenuates  as  l/Distance if spherical waves are  propagated. 

Special,  frequency-dependent cues are used when the source is very close to  the 
head.  These cues are briefly described in section 6.3.2. 

Signal Processing 

A single reflection from a wall can  be  enough to provide  some  distance  cues in 
many cases. The physical situation is illustrated in Fig. 6.4a,  together  with  a  signal 
processing  circuit that reproduces it. A single delay line with  two  taps is enough 
to  reproduce  this basic effect. Moreover, if the  virtual sound  source is close enough 
to  the listening  point, the first tap can  be  taken  directly  from the source, thus 

1/(1 + 2w - d) 

( b )  

Figure 6.4 Distance rendering via single wall reflection: (a) physical situation, (b) signal 
processing scheme. 
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reducing the signal  processing circuitry  to a simple  non-recursive  comb  filter.  To 
be physically consistent,  the  direct  sound  and  its reflection should  be attenuated  as 
much as  the  distance  they  travel,  and  the wall reflection should also introduce some 
additional  attenuation  and  filtering in the reflected sound,  represented by the filter 
H ,  in Fig. 6.4b.  The  distance  attenuation coefficients of Fig.  6.4b  have  been  set in 
such  a way that  they become  one  when the  distance goes to  zero,  just  to avoid the 
divergence to infinity that would  come  from the physical  laws of a point  source. 

From this  simple  situation  it is easy to see how the  direct  sound  attenuates  faster 
than  the reflected sound as long  as the source  approaches the wall.' This  idea  can 
be generalized to  closed  environments  adding a full reverberant  tail  to  the  direct 
sound. An  artificial yet realistic  reverberant  tail  can  be  obtained  just by taking  an 
exponentially  decayed  gaussian noise and convolving it  with  the  direct  sound.  The 
reverberant  tail  should  be  added  to  the  direct  sound  after some  delay (proportional 
to  the size of the room)  and should  be attenuated  with  distance in a lesser extent 
than  the direct  sound.  Figure  6.5  shows  the  signal  processing  scheme for distance 
rendering  via  room  reverberation. 

Gaussian Noise 

& f y n e n t i a l  Decay 

Y 

1/(1 + d) H, 

1/(1 + sqrt(d)) 

(a) (b) 

Figure 6.5 Distance  rendering  via room reverberation:  (a)  physical  situation, (b) signal 
processing scheme. 

The following M-file 6.2 allows experimentation  with  the  situations  depicted in 
Fig. 6.4 and  6.5,  with different listener  positions,  provided that x is initialized with 
the  input  sound,  and y, z ,  and W are long-enough  vectors initialized to zero. 

M-file 6.2 (distspace.m) 
h = filter([0.5,0.5],1, . . .  

random('norm',O,i,l,lenh).*exp(-[i:lenh]*O.Ol/distwall~/lOO~; 
% reverb impulse response 

offset = 100; 
st = Fs/2; 

for i = 1:i:distwall-l % several  distances  listener-source 
dell = floor (i/c*Fs) ; 

'Indeed,  in  this  single reflection situation,  the  intensity of the reflected sound  increases as the 
source  approaches  the wall. 
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de12 = floor((distwall*2 - i)/c*Fs); 
y(i*st+l:i*st+dell) = zeros(1,dell); 
y(i*st+dell+l:i*st+dell+length(x)) = x./(l+i); % direct signal 
w(i*st+del2+1:i*st+del2+length(x)) = . . .  

y(i*st+del2+1:i*st+del2+length(x)) + . . .  
x./(l+(2*distwall-i)); % direct signal + echo 

z(i*st+del2+1:i*st+del2+length(x)+lenh-l+offset) = . . .  
y(i*st+del2+1:i*st+del2+length(x)+lenh-l+offset) + . . .  
[zeros(l,offset) ,conv(x,h)l  ./sqrt(l+i); 

% direct signal + delayed  reverb 
end 

Music Applications and  Control 

An outstanding  example of musical  control of distance is found in the piece “Ture- 
nas” by John Chowning  [m-Cho72],  where the  reverberant  sound  amplitude is de- 
creased  with the reciprocal of the  square  root of distance, much slower than  the 
decrease of direct  sound. In the composition,  distance  cues  are  orchestrated  with 
direction  (as in section 6.2.1) and movement (as  in  section 6.2.4) cues. 

Panorama, precedence effect, and  distance  rendering  taken  as a whole contribute 
to  the definition of a sonic perspective  [Cho99].  The  control of such sonic perspec- 
tive  helps the  task of segregation of individual  sound  sources  and the  integration of 
music and  architecture. A noteworthy  example of fusion between architecture  and 
music is found in the piece “Prometeo”, by Luigi  Nono  [m-Non82]. In  the  original 
performance the players were located  in different positions of an  acoustic shell de- 
signed by architect Renzo Piano,  and  sounds from live-electronic processing were 
subject to  spatial  dislocation in a  congruent sonic architecture. 

Another  important piece that makes  extensive  use of space  rendering is “R6pons”, 
by Pierre Boulez  [m-Bou84],  which is performed  with an unusual  arrangement of 
soloists, choir, and  audience.  The first spatial element  exploited in the composition 
is the physical  distance  between  each soloist and  the choir. Moreover, the sounds of 
the soloists are  analyzed,  transformed,  and  spatialized by means of a computer  and 
a set of six loudspeakers. For the  CD,  sounds have  been  processed  using the software 
“Spatialisateur” [Jot991 in order to place the  orchestra in front of the  listener  and  to 
enlarge  the  audio image of the soloists. The  Spatialisateur, implemented at IRCAM 
in Paris, makes  use of panorama  and  distance  rendering via room reverberation, 
using  sophisticated  techniques  such  as  those  described  in section 6.5. 

6.2.4 Doppler Effect 

Introduction 

Movements of the  sound sources are  detected  as changes in direction  and  distance 
cues. Doppler effect  is a  further  (strong)  cue  that  intervenes whenever there is a 
radial  component of motion  between the sound  source and the listener.  In a closed 
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environment,  radial  components of motion are likely to show up via reflections from 
the walls. Namely, even if a  sound  source is moving at constant  distance from the 
listener, the  paths  taken by the  sound waves via wall reflections are likely to change 
in  length. If the source  motion is sufficiently fast, in all of these  cases we have 
transpositions in frequency of the source  sound. 

Acoustic and Perceptual Foundations 

The principle of the Doppler effect is illustrated in Fig. 6.6, where the listener is 
moving  toward the sound  source  with  speed c, .  If the listener  meets f s  wave crests 
per second at rest, he ends up meeting  crests at the higher rate 

f d  f s  (1 f 2) 
when the  source is moving. Here c is the speed of sound in air. We usually  appre- 
ciate the pitch  shift due  to Doppler effect in non-musical situations, such as when 
an ambulance  or  a  train is passing by. The perceived cue is so strong  that  it  can 
evocate the relative  motion between source and listener even when other cues in- 
dicate a relative  constant  distance between the two. In  fact,  ambulance or insect 
sounds  having a strong Doppler effect are often used to  demonstrate how good a 
spatialization  system  is,  thus deceiving the listener who does  not think  that much of 
the  spatial effect is already  present in the monophonic  recording.  Recent  research in 
psychoacoustics has also shown how the  perception of pitch  can  be  strongly affected 
by dynamic  changes in intensity, as  are found in situations where the Doppler effect 
occurs [Neu98]. Namely, a sound  source  approaching the listener at  constant speed 
determines  a  rapid  increase in intensity when it traverses the neighborhood of the 
listener. On  the  other  hand, while the frequency  shift is constant  and positive before 
passing the listener,  and  constant  and negative  after it  has  passed, most  listeners 
perceive an increase  in  pitch  shift as  the source is approaching. Such apparent pitch 
increase is due  to  the simultaneous  increase in loudness. 

Figure 6.6 oppler  effect. Illustration of the D 
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Signal Processing 

The Doppler effect can  be  faithfully  reproduced by a  pitch  shifter (see Chapter 7) 
controlled by the relative velocity between source and listener. In  particular,  the 
circuit of Fig. 7.16 can  be used with  sawtooth  control signals whose slope increases 
with the relative  speed.  Figure  6.7 shows the signal to be used to control  one of 
the delays of Fig. 7.16 for a sound  source that approaches  the listening  point and 
passes it. Before the source  reaches the  listener,  the  sound is raised in pitch,  and  it 
is lowered right after. 

Figure 6.7 Control  signal for simulating the Doppler  effect  with  a  delay-based  pitch 
shifter. 

Any sound processing model based on  the  simulation of wave propagation,  such 
as  the model described in section  6.4.6,  implements an implicit simulation of the 
Doppler effect. In fact,  these models are based  on delay lines that change  their  length 
according to  the relative  position of source and  listener,  thus providing  positive  or 
negative  pitch  transpositions. 

In  general, the accuracy and  naturalness of a  Doppler  shift  reproduced by digital 
means  depend on the accuracy of interpolation in variable-length delays. If this 
is not  good  enough,  modulation  products affect the  transposed signal  producing 
remarkable  artifacts. The enhanced  techniques  described in sections 3.2.4 and 7.4 
can  be applied for various degrees of fidelity. 

Music Application and  Control 

The motion of source  or  listener in musical contexts  has to be  performed  with 
care, since uncontrolled  frequency  shifts  completely  destroy  any  harmonic  relations 
between the  notes of a melody. However, there  are  notable examples of electro- 
acoustic music works incorporating  Doppler effects [m-Cho72, m-Pis951. In most 
cases, the  sounds  that  are  subjected to Doppler  shifting are various  kinds of noises 
or percussive patterns, so that they  do  not  impose  any  special  harmonic gliding 
character on the piece. 

6.2.5 Sound Trajectories 

The first attempt  to design spatial movements as  an independent dimension of music 
composition is probably  Stockhausen’s  “Gesang  der  Junglinge” [m-Sto56], where 
directions and movements  among five groups of loudspeakers,  arranged in a circle 
around  the  audience, were precisely programmed by the  author.  This piece is also 
probably  the origin of the  “spatial  utopia” of a  large part of contemporary music, 
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since  Stockhausen gave abundant  and clear explanations of his aesthetics, where 
velocities and  spatial  displacements  are considered to be as  important  as pitches and 
note  durations.  This suggestive  idea seems to ignore  some  perceptual evidence and 
the difficulties related to conveying consistent spatial  information to  an audience. 
Nevertheless,  sound trajectories in [m-Sto56] are  certainly essential to  the  dramatic 
development of the piece. 

Since the work of Chowning  [Cho71, m-Cho721, many  computer  systems have 
been  built in order to help the musician to compose  with  space. Most of these sys- 
tems  are  based  on a  software  interface that allows the musician to display orland 
define trajectories of virtual  sound sources in the listening  space, where actual loud- 
speakers  are  positioned.  In  fact,  the  manipulation of sound  trajectories belongs to a 
control  layer  built  on top of the signal  processing level that implements  panoramic 
or  distance effects. Parameters such as  angular  position,  distance from loudspeak- 
ers,  etc.,  are  taken  directly from the curves a t  a rate  that is high  enough to ensure 
smooth movements  without  noticeable artifacts.  In  this  respect, if only panoramic 
and  distance effects are affected by trajectories,  the  control  rate can  be very low 
(e.g., 20 Hz) thus allowing separation of the  control layer  from the signal  processing 
layer  via a low-bandwidth  communication  channel. Vice versa, if the Doppler ef- 
fect is somehow taken  into  account,  the  control  rate must  be much higher,  because 
the  ear is sensitive to  minuscule  variations of sound  pitch.  Alternatively,  control 
signals  can  still  be transmitted at low rate if at the signal  processing  end  there 
is an interpolation  mechanism that reconstructs  the  intermediate values of control 
parameters. 

Sometimes spatial  trajectories  are  taken  as a metaphor for guiding  transforma- 
tions of sonic  materials. For instance,  Truax [m-Tru85] uses multiple epicycles to 
control  transformations of continuous  sounds  and to project  them  into space. In  this 
example, the consistency between spatial display and sound  transformation helps 
the  listener to discriminate  and follow several music lines without  the  aid of pitch 
or  rhythmic  patterns. 

Software  systems for the definition and display of sound  trajectories  are com- 
monly used in live electronics. For instance,  Belladonna  and Vidolin developed an in- 
terface for two-dimensional  panoramic  control for the visual  language MAX [BV95]. 
Trajectories  can  be  memorized,  recalled,  and  translated at runtime  into MIDI mes- 
sages  sent to a MIDI-controlled  audio  mixer. External  reverberating devices can 
also  be  controlled and synchronized  with  panoramic messages in order to recreate 
an impression of depth  and  distance.  This  system  has been used in several music 
productions  and  in various  listening  spaces.  Figure  6.8  illustrates  two erratic move- 
ments of virtual  sound sources (the  actual sources are  the two  percussion  sets) in 
the big San  Marco church in Milan, as it was programmed for a  composition by 
Guarnieri  [m-Gua99]. This piece and listening  space are  noteworthy for the use of 
intensity-controlled  sound  panning over a wide area, i.e.,  some  sources move from 
front to back as they  get  louder.  In general,  sound trajectories  are rarely  meaningful 
per  se,  but  they  can become a crucial dramatic component if their  variations  are 
controlled  dynamically as a  function of other musical parameters such as intensity, 
or rhythm. 
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70 m . 

Figure 6.8 Spatial layout  and  sonic trajectories for the performance of a composition by 
G. Guarnieri. 

A complex system to control  sound  trajectories in real-time was implemented 
on the IRIS-MARS  workstation  [RBM95]. It implemented the room-within-the- 
room  model  described in section 6.4.6 by reserving  one of the two processors for 
spatialization,  and the  other for reverberation. The coordinates of source  motion 
and  other  parameters of spat,ialization could be  precomputed  or  controlled in real- 
time  via MIDI devices. This kind of spatial processing has been used in the piece 
“Games” by F. Cifariello Ciardi [m-Cif95]. 

A sophisticated  system  providing  real-time  multichannel  spatial  audio process- 
ing on a  computer  workstation is the  “Spatialisateur” developed at IRCAM in 
Paris  [Jot92, Jot991. In  this  system,  an  intermediate level  is interposed between the 
signal processing level and  the control level. Namely, the physical parameters of 
virtual  rooms  are accessed through a  set of perceptual  attributes such as warmth, 
brilliance, etc., in such a way that compositional  control of space becomes easier. 
As the interface is provided in the visual language  MAX, it is easy to associate sets 
of parameters  to  trajectories  that  are  drawn  in a 2-D space. 

6.3 3D with Headphones 

6.3.1 Localization 

Introduction 

Humans  can localize sound  sources in a 3D space  with  good  accuracy using several 
cues. If  we can rely on  the  assumption  that  the listener receives the sound  material 
via  a  stereo  headphone, we can  reproduce  most of the cues that  are  due  to  the filter- 
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ing effect of the pinna-head-torso  system,  and  inject the signal artificially affected 
by this filtering  process  directly to  the  ears. 

Acoustic and Perceptual Foundations 

Classic psychoacoustic  experiments have shown that, when excited  with simple sine 
waves, the  hearing  system uses two strong cues to  estimate  the  apparent direction 
of a sound  source. Namely, interaural  intensity  and  time differences (IID  and  ITD) 
are  jointly used to  that purpose.  IID is mainly useful above 1500 Hz, where the 
acoustic  shadow  produced by the head becomes effective, thus reducing the  intensity 
of the waves reaching the  contralateral  ear. For this high-frequency range  and for 
stationary waves, the  ITD is also far less reliable,  since it produces  phase differences 
in sine waves which often exceed 360". Below 1500 Hz the  IID becomes smaller due  to 
head diffraction which overcomes the shadowing effect. In this low-frequency range 
it is possible to  rely on  phase differences produced by the  ITD. IID and  ITD can 
only partially  explain the ability to discriminate  among different spatial directions. 
In  fact, if the sound  source moved laterally  along a circle (see Fig. (6.9)) the IID and 
ITD would not  change. The cone formed by the circle with  the center of the head  has 
been called cone of confusion. Front-back and vertical  discrimination  within a cone 
of confusion are  better  understood in terms of broadband signals and Head-Related 
Transfer  Functions (HRTF). The system  pinna-head-torso  acts like a linear  filter for 
a plane wave coming  from a given direction. The  magnitude  and phase responses 
of this filter are very complex and direction dependent, so that it is possible for the 
listener to  disambiguate  between  directions  having  the  same,  stationary,  ITD  and 
IID.  In  some  cases, it is advantageous to  think  about these  filtering effects in the 
time  domain,  thus considering the Head-Related  Impulse  Responses (HRIR). 

Figure 6.9 Interaural polar coordinate  system and cone of confusion. 

In  section 6.3.4, we describe a structural model for HRTFs [BD981 where it is 
possible to outline a few relevant  direction-dependent  cues  obtained from simplifi- 
cation of HRTFs.  Even if the cues are simplified, when they  are varied dynamically 
they  can give a strong impression of localization. In real life, the listener is never 
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static when listening to a sound  source.  Even  small  movements of the head  greatly 
help in discriminating possible confusions, such as  the  uncertainty between a cen- 
tral source  in  front of the listener  or the same  source  exactly  behind the listener. 
Therefore, a small  set of cues such as ITD,  IID,  and  the  major notches of HRTFs 
can  be sufficient to give a strong impression of direction, as long as the cues are 
related to movements of the listener's  head. 

6.3.2 Interaural Differences 

Sound  spatialization for headphones  can  be  based  on  interaural  intensity  and  time 
differences. The amplitude  and  time delay of each  channel  should just be governed 
by curves  similar to those of Fig. 6.2. It is possible to use only one of the two cues, 
but using both cues will provide a stronger  spatial impression. Of course,  interaural 
time  and  intensity differences are  just  capable of moving the  apparent  azimuth 
of a sound  source,  without  any sense of elevation. Moreover, the  apparent source 
position is likely to be  located inside the head of the listener,  without  any sense 
of externalization.  Special  measures have to be  taken in order to push the  virtual 
sound  sources out of the head. 

A finer localization  can  be achieved by introducing  frequency-dependent  interau- 
ral differences. In fact,  due to diffraction the low frequency  components  are  barely 
affected by IID,  and  the  ITD is larger in the low frequency  range.  Calculations 
done  with  a  spherical  head  model  and a binaural model [Kuh77, PKH991 allow the 
drawing of approximated  frequency-dependent ITD curves,  one  being displayed in 
Fig.  6.10a for 30" of azimuth. The curve  can be further  approximated by constant 
segments,  one  corresponding to a delay of about  0.38 ms at  low frequencies, and 
the  other corresponding to a delay of about 0.26 ms a t  high frequencies. The low- 
frequency  limit  can in general  be  obtained for a general  incident  angle B by the 
formula 

1.56 
ITD = - sin0 . 

C 

where 6 is the inter-ear  distance in meters  and c is the speed of sound. The crossover 
point between high and low frequencies is located  around 1 kHz. Similarly, the 
IID  should  be  made  frequency  dependent. Namely, the difference is larger for high- 
frequency  components, so that we have IID  curves  such as that reported in Fig. 6.10b 
for 30" of azimuth. The IID  and  ITD  are shown to change when the source is very 
close to  the head [DM98]. In  particular, sources closer than five times  the head 
radius  increase the  intensity difference in low frequency. The  ITD also  increases 
for very close sources but  its changes do  not provide significant information about 
source  range. 

6.3.3 Externalization 

Listening to binaural  sound  material  through  loudspeakers  often  causes  internaliza- 
tion of the sound  sources in the head of the listener. It seems that human  subjects 
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Figure 6.10 frequency-dependent interaural time (a) and intensity (b) difference for 
azimuth 30". 

tend  to internalize the perceived objects when the  total  stimulation,  as coming 
from  all  sensorial  modes,  cannot  be  produced by natural  situations involving dis- 
tant sources  [Dur92].  One  technique that is recognized to be effective in  externalizing 
the sound  sources when headphones  are used, is decorrelation  [Ken95b], and  it is 
justified by the  fact  that, in natural  situations,  the signals  reaching the  ears  are sig- 
nificantly  decorrelated, especially because of room  reverberation. The correlation of 
the left and  right channels  is  represented by the function 

The  argument r is the time  lag between the two  channels and U is a normalizing 
factor defined as 

(6.10) 

If one  channel is just a  shifted copy of the  other,  the correlation  function will have a 
strong  peak for a value of the argument  equal to  the time  shift. Usually the degree 
of correlation is measured  by a single number  taken as the absolute value of the 
maximum of the correlation  function. The normalization  factor is chosen in order 
to  produce a degree of correlation  equal to 1 for pure  shift and -1 for signals that 
are 180" out of phase.  Two  signals  having  a  degree of correlation  equal to 1 in 
magnitude  are called coherent. The coherence between the left and  right channels 
is maintained  under  time  and  intensity differences, and even under  phase inversion. 

When  a  subject,  listens to two  channels of broadband noise via  headphones,  the 
relative  degree of correlation  produces  a  spatial  image that ranges  from  central 
inside the head to  lateral  right  out of the  ears (see Fig.  6.11). Partially coherent) 
signals  produce  images that  are larger and less sharply  located [Bla83] than  those of 
perfectly  coherent  signals. The degree of correlation is generally  reduced in presence 
of reverberation.  Thus,  the techniques that  are commonly used for artificial rever- 
beration  can also be used to decorrelate two channels. Of course, if the only purpose 
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Figure 6.11 Perceived  sound  image  when  listening to broadband  noise  with  degree of 
correlation  equal to 1 (a),  and 0 (b). 

is to externalize  a  sound  image, we want to avoid other  artifacts such as excessive 
coloration or reverberant  tail. We  will see in section 6.6.1 how a good decorrela- 
tor can  be  built. It can  be  applied both  to externalize  a  sound  source in binaural 
listening and  to  adjust  the  apparent source  width in listening  via  loudspeakers. 

The degree of correlation, beside helping to push the  apparent sources out of 
the  head, is also useful in arranging an ensemble of sources in space.  In fact,  it  has 
been shown by experiments that  the listener  assigns a unique spatial image to sound 
sources  having  similar  degree of correlation. For instance,  a  coherent couple of voice 
signals  added to  the broadband noise of Fig.  6.11b,  produces a distinct  image in 
the center of the  head.  This  property of the  hearing  system can  be  exploited to 
augment the clarity of display of a mixture of sound  sources. 

A dramatic increase in externalization is achieved if the  binaural  stimulus is dy- 
namically varied to follow the head  movements in a consistent,  natural way [Dur92]. 
However, this  control of spatialization  based  on  head  tracking is too expensive and 
too cumbersome in most cases. Therefore,  it is usually assumed that  the listener 
keeps her  head fixed while listening, for instance  because  she is watching  a  screen 
in a standard  computer  desktop environment [Kyr98]. In this  situation,  the simul- 
taneous  presentation of visual  stimuli  correlated  with  sounds is also known to help 
externalize the  auditory events. 

Recently, excellent results in localization  accuracy and  externalization have been 
reported in anechoic rendering  via  headphones  under fixed head  conditions, even 
when the details of the filtering  characteristics of the head are  smoothed signifi- 
cantly  [KC98]. It seems that if the playback apparatus preserves the acoustics of a 
natural listening  condition the sound  sources do externalize in most cases. Unfortu- 
nately,  such a playback apparatus requires the correct  coupling  with the ear-canal 
impedance  and  this is not  what  happens with conventional  headphones.  Therefore, 
the  control over the degree of correlation, even if its effectiveness and  accuracy 
are  limited, seems to be  the only way we have to externalize  a  sound  source for a 
generic listener. If  we can afford signal  processing specialized to  the listener’s  head 
and  headphone  characteristics,  better  accuracy  can  be achieved by modeling the 
HRTF. The effects of binaural  spectral  details  on  externalization were extensively 
investigated in [HW96], where it was shown that sources are externalized well even 
with  frequency-independent ITD while, on  the  other  hand,  the effects of IID  are 
accumulated over the  entire  spectrum. 
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6.3.4 Head-Related Transfer  Functions 

Several authors have  measured the filtering  properties of the  system pinna-head- 
torso by means of manikins  or  human  subjects. A popular collection of measure- 
ments was taken by Gardner  and  Martin using a  KEMAR  dummy  head,  and  made 
freely available  [GM94,  Gar98al.  Measurements of this kind are usually  taken in 
an anechoic chamber, where  a  loudspeaker  plays  a test signal which approaches 
the head  from the desired  direction. The directions  should  be taken in such a way 
that two  neighboring  directions never exceed the localization  blur, which ranges 
from about f3"  in azimuth for frontal  sources, to  about  f20" in elevation for 
sources  above and slightly  behind the listener [Bla83]. The  test signal is usually 
a  pseudo-random noise such as a Maximum-Length Sequence (MLS) [RV891 or a 
Golay code [ZGM92], which can easily be deconvolved from the measured  response. 
The result of the measurements is a set of HRIRs that  can  be directly used as coef- 
ficients of a pair of FIR filters. Since the decay time of the HRIR is always less than 
a few milliseconds, 256 to 512 taps  are sufficient at  a  sampling rate of 44.1 kHz. 

A cookbook of HRIRs  and direct  convolution seems to be  a  viable  solution to 
provide  directionality to sound  sources using today's technology. A fundamental 
limitation comes from the fact that HRIRs vary widely between different subjects, 
to such an  extent  that front-back  reversals are fairly  common when listening through 
someone else's HRIRs. Using individualized  HRIRs  dramatically  improves the qual- 
ity of localization.  Moreover, since we unconsciously use small  head  movements to 
resolve possible directional  ambiguities,  head-motion  tracking is also  desirable. 

There  are several  reasons that make a model of the  external  hearing  system more 
desirable than a raw catalog of HRIRs. First of all, a model  might  be  implemented 
more efficiently, thus allowing more  sources to be  spatialized in real  time.  Second, if 
the model is well understood,  it might be described  with  a few parameters having  a 
direct  relationship  with  physical  or  geometric  quantities.  This  latter possibility can 
save  memory and allow easy  calibration. 

As happens  with models for sound  synthesis, we can try  to model the effects 
or  the causes of the modifications  occurring  on  sound  signals. The first  approach 
consists in applying data reduction  and filter design techniques, especially in the 
frequency  domain, to  the HRTFs. Much research has been  devoted to discovering 
the  amount of approximation that is tolerated by human  listeners and how to de- 
sign efficient IIR filters that implement the  approximated  HRTFs [KW92]. A recent 
experiment  has shown that we are  quite insensitive to  the fine details of the  HRTF 
magnitude  spectrum,  and  that  the lack of externalization  often  reported in prior 
studies  might  be  due to  incorrect  coupling between the headphones  and  the  ear 
canal [KC98]. Filter design techniques have been  applied to  the problem of approx- 
imating  the desired  HRTFs by means of low-order yet accurate linear  systems.  IIR 
filters of order as low as  ten  can  be designed so that they keep enough  spectral 
detail  to allow good  localization  accuracy [MHV97]. Frequency  warping  has been 
proposed as a  technique to increase the accuracy of approximations in the low fre- 
quency  range [HZ991 by stretching  the frequency  axis  according to  the distribution 
of critical  bands [ZF90]. One of the problems of the models based  on  signal pro- 
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cessing is that  they  do  not  increase  our  understanding of the  underlying physical 
phenomena. As a consequence, it becomes difficult to control  the  parameters  and 
we have to rely on collections of static  configurations. 

Modeling the  structural  properties of the  system  pinna-head-torso gives  us the 
possibility of applying  continuous  variation to  the positions of sound  sources and 
to  the morphology of the  listener. Much of the physical/geometric  properties  can 
be  understood by careful analysis of the  HRIRs,  plotted as surfaces, functions of 
the variables time  and  azimuth,  or  time  and  elevation.  This is the  approach  taken 
by Brown and  Duda [BD981 who  came  up  with a model which can  be  structurally 
divided into  three  parts: 

0 Head  Shadow and  ITD 

0 Shoulder  Echo 

0 Pinna Reflections 

Starting from the  approximation of the  head as a rigid sphere  that  diffracts a 
plane  wave, the shadowing effect can be effectively approximated by a first-order 
continuous-time  system,  i.e., a pole-zero  couple in  the  Laplace complex  plane: 

(6.11) 

sp  = -2wo , (6.12) 

where WO is related to  the effective radius a of the  head  and  the speed of sound c by 

c 
W O = - .  (6.13) 

a 

The position of the zero varies with the  azimuth 0 (see Fig. 6.9) according to  the 
function 

a(0) = 1.05 + 0.95 COS -180" . 
(1580" ) (6.14) 

The pole-zero  couple can  be  directly  translated  into  a  stable  IIR  digital filter by 
bilinear transformation [Mit98], and  the  resulting filter (with  proper scaling) is 

(WO + aF,) + (WO - aYFJ2-l 

= (WO + F,) + (WO - F,)z-l . (6.15) 

The  ITD  can  be  obtained by means of a first-order  allpass filter [OS89, SF851 whose 
group delay in seconds is the following function of the  azimuth angle 0: 

(6.16) 

Actually, the group  delay  provided by the allpass filter varies with  frequency, but 
for these  purposes  such  variability  can  be neglected. Instead,  the filter (6.15) gives 
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an excess delay a t  DC that is about 50 percent that given by (6.16). This increase 
in the group  delay at DC is exactly  what one observes for the real  head  [Kuh77], 
and it has  already been  outlined  in  Fig. 6.10. The overall magnitude  and  group 
delay  responses of the block responsible for head  shadowing and ITD are  reported 
in Fig. 6.12. The M-file 6.3  implements the head-shadowing  filter. 

201 ' I 

frequency  in  kHz -+ 

-20 ' l 
1 o-2 1 oo 

frequency  in  kHz -+ 

Figure 6.12 Magnitude and group delay responses of the block responsible for head 
shadowing and  ITD (fs = 44100 Hz). Azimuth ranging from 0 (dashed line) to 7r at steps 
of ~ j 6 .  

M-file 6.3 (hsf ilter .m) 
func t ion   [ou tput ]  = h s f   i l t e r ( t h e t a ,   F s ,   i n p u t )  
% h s f   i l t e r ( t h e t a ,   F s ,   i n p u t )  

% f i l t e r s   t h e   i n p u t   s i g n a l   a c c o r d i n g   t o   h e a d   s h a d o w i n g  
% t h e t a  i s  t h e   a n g l e   w i t h   t h e   f r o n t a l   p l a n e  
% Fs i s  the  sample rate 

% 

t h e t a  = t h e t a  + 90; 
t h e t a 0  = 150 ;alfa-min = 0.05 ; 
c = 334; % speed of  sound 
a = 0.08;  % radius   of   head 
WO = c /a ;  
a l f a  = l+ alfa_min/2 + (1- alfa_min/2)  * cos ( the t a /   t he t aO*   p i )  ; 

B = [ ( a l f  a+wO/Fs) / (l+wO/Fs) , ( -a l f  a+wO/Fs) / (l+wO/Fs) 1 ; 
% numerator  of  Transfer  Function 

1 denominator  of  Transfer  Function 

gdelay = - Fs/wO*(cos(theta*pi/180) - 1) 

gdelay  = Fs/wO*((abs(theta) - 90)*pi/180 + 1) 

A = [l, -(~-wO/FS)/(~+WO/FS)I  ; 

i f   ( a b s ( t h e t a 1   9 0 )  

e lse  
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end ; 
a = (l - gdelay)  / (1 + gdelay) ; 

out-magn = f i l t e r ( B ,  A ,  i n p u t ) ;  
output  = f i l t e r (  [a, I], [I , a] , out-magn) ; 

a l l p a s s   f i l t e r   c o e f f i c i e n t  

The  function hsf i l t e r  has to be  applied twice, for the left and  right  ears  with 
opposite  values of argument t h e t a ,  to a given input  sound. 

In a  rough  approximation,  the shoulder and  torso effects are synthesized in a 
single echo. An approximate expression of the  time delay  can  be  deduced by the 
measurements  reported in [BD98, Fig. 81 

Tsh = 1.2 -' ( ( 180" + Q  
1 - 0.00004 (4 - 80') 

180" 
(6.17) 

and  it is depicted in Fig. 6.13. The echo  should also be  attenuated  as  the source 
goes  from frontal  to  lateral  position. 

7 
Time  delay of shoulder  reflection 

-0.5 
-1 00 -50 0 50 100 

Elevation in degrees + 

Figure 6.13 Delay time of the echo  generated  by the shoulders as a  function of azimuth 
and elevation.  Azimuth  ranging  from 0 (dashed  line) to 7r/3 at steps of 7r/12. 

Finally, the  pinna provides  multiple reflections that  can  be  obtained by means 
of a tapped delay line. In the frequency  domain,  these short echoes translate  into 
notches  whose position is elevation dependent  and  that  are  frequently considered 
as  the main  cue for the  perception of elevation [Ken95a]. In [BD98],  a  formula for 
the  time delay of these  echoes is given: 

TP, = A,  cos (8/2) sin (Dn(900 - 4)) + B,. (6.18) 

The  parameters  are given in Table 6.1 together  with  the  amplitude values ppn of the 
reflections. The  parameter D, allows the  adjustment of the model to the  individual 
characteristics of the  pinna,  thus providing an effective knob for optimizing  the 
localization properties of the model.  Figure  6.14  depicts the delay time of the first 
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Table 6.1 Parameters for  calculating  amplitude and  time delay of the reflections  produced 
by the pinna model. 

n 
2 

D, B,[samples] A,[samples] pp, 
-1  2 1 0.5 N 

2 0.5 
13 2 0.5 

2.2 
0 20  40  60 

elevation in degrees --f 

Figure 6.14 Delay time (in samples at fs = 44100 Hz) of the first  echo  generated by the 
pinna as a  function of azimuth and elevation.  Azimuth  ranging  from 0 (dashed  line) to 
7r/2 at steps of 7~112. 

pinna echo  (in  samples at fs = 44100 Hz) as a function of azimuth  and elevation. 
The corresponding  frequency  notch lies somewhere between 7 and 10 kHz. 

The  structural model of the pinna-head-torso  system is depicted in Fig. 6.15 
with  all  its  three  functional blocks, repeated twice for the two ears. Even though 
the directional  properties  are  retained by the  model, anechoic sounds  filtered by 
the model do  not  externalize well. As we have explained  in  section  6.3.3, there  are 
several ways to improve the  externalization in binaural listening. 

Music Applications and Control 

Several widely used software  systems allow the possibility of spatializing  sound 
sources for binaural listening. For instance, Tom Erbe's  Soundhack,  an award- 
winning  software for the Macintosh,  has a cookbook of HRTF coefficients and allows 
the musician to  locate  apparent  sound sources in a 3D space.  Similar  operations  can 
be  carried  out using the Csound  language [BCOO] and  native opcodes. 

We have  already  mentioned  the IRCAM Spatialisateur  as  a powerful software 



6.4 3D with Loudspeakers 159 

monoaural 
input 

head shadow  and ITD 

1 3 ”  r / 
shoulder  echo / 

channel 
right  output 

Figure 6.15 Structural model of the pinna-head-torso  system. 

spatialization  system. It allows specification of a  virtual  room  and  virtual source 
trajectories  in 3D space,  and  the  rendering  can  be  done  either for loudspeakers or for 
headphones. In this  latter  case, HRTFs are used. The  ability  to provide  two different 
output  formats  with a single system  has  been  used in the  production of the CD of 
Pierre Boulez’s “Rkpons” [rn-Bou84]. In  fact,  a few early  and lucky  customers  could 
get another CD for free from the publishing  company,  with  the  binaural  version of 
the  same  performance. 

6.4 3D with Loudspeakers 

6.4.1 Introduction 

We outline  three  main  approaches to sound  spatialization by multi-loudspeaker 
layouts:  holophonic  reconstruction, transaural  techniques,  and  methods relying on 
the precedence effect. 

Holophonic  reconstruction is the  reproduction of a 2D or 3D soundfield in a 
confined area  as a result of the interference of the wavefronts  generated by different 
loudspeakers. Diffraction effects around  the listener’s head and  torso, described in 
section 6.4.2, can  be  taken  into  account in order to optimize the rendering. We 
discuss two specific holophonic  techniques,  namely, 3D panning  and Ambisonics, in 
sections 6.4.3 and 6.4.4. 
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Transaural  spatialization is described in section  6.4.5 as a  recasting of binaural 
techniques for presentations  based on loudspeaker  layouts. 

The relative  arrival  time of the wavefronts from different loudspeakers  can have 
a dramatic  impact  on  the  apparent source  directions. A technique that introduces 
explicit  delays  among the loudspeakers is the room-within-the-room  model,  pre- 
sented in section  6.4.6.  This  technique, even though less accurate, is less sensitive 
to changes of the listener  position  because it exploits the precedence effect. 

6.4.2 Localization  with  Multiple  Speakers 

A listener  facing  a  couple of loudspeakers receives the two  signals X L L  and X R L  at 
the left ear,  the first  coming from the left loudspeaker, and  the second coming from 
the right  loudspeaker.  Symmetrically,  the  two  signals ZRR and X L R  are received at 
the right  ear. If the  right loudspeaker  has a pure  amplitude  factor AR and a pure 
time delay TR, a  sinusoidal,  unit-amplitude  signal at the loudspeakers  generates 
two  sinusoidal  signals at the ears.  These  signals  are  attenuated  and shifted by the 
following complex weights: 

where AH and ?-H are  the  amplitude  factor  and  time delay given by the head  transfer 
function to the  contralateral  ear  from  the  direction of the loudspeaker. The  situation 
is illustrated  in  Fig. 6.16. Since,  in low frequency, AH is almost  unity, it can  be seen 
from (6.19) with the help of Fig.  6.17 that a pure level difference (i.e. TR = 0) at  the 
loudspeakers  generates  a  pure  time delay at the  ears. Conversely, a  pure  time delay 
between the loudspeakers  generates  a pure level difference at  the ears. As is shown 
in [Bla83], the  ear signal  can even be  stronger  on  the side of the lagging loudspeaker. 
The analysis of stationary signals becomes more  complicated at  higher  frequencies, 
where the shadowing of the head  cannot be ignored. In general,  the  time  and level 
differences at  the  ears can give cues that  are in contradiction to  the time  and level 
differences at the loudspeakers. 

Figure 6.16 Transfer  functions  involved  in a stereophonic  layout. 
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1 Left channel I Right  channel 

Figure 6.17 Vector illustration of the pure time difference (rotation of the bold vector) 
at the ears generated by a pure level  difference at the loudspeakers. 

Michael Gerzon developed some  theories of localization in a  sound field [Ger92a] 
that were somewhat  validated by experiments  and  crafting  experience.  Gerzon called 
the meta-theory collecting all  these  theories  “directional  psychoacoustics”. The basic 
assumptions of directional  psychoacoustics  are: 

0 At low frequencies (up  to  about 500 Hz) the signals  arriving at the two ears 
have a  stable  phase difference that is less than half a wavelength. The  hearing 
system  produces  a sense of direction from this phase difference. The phase 
locking means that we can do a vector  summation of the contributions from 
all  loudspeakers in order to obtain a “velocity vector  gain” 

U = c gi1i (6.20) 
i 

that is representative of the perceived direction in low frequency. In  (6.20), 
gi is the gain of the  i-th loudspeaker and li is the  unit-length vector  pointing 
from the loudspeaker to  the listener (see Fig.  6.1). 

0 At high frequencies (from about 500 Hz up  to  about 3500 Hz) the signals 
arriving at the two  ears  are  treated  as  incoherent,  and  the  hearing  system is 
mainly  sensitive to  the “energy vector  gain” 

(6.21) 

The  facts  or  assumptions provided by directional  psychoacoustics are used to im- 
prove the  quality of multichannel  reproduction in several ways (see section 6.4.4). 

6.4.3 3D Panning 

The matrix-based  approach used for stereo  panning in section  6.2.1  can be general- 
ized to  an  arbitrary number of loudspeakers  located at  any  azimuth  though  nearly 
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equidistant from the listener. Such a generalization is called Vector Base Ampli- 
tude  Panning  (VBAP) [Pu197] and is based  on  a  vector  representation of positions 
in a Cartesian  plane having its center  in the position of the listener. The unit- 
magnitude vector  pointing  toward  the  virtual  sound  source U can  be  expressed as a 
linear  combination of the unit-magnitude  column  vectors 1~ and 1~ pointing  toward 
the left and  right  loudspeakers,  respectively.  In  matrix  form,  this  combination  can 
be  expressed as 

(6.22) 

Except for degenerate  loudspeaker  positions, the linear  system of equations  (6.22) 
can  be solved in the vector of gains g .  This vector has  not, in general,  unit  mag- 
nitude,  but  can  be normalized by appropriate  amplitude scaling. The solution of 
system  (6.22) implies the inversion of matrix L, but  this can be  done beforehand 
for a given loudspeaker  configuration. 

The generalization to more than two  loudspeakers in a  plane is obtained by 
considering, at  any  virtual source  position, only one  couple of loudspeakers, thus 
choosing the best  vector  base for that position. 

The generalization to  three dimensions is obtained by considering  vector  bases 
formed by three  independent vectors  in  space. The vector of gains for such a 3D 
vector  base is obtained by solving the system 

(6.23) 

Of course,  having  more than  three loudspeakers in a 3D space  implies, for any 
virtual source  position,  the selection of a local 3D vector  base. 

As indicated  in [Pu197], VBAP ensures the  maximum  sharpness in sound  source 
location.  In  fact: 

0 If the  virtual  sound source is located at  a loudspeaker  position, only that 
loudspeaker  has  nonzero  gain; 

0 If the  virtual  sound source is located on a line connecting two loudspeakers, 
only those  two  loudspeakers  have  nonzero  gain; 

If the  virtual  sound source is located  on the triangle  delimited by three  adja- 
cent  loudspeakers,  only  those  three  loudspeakers  have  nonzero  gain. 

The formulation of VBAP given here is consistent  with the low frequency  formula- 
tion of directional  psychoacoustics. The extension to high frequencies has also been 
proposed  with the  name Vector Base Panning  (VBP)  [PBJ98]. 
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6.4.4 Ambisonics and Holophony 

Ambisonics is a technique for spatial  audio  reproduction  introduced in the early 
seventies by Michael Gerzon [Ger85, "951. While Vector Base Panning  aims at 
projecting  sound  material  into  a 3D listening  space, the focus of Ambisonics is really 
spatial recording, efficient encoding in a few audio  channels, and  reproduction by 
an  appropriate loudspeaker  set-up. 

In Ambisonics the sound field is preferably  encoded using the so-called B-format. 
3D B-format is composed of four  signals: W ,  X ,  Y ,  and 2, where W is a  signal 
as  taken from an omni-directional  microphone, and X ,  Y ,  and 2 are signals as 
taken from figure-of-eight microphones aligned with the  orthogonal axes. If the four 
signals have to be  produced starting from a  monophonic  sound  signal S ,  the following 
encoding  equations will apply: 

(6.24) 

where 8 is the azimuth  and $ is the elevation, as indicated in Fig.  6.9. The signal 
W is called the zero-order  spherical  harmonic of the sound field, and X ,  Y ,  and Z 
are called the first-order  spherical  harmonic  components. The gain  factors of the X ,  
Y ,  and 2 signals are  the  Cartesian  coordinates of the unit  length vector pointing 
to  the  virtual sound source. 

The decoding stage will depend  upon  the  actual loudspeaker  layout. In  the 3D 
case, the simplest  layout is given by loudspeakers  positioned at  the corners of a 
cube. If the  i-th loudspeaker is found  along the direction of the  unit vector li, the 
corresponding  gain is 

g'  - - [GIW + G2 [ X  Y 21 . li] . 1 
* - 2  

(6.25) 

As mentioned  in  section 6.4, some  theories of directional  psychoacoustics have 
been developed,  mainly by Michael Gerzon  [Ger92a], when to design the gains to be 
applied to  the loudspeakers for setting  the  apparent direction of the  sound source  in 
a way consistent  with  our  perception in a  multichannel  loudspeaker  layout.  These 
theories translate  into different values of the gains G1 and G2 in (6.25). Ideally, these 
gains  should  be  made  frequency  dependent, and replaced by filters whose shape can 
be carefully controlled [FU98]. 

If the  i-th loudspeaker is aligned with  one of the  axes,  the gain  factors  are  the 
same  as found in VBP,  except for the zero order  harmonic  and for the scaling factor 
G2. In Ambisonics, if G1 = G2 = 1, when a sound  source is located in the direction 
of a loudspeaker, the opposite  loudspeaker  has  a null gain.  This  property is used 
to avoid antiphase signals from couples of loudspeakers, thus  adding  stability to 
the sound  image. This is not necessary in VBP, since it uses only a local base of 
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loudspeakers  and  it  does  not  treat  the whole loudspeaker  layout as a  vector base. In 
this sense, Ambisonics is a global  technique. The fact that  VBP is a local panning 
method allows the use of arbitrary loudspeaker  layouts.  Extensions of Ambisonics to 
general  layouts were also  proposed by Gerzon  [Ger92a], especially for applications 
in surround  sound for home theater. 

Ambisonics and  VBP have been  compared in terms of the direction and  strength 
of the velocity and energy  vectors [PBJ98], which are  obtained by normalizing  (6.20) 
and (6.21) to  the  total pressure  gain  and  the  total energy  gain,  respectively  [Ger92a]. 
According t o  directional  psychoacoustics  these  vectors  should  point  in the  same 
direction  and should be as close as possible to one in order to provide  a sharp sound 
image. The comparison showed that  VBP outperforms Ambisonics for steady sound 
sources, as expected for the sharpness of a local panning. However, Ambisonics gives 
smoother  transitions between loudspeakers,  in  such a way that  it is more difficult 
to tell  where the  loudspeakers really are.  The conclusions drawn  by  comparison 
of the vector  gains  have  been confirmed by informal  listening tests  on real  time 
implementations. 

It should  be  pointed out  that these  kinds of assessments  make  some sense only 
if the following assumptions  are  met: 

0 the listener  remains  steady  in  the sweet spot 

0 the  loudspeakers  generate  plane waves 

0 anechoic or free field listening. 

In  practice,  these  assumptions  are  rarely  met  and  one  should rely on assessment 
tools  based  on  interference patterns emerging in a  realistic  model of the  actual 
room and  audience  area [LS99]. 

Ambisonics can  induce  dramatic shifts  in the  apparent source  position as  the 
listener moves out of the sweet spot. For instance,  the  sound image  can  switch from 
front to back if  we just move one step  backward. For home theater  applications, 
the need for sharper  frontal images  in Ambisonics was addressed by introduction 
of vector transformations  on  the encoded  signals  [GB98], thus giving a  knob for 
controlling the forward  dominance of sound  distribution. 

In the  literature, techniques  such as Holophony and Wave-Field Synthesis  can 
be  found.  These  are based 011 the  mathematical  property of analytic fields in an en- 
closure that make them describable as an integral over the boundary. If  we can put 
infinitely  many  loudspeakers  on  a closed contour  line, we can  reproduce  any  pressure 
field in  the  plane  area  within  the  contour.  In  practice,  with a  finite  number of loud- 
speakers,  spatial aliasing puts a severe limit  on  accuracy. It  has been shown [NE981 
that Ambisonics is a special  case of Holophony obtained for loudspeakers placed 
at  infinity  (i.e.,  generating  plane  waves),  and that using a numerous  circular array 
of microphones and  loudspeakers is a feasible way of extending the sweet spot of 
accurate  acoustic field reconstruction to something  more than a  square  meter. 
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6.4.5 Transaural Stereo 

If binaural  audio  material is played through a  stereo  loudspeaker  layout, then almost 
any  spatialization effect is likely to disappear. However, a  relatively inexpensive 
signal  processing apparatus, proposed in the early  sixties by Schroeder [SchGl], can 
recreate  the 3D listening  experience a t  selected positions by preconditioning the 
signals feeding the loudspeakers. The  audio display  based  on  loudspeakers is often 
preferable  because it is immune to fatigue  and  internalization  problems that often 
arise  with  headphones. 

L R 

Figure 6.18 Binaural and transaural listening:  geometry. 

Assume that we want to recreate, by means of a couple of loudspeakers, the 
signals as  they  arrive to  the  ears from a couple of headphones.  Referring to Fig. 6.18, 
8 is the  distance between the  ears in spatial samples, i.e., the distance in meters 
multiplied by f s / c ,  where c is the speed of sound  and fs is the  sample  rate, D is 
the distance in samples between a  loudspeaker and  the  nearest  ear, 0 is the angle 
subtended by a loudspeaker  with the median  plane.  Under the assumption of point- 
like loudspeakers, the excess distance from a  loudspeaker to  the  contralateral  ear 
produces an  attenuation  that  can  be  approximated by 

D 
&sin$ + D 

g =  - (6.26) 

As we saw in section 6.3, the head of the listener  introduces a shadowing effect which 
can  be  expressed by a lowpass transfer  function H ( z ) .  These  considerations  lead to 
the following matrix relationship between the signals at  the  ears ( e l ( z ) ,  e2(z ) )  and 
the signals at  the loudspeakers ( L ( z ) ,  R ( z ) ) :  

where d is the arrival  time difference in samples of the signals at the  ears. We should 
consider d a  function of frequency, as in Fig.  6.10.a, but  it is usually  enough to set it 
to  the low-frequency limit d E 1.5Ssin0, easily derived from (6.8).  The  symmetric 
matrix A can be easily inverted,  thus giving 

(6.28) 
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Figure 6.19 Binaural to transaural conversion. 

The conversion from  binaural to  transaural is realized by the 2-input  2-output 
system  represented by matrix (6.28) and  depicted in Fig. 6.19. Here we have outlined 
two  functional blocks: T ( z )  is a lattice section, and C ( z )  is a  comb filter with 
a lowpass in the feedback loop. This decomposition is useful when cascading the 
transaural processor to a  mono-to-binaural-stereo  converter  (see,  e.g.,  section  6.6.1). 
In such a case, the linearity  and  time invariance of the  functional blocks allow the 
use of a single comb  filter  before the mono-to-stereo  converter. This equivalence is 
illustrated in Fig. 6.20. From a comparison of Figures 6.19 and 6.20 it is clear how 
the switch  from transaural  to  binaural processing  can be  done simply by zeroing 
the coefficient g in both  the  lattice section and  the comb  filter. 

- 
~ 

e1 L 

Mono W )  
+ 

Mono-to- 
Binaural 

Figure 6.20 Mono-to-transaural-stereo  converter. 
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Apparently, transaural  stereo imposes strict requirements on the position of the 
listener and  the absence of reflections in the room. However, a  certain  amount 
of head rotation  and shift  can  be  tolerated and, if the walls are  not  too close to 
the loudspeakers, the early  room reflections arrive  after  the impulse  response of 
the crosstalk canceller has vanished [CB89], so that  its effectiveness is preserved. 
In  his  book  [Gar98a],  William Gardner presents different topologies and  practical 
implementation  details of transaural stereophonic  processors,  including  a  thorough 
physical and psychophysical validation. 

6.4.6 Room-Within-the-Room Model 

Panning  and Ambisonics are  methods for controlling the gains  applied to the loud- 
speakers in order to approximate  a  target sound field at  a privileged listener  position. 
A  completely different approach  can  be  taken by controlling the relative  time delay 
between the loudspeaker feeds. A model supporting  this  approach was introduced 
by Moore [Moo82], and  can  be described as a physical and geometric  model. The 
metaphor underlying the Moore model is that of the room  within a room, where 
the inner  room has holes in t8he walls, corresponding to  the positions of loudspeak- 
ers,  and  the  outer room is the  virtual room where sound  events have to  take place 
(Fig.  6.21). The simplest  form of spatialization is obtained by drawing  direct  sound 

Figure 6.21 Moore’s room in a room model. 

rays from the  virtual sound  source to  the holes of the  inner  room. If the  outer room 
is anechoic,  these are  the only paths  taken by sound waves to reach the inner  room. 
The loudspeakers will be fed  by signals delayed by an  amount  proportional to  the 
length of these  paths,  and  attenuated according to  the relationship of inverse pro- 
portionality valid for propagation of spherical waves. In formulas, if l i  is the  path 
length  from the source to  the  i-th loudspeaker, and c is the speed of sound in air, 
the delay in seconds is set to 

di = li/c , (6.29) 
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and  the gain is set to  

6 Spatial Effects 

(6.30) 

The formula for the  amplitude  gain is such that sources  within the  distance of l m  
from the loudspeaker2 will be  connected to unity  gain,  thus avoiding the  asymptotic 
divergence in  amplitude implied by a  point  source of spherical waves. 

The model is as  accurate  as  the physical  system  being  modeled would permit. 
A listener  within  a  room would have  a spatial  perception of the outside  soundscape 
whose accuracy will increase  with the number of windows in the walls. Therefore, 
the perception  becomes  sharper by increasing the  number of holes/loudspeakers. In 
reality,  some of the holes will be  masked by some walls, so that not  all the  rays will 
be effective3 (e.g. the rays to  loudspeaker 3 in  Fig.  6.21).  In  practice, the directional 
clarity of spatialization is increased if some  form of directional  panning is added to 
the base  model, so that loudspeakers  opposite the direction of the  sound source are 
severely attenuated. In this case, it is not  necessary to burden  the model  with an 
algorithm of ray-wall collision detection. The Pioneer  Sound  Field  Controller is an 
example of 15-loudspeaker  hemispherical array governed by these  principles  [MarOl]. 

A special  case of the room  in  a  room  model is obtained  when the loudspeakers 
are all  located  along a straight line, for instance  above  the listeners'  heads. In  this 
case we can  think of holes in the ceiling of the  inner  room,  and  this layout is 
especially effective in reproducing  movements of the  virtual  sound source  along  one 
dimension.  Figure 6.22 illustrates  this one-dimensional  reduction of the model in 
the case of four  loudspeakers and two  listeners. From Fig.  6.22, it is easy to visualize 
the robustness of the  method  to different listener  positions. 

L1 

os4 - 

Figure 6.22 One-dimensional spatialization model. 

In  fact,  the  spatialization  methods based on amplitude  panning  are generally 
designed for a tight  listener  position,  and  are overwhelmed by the precedence effect 

'This  distance is merely  conventional. 
3We are  ignoring  diffraction  from  this  reasoning. 
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as soon as  the listener is in a different position. The fact that most of the sound 
images collapse into  one of the loudspeakers  can  be easily experienced by attending 
a  pop music concert,  or  listening  to  a  conventional  car  audio  system.  On  the  other 
hand,  the Moore model relies explicitly  on the precedence effect, in the sense that 
the  sound image is biased  toward the first  loudspeaker  being  reached by the acoustic 
rays. As illustrated in Fig. 6.22 for one-dimensional  spatialization, in general there 
is a wide area  that is biased toward  the  same loudspeaker, just because the  time 
delay of the  virtual acoustic  rays  sums  with the  time delay of the  actual  paths 
connecting the loudspeakers  with the listener. For instance,  a  virtual sound  source 
located in the neighborhood of the loudspeaker S2  will be perceived as  radiating 
from S2  by both listeners L1  and L2, even though  the loudspeaker S1 is closer than 
S2 to L1. This is an intuitive  explanation of the claim that  the Moore model is 
able to provide consistent and  robust  spatialization to extended  audiences [Moo82]. 
Another  reason for robustness  might  be  found in the fact that simultaneous level 
and  time differences are applied to  the loudspeakers. This  has  the effect of increasing 
the  lateral displacement [Bla83] even for virtual  sound  sources  such that  the rays 
to different loudspeakers have similar  lengths.  Indeed, the localization of the sound 
source becomes even sharper if the level control is driven by laws that roll off more 
rapidly than  the physical l / d  law of spherical waves. 

An added benefit of the room  within a room  model is that  the Doppler effect  is 
intrinsically  implemented. As the  virtual sound  source is moved in the  outer room 
the delay lines representing the  virtual  rays change  their  lengths, thus  producing 
the correct  pitch  shifts. It is true  that different transpositions  might affect different 
loudspeakers, as  the  variations  are different for different rays,  but  this is consistent 
with the physical robustness of the technique. For instance, if in Fig.  6.22 the 
source is moving downwards starting from the middle of the room,  the loudspeaker 
2 will produce a downward  transposition,  and  loudspeaker 4 will produce an upward 
transposition. Accordingly, the listeners  located close to one of the loudspeakers will 
perceive the transposition that is most  consistent  with  their  position  with  respect 
to  the  virtual  sound source. 

The model of the room  within  a  room works fine if the movements of the sound 
source are confined to a virtual  space  external to  the inner  room. This corresponds 
to  an enlargement of the  actual listening  space and  it is often  a highly desirable 
situation. Moreover, it is natural  to  try  to model the physical properties of the 
outer  room,  adding reflections at the walls and increasing the  number of rays going 
from a sound  source to  the loudspeakers. This configuration,  illustrated in Fig.  6.21 
with  first-order reflections, is a step from spatialization to reverberation  and will be 
further discussed in section 6.5. 

Music Applications and  Control 

Sound  spatialization by means of loudspeakers has accompanied the history of 
electro-acoustic music in the second half of the  twentieth century. An early  spa- 
tialization  system, the potentiomitre d’espace was used by J. Poullin to project 
Schaeffer’s sounds of musique  concrite into  space [Pou57]. It is interesting that, 
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even in the fifties, the limitations of reproduction by loudspeakers,  such as  the in- 
evitability of the sweet spot,  and  the difficult interplay between the  actual listening 
room  and  the  simulated  space, were very clear [DiS98]. 

In section 6.2.5 we talked  about  spatialization in the music of Stockhausen since 
his  influential work “Gesang  der  Junglinge” [m-Sto56]. In  the early  realizations, the 
loudspeakers were treated  as  actual sources, and  trajectories were programmed by 
detailed  control of the relative  gains of multiple  audio  channels. The idea of having 
virtual  sound sources that  are detached from the  actual loudspeaker  positions be- 
came  popular  after the works of John Chowning  in the USA, and  Hans  Peter Haller 
in Europe.  The former  proposed a fully-computerized  system for designing spatial 
trajectories.  The  latter designed an analog  device, called a Halaphon, that allowed 
control of rotational  trajectories in real  time, by means of sliding  potentiometers. 
The halaphon was used in  many  important compositions, for instance,  early versions 
of “R6pons” by Boulez [m-Bou84], or  “Prometeo” [m-Non82] by Nono. Indeed, that 
device is especially important because it helped  establish a practice of real-time 
performance by means of electronic devices (also called Live Electronics) [Ha195]. 

The layout of Fig. 6.22 was used in live electro-acoustic music performance to 
simulate  sound wavefronts going back and  forth above the audience [m-Pis95]. In 
this case, the Doppler  shift affecting noisy sounds is a  desirable side-effect of the 
spatialization  system that magnifies the  direction  and velocity of movements. A 
two-dimensional  implementation of the Moore spatialization  model was used in a 
piece by Cifariello Ciardi [m-Cif95], where the main  electro-acoustic  gesture is that 
of the rolling  metallic  ball of a  pinball  being  launched. 

6.5 Reverberation 

6.5.1 Acoustic and Perceptual Foundations 

In  the previous  sections, our  main concern has been the  apparent positions of sound 
sources. The effects of the  surrounding environment  have  been confined to changes 
in the perceived distance  and position of the  apparent source. In this section, we 
focus on  sound  reverberation as a natural phenomenon  occurring  when  sound waves 
propagate in an enclosed space.  Reverberation  brings  information  about  the  nature 
and  texture of materials,  and  about  the size and  shape of the room and of the 
objects inside it. 

In  order to  analyze the various  acoustical  aspects of reverberation, we will con- 
sider a rectangular  room  containing an omni-directional  point  source. Other, more 
complicated and realistic situations  can  be considered to a  large extent  as a  gener- 
alization of this simple  case. 

Point Source in an Enclosed Space 

Consider the  pressure wave generated by a  small  sphere  pulsing at  the radian fre- 
quency W .  The corresponding wave number is defined as IC = w/c .  The  particle 
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velocity of air is radial,  in  phase  with  the  pressure for large  distances T ( r  >> l /k )  
and  in  phase  quadrature  with  pressure for small  distances (T < l / k )  [MI86]. At long 
distance  from  the source (far field), we approximate  the  condition of propagation 
of plane waves. On the  other  hand,  near  the source (near  field),  there is a large 
velocity component that, being in  quadrature  with  pressure, is responsible for some 
reactive  energy that does  not radiate.  A simplified analysis  may  conclude that,  as 
soon as  the  sound waves have  traveled for a sufficiently long path from the  source, 
we can  consider them  as  plane waves, thus leaving the  more  complicated  formalism 
of spherical  propagation. We will see that  the plane wave description  can  be eas- 
ily interpreted in the frequency  domain and  it allows a straightforward  analysis of 
steady-state responses. In  the  proximity of the  excitation  event, we need descrip- 
tions  based  on  spherical waves. Such  descriptions  are  better  carried on in the  time 
domain. 

Later  on, we will introduce a third level of description, useful to  account for 
“fine grain”  phenomena that  are  not easily described by the two other  approaches. 
Namely, we will introduce a particle  description of sound, which we will take  ad- 
vantage of when  describing the diffusion due  to  rough walls. 

Frequency Domain: Normal Modes 

The  acoustics of an enclosed  space can  be described as a  superposition of normal 
modes, which are  standing waves that  can  be  set  up in the  gas filling the box.  Such 
a  description  can  be  derived  analytically for simple shapes, such as  the  rectangular 
one,  and  it  represents a powerful  tool for understanding  the  behavior of the room 
in the frequency  domain. 

It is easier to calculate  the  normal modes  under the  assumption  that  the  sound 
waves are  propagating in the  far field and  after  the  end of the  initial  transient.  This 
assumption allows  consideration of all the wavefronts as planes.  The  normal modes 
of a rectangular  room  having sizes [Zz, 1, , Z z ]  can  be derived by forcing a  plane-wave 
solution  into  the 3D wave equation  and  setting  the  particle velocity to zero at  the 
boundary [MI86]. As a result, we get the frequencies of the  normal modes 

where 

(6.31) 

(6.32) 

is a  triplet of non-negative integer numbers  characterizing  the  normal  mode. 

Each  normal  mode is supported by a  plane wave propagating in the direction 
represented by the vector 

(6.33) 
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It is clear from (6.31) and (6.33) that a  direction is associated  with  the modes  hav- 
ing  frequencies that  are multiples of the  same  fundamental.  In  other words, all the 
triplets  that  are  multiples of an irreducible  triplet  are  associated  with a harmonic 
series of resonant frequencies with  the  same  direction in space.  This  property  sug- 
gests that a  harmonic series of normal  frequencies can  be  reproduced by means of 
a comb  filter, i.e. by means of a  feedback  delay line whose length is 

1 d =  - , 
f o  

(6.34) 

where f o  is the  fundamental of the  harmonic series. 

The collection of a normal  mode  and all its  multiples  can  be  thought of as 
a  plane wave bouncing  back  and  forth in the enclosure. In order for an enclosure 
having  finite  extent to  support  an infinite plane  wavefront, it is necessary to bend the 
wavefront at the walls in  such a way that  it forms  a  closed constant-area  surface. 
This  interpretation  can  be visualized in two  dimensions by means of plane wave 
loops  having  constant  length (see Fig. 6.23). In this  representation  it is easy to 
verify that  the  time  interval d is the  time  lag between  two  consecutive collisions of 
plane  wavefronts  along the diagonal. 

Figure 6.23 Plane wave  loops for the normal mode n, = 1, nu = 1.  

Not  all the modes  are  excited with the same  intensity in all  positions. For in- 
stance, in the  central  point of a  rectangular  box, only  one-eighth of the modes 
get  excited, i.e. only  those  modes  having  all  even  components in the  triplet n, as 
the  other  modes have  a nodal  point in the middle. The  most  intense  excitation is 
obtained  at  the  corners of the  room. 

Time Domain: Acoustic Rays 

Another  kind of description of room  acoustics  considers the  propagation of acoustic 
rays, i.e. portions of spherical waves having  small  aperture.  This is the  approach 
taken in geometrical  acoustics,  which is analogous to geometrical  optics for light 
waves. 

Some  basic  assumptions  have to be  made  in  order  to  ensure  the validity of de- 
scription by geometric  rays. The first  assumption is that  the wavelengths interested 
by propagation  are much  smaller  than  the finest geometric  description of the  room. 
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The second assumption is that we can  ignore  all the  phenomena of diffraction and 
interference. The first  assumption is not very restrictive,  since  acoustic  rays  are used 
to represent  events  in a short time-scale,  i.e. in a very large  frequency  range, and 
diffraction  is  also negligible at high frequencies. The absence of interference is also 
verified in most  practical  cases, where rays  are  mutually incoherent. 

Along an acoustic  ray, the pressure  decreases as  the reciprocal of distance, since 
the energy conveyed by a  spherical wavefront has  to be conserved during  propaga- 
tion,  and  the  area occupied by the  front increases as  the  square of distance from 
the source. 

When  a  ray  hits a  surface, it is reflected in a way that depends on the  nature 
of the surface.  Smooth walls produce  mirror reflections, i.e. the angle 0 formed by 
the incoming  ray  with the normal to  the surface is equal to  the angle  formed by the 
outgoing  ray  with the same  normal. Moreover, the incoming ray, the  outgoing ray, 
and  the  normal, all lie on the same  plane. 

Usually there is some filtering  associated  with  a reflection, due  to  the absorbing 
properties of the wall material.  In  general,  there is a frequency-dependent attenua- 
tion  and a non  constant  time delay. Such filtering  can  be  represented by a complex 
reflection function R relating  the outgoing and incoming pressure wavefronts. R is 
dependent on the angle 0 according to  the formula [KutSl] 

R =  ZcosB - 1 
ZcosB + 1 ’ (6.35) 

where Z is the  characteristic  impedance of the wall. If the wall  is smooth  and rigid 
Z approaches infinity. In this case we say that  the reflection is perfect, and  the 
reflection function R is unitary at all frequencies and for any  angle. 

There  are two  popular  approaches to compute  acoustic  rays for room  acoustics: 
ray  tracing  and  the image  method.  Ray  tracing  has been very popular  in  computer 
graphics  since  the eighties as a  technique for producing  realistic  images. In  graphics, 
an image is constructed by tracing light rays back from the eye (or  the focal plane) 
to  the light  sources. In  audio,  an acoustic  image is obtained by tracing  acoustic  rays 
back from the  ear (or the microphone  points) to  the  sound sources. In  both cases, 
the scene is traversed by the  rays  and all the reflections are correctly  reproduced. 
An important difference between sounds  and images is that, while in graphics  the 
light can  be  considered as  propagated in all the  points of the scene in a  frame 
sample, in audio  the  sample  rate is much higher and  the speed of propagation is 
much smaller. As a  consequence, each ray has  to be  associated  with  a delay line, 
thus adjoining  memory  occupation and  computational  complexity to a method that 
is already  quite  time-consuming. 

The image method [AB791 is trivial when explained by means of a 2-D medium 
(e.g. a rectangular  membrane).  In  Fig. 6.24 a source S is reflected symmetrically at  
the  boundaries,  and  the source  images are reflected about  the images of the bound- 
aries. The resulting  tessellation of the  plane is such that every segment  connecting 
an image of the source  with  a receiving point R corresponds to one  unique path 
connecting the source to  the receiver after a certain  number of specular reflections. 
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This  method is easily  extended to 3-D and,  with  many complications and increase 
in complexity, to  rooms  described as  arbitrary  polyhedra [Bor84]. 

Both  the  ray  tracing  technique  and  the image method  are mainly used by ar- 
chitects in acoustic  Computer Aided Design, where there is no  special  concern for 
real-time  performance. On  the  other  hand, in these  applications  the  accuracy of 
results is particularly  important in predicting the  acoustic  quality of a  hall before 
it is constructed. 
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Figure 6.24 The image method in 2-D. 

Sounds as Particles: Diffusion 

Up to  this point we have discussed room  acoustics at  the level of macroscopic phe- 
nomena, i.e. rays  and  normal modes. If the  target is complexity  (or  realism) at  
the final result, we need to consider  also the microscopic phenomena  occurring in 
a physical  environment. The most important of these  second-order  phenomena is 
diffusion of sound waves due  to  the fine grain  geometry of the enclosure. Diffusion 
is better described  using a particle  representation of sound.  In  computer  graphics a 
similar  representation is used for modeling  surface  light diffusion and shadows.  In 
order to  adapt  the  same  tools  to  acoustics, we need to keep the  assumption of broad- 
band signals.  Moreover, we are  interested in local interactions  with  surfaces  having 
geometric  irregularities  (roughness) that  are comparable  with  the wavelengths we 
are dealing  with.  Still, we need to assume that  the acoustic  particles are  mutually 
incoherent, in order to avoid cancellations between particles.  Once  these  hypothe- 
ses are  assumed to  be valid, it is natural  to consider a sound  particle as any brief 
acoustic  signal  having a broad  frequency  extension. 

The diffusion model that is commonly used in computer  graphics [CW93] can 
be readily adapted  to  the acoustic  domain  [Roc96], so that we can use the same 
symbols  and terminology. In  particular, diffusion a t  a certain  point of the enclosure 
is described by a Bidirectional Reflection Distribution  Function  (BRDF) fr($i, $ o ) ,  

which is the  ratio between the radiance reflected along  direction $o and  the  irradi- 
ance  incident  along  direction $i. 

The diffusion is said to be  Lambertian when the  BRDF is constant.  In  this 
case the sound  particles  are diffused in any  direction  with the same  probability, 
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regardless of the incident  direction. Vice versa, if all the sound  particles  arriving 
from direction $Ji are redirected to  the specular  direction $, = -$Ji we have a  mirror 
reflection, i.e. no diffusion at all.  Actual walls are always somewhere in between a 
mirror reflector and a  Lambertian diffusor. 

Quantities  such  as  those defined in this section have been useful in improving 
the accuracy of estimates of the  reverberation  time of real  rooms [Kut95]. 

Objective and Subjective  Attributes of Room Acoustics 

A very short  sound pulse, such as a gun  shot,  generates a reverberating  tail  that  has 
in most cases an exponentially  decaying  shape. The fundamental  objective  attribute 
of room  acoustics is the  reverberation  time, defined by W.C. Sabine as  the  time 
interval in which the  reverberation level drops down by 60 dB. 

Extensive  experimentation by computer music researchers showed that a very 
good, if not  the  best, impulse  response for reverberation is obtained by generat- 
ing  Gaussian  white noise and enveloping it  with  an  exponential decay [Moo79]. 
The  actual  reverberated sound  can  be  obtained by convolution, even though  this 
operation is computationally  expensive. Any frequency-dependent attenuation can 
be  introduced by pre-filtering the impulse  response.  A finer control of the  quality 
of reverberation  can  be  exerted by modification of “perceptual  factors”, which are 
subjective  attributes  that have been extracted from psychophysical experimenta- 
tion.  Research in this field proceeds by extracting scales of subjective  acoustical 
experience and by correlating  them  with physical parameters. Most of the  studies 
conducted up  to 1992 were summarized in [Ber92]. 

Research at IRCAM in Paris [Ju195] tried to provide a  minimal  set of independ- 
ent  parameters  that give an exhaustive  characterization of room  acoustic  quality. 
These  parameters  are divided into  three categories  [Jot99]: 

1. Source  perception  (related to  the  spectrum  and relative energy of direct  sound 
and early  reflections): 

presence (ratio between direct  sound and  early  reverberated  energy) 

0 brilliance  (high  frequency  variation of early  reverberated  energy) 

0 warmth (low frequency  variation of early  reverberated  energy) 

2. Source/Room  interaction  (related to  the relative energies of direct  sound, early 
and  late reflections, and  to  the early decay time): 

0 envelopment  (energy of early reflections relative to direct  sound) 

0 room presence (energy of late  reverberated  sound) 

0 running  reverberance  (early decay time of the room  impulse  response) 

3. Room  perception  (related to  the  late decay  time and  to  its frequency varia- 
tions) : 
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0 late  reverberance  (late decay time of the room  impulse  response) 

0 heaviness (low frequency  variation of decay time) 

0 liveness (high  frequency  variation of decay time). 

In a model that provides  these parameters  as knobs  in a “perceptual  interface”, 
the “presence” parameter  can  be controlled to give an impression of distance of the 
sound  source, in a way similar to  what we showed in section 6.2.3, and  the “envelop- 
ment”  parameter  can  be  adjusted  to  control  the impression of being  surrounded by 
sound. Some of the  parameters  are perceived as  timbral colorations while the source 
is playing (running  reverberance), while some others  are perceived from the  sound 
tails left in  pauses  between  sound  events  (late  reverberance).  Griesinger [Gri99] 
gives a definition of these  two  quantities  that is based  on slicing the room  impulse 
response into  segments of 160 ms each.  Running  reverberation,  “the  amount of self 
support  one  hears while playing”, is defined as  the  ratio between the energies in the 
second and  first  segments of the impulse  response, and  it is a  measure of reverberant 
loudness that is independent of reverberation  time. A room  impulse  response  with 
a reverberation  time of 0.5 S can  sound  just  as loud  (in terms of running  reverber- 
ance) as a  room  with a reverberation  time of 2 S [Gri94]. The running  reverberance 
is an  important  parameter of room  acoustics and  its preferred value depends  on 
the  instrument  and  on  the music genre [Gri94], being low for speech and relatively 
high for orchestral  romantic music.  Therefore, in artificial  reverberation  it is useful 
to have a knob that allows adjustment of the  running  reverberance to fit the music 
that is being  played. Most of the times,  the goal is to make  reverberation  audible 
but not  overwhelming. 

Envelopment is a  controversial attribute,  that is difficult to formalize but is 
known to  be a key component of a  pleasant  source/room  combination. The most  re- 
cent  investigations  tend to relate  envelopment to fluctuations in ITD  and IID due  to 
the  spatial  perception of early reflections. Therefore, to appreciate  envelopment the 
early  reflections  should  be  appropriately  spatialized.  Blauert and Lindemann [BL86] 
showed that  lateral reflections below 3 kHz contribute  to a sense of depth, while 
higher  frequency  components contribute  to a sense of surround. However, since 
lateral reflections produce  ITD  fluctuations  and  ITD is direction and frequency de- 
pendent,  the  most effective angle for a lateral reflection depends  on frequency. Low 
frequency  reflections  produce the largest  fluctuations if they come from lateral di- 
rections that  are perpendicular to  the median  plane, while higher frequencies are 
more effective if the  are closer to  the median  plane  [Gri97].  Griesinger  [Gri97, Gri991 
developed  a theory of spatial impression (another  term meaning  envelopment) that 
puts  this  multifaceted  attribute of room  acoustics into a  cognitive  framework where 
it is related t o  other  phenomena  such as the precedence effect. Namely, there is a 
“continuous  spatial impression” that is perceived when lateral reflections are  added 
to  the perception of continuous  sounds.  Abrupt changes, which are always accom- 
panied by the precedence effect, give rise to  an “early spatial impression” by means 
of lateral reflections  coming  within 50 ms of the  sound  event,  and to a “background 
spatial impression” by means of spatialized  late  reverberation.  This  latter form of 
spatial impression is considered to be  the most important for the overall perception 
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of envelopment, as  it is perceptually  segregated  from  the  streams of sound  events 
that form a sonic foreground.  Envelopment is considered to be a desirable  feature of 
large  rooms,  and is absent  in  small  rooms. However, sometimes  envelopment is con- 
fused with  the  apparent source width, which is also an  attribute of the source/room 
combination,  but  this  can  be high even in small  rooms. The  apparent source  width 
will be  further discussed in section 6.6.1. 

6.5.2 Classic Reverberation Tools 

In  the second half of the  twentieth  century, several engineers and acousticians  tried 
to invent  electronic devices capable of simulating the long-term effects of sound 
propagation in enclosures. The most important pioneering work in the field of ar- 
tificial reverberation  has  been that of Manfred  Schroeder at  the Bell Laboratories 
in the early  sixties [SchGl, Sch62, Sch70, Sch73, SL61]. Schroeder  introduced the 
recursive  comb  filters and  the delay-based  allpass  filters as  computational  structures 
suitable for the inexpensive  simulation of complex patterns of echoes. In  particular, 
the allpass filter based on the recursive delay line has the form 

y(n) = - g .  x(.) + z (n  - m) + g .  y(n - m) , (6.36) 

where m is the length of the delay in samples. The filter structure  is depicted  in 
Fig. 6.25, where A ( z )  is usually  replaced by a delay line. This filter allows a dense 
impulse  response and a flat  frequency  response to be  obtained. Such a structure 
rapidly  became  a  standard component used in  almost  all the artificial  reverberators 
designed until nowadays [Moo79]. It is usually  assumed that  the allpass  filters do  not 
introduce  coloration in the  input  sound. However, this  assumption is valid from  a 
perceptual viewpoint only if the delay line is much shorter than  the integration  time 
of the  ear, i.e. about 50 ms [ZF90]. If this is not  the case, the time-domain effects 
become much more  relevant and  the  timbre of the incoming  signal is significantly 
affected. 

Figure 6.25 The allpass filter structure. 

In the seventies, Michael Gerzon generalized the single-input  single-output all- 
pass filter to a multi-input  multi-output  structure, where the delay line of m samples 
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has been  replaced by a order-N  unitary network  [Ger76].  Examples of trivial uni- 
tary networks are  orthogonal  matrices,  and parallel  connections of delay lines or 
allpass  filters. The idea  behind  this generalization is that of increasing the complex- 
ity of the impulse  response  without  introducing  appreciable  coloration in frequency. 
According to  Gerzon’s  generalization,  allpass  filters  can  be  nested  within  allpass 
structures, in a telescopic fashion.  Such  embedding is shown to be  equivalent to 
lattice  allpass  structures  [Gar98b],  and  it is realizable as long as  there is at  least 
one delay element  in the block A ( z )  of Fig. 6.25. 

An  extensive  experimentation  on  structures for artificial  reverberation was con- 
ducted by Andy  Moorer in the  late seventies [Moo79]. He extended  the work done 
by Schroeder [&h701 in relating  some  basic  computational  structures (e.g., tapped 
delay  lines,  comb and allpass  filters)  with the physical  behavior of actual rooms. 
In  particular,  it was noticed that  the early reflections have great  importance in the 
perception of the acoustic  space,  and that a direct-form FIR filter  can  reproduce 
these  early  reflections  explicitly  and  accurately. Usually this  FIR filter is imple- 
mented as a tapped delay  line, i.e. a delay line with  multiple  reading  points that 
are weighted and  summed  together to provide a single output.  This  output signal 
feeds, in Moorer’s architecture, a series of allpass  filters and a parallel  group of 
comb  filters.  Another  improvement  introduced by Moorer was the replacement of 
the simple  gain of feedback  delay lines in comb  filters  with lowpass filters resembling 
the effects of air  absorption  and lossy reflections. 

An original  approach to  reverberation was taken by Julius  Smith in 1985, when 
he proposed the Digital Waveguide Networks (DWN) as a viable starting point for 
the design of numerical  reverberators [Smi85]. The idea of Waveguide Reverberators 
is that of building a network of waveguide branches  (i.e., bidirectional delay lines 
simulating wave propagation in a duct or  a string)  capable of producing the desired 
early reflections and a diffuse, sufficiently dense  reverb. If the network is augmented 
with  lowpass  filters it is possible to  shape  the decay  time  with frequency. In  other 
words, waveguide reverberators  are  built in two  steps: the first step is the con- 
struction of a prototype lossless network, the second step is the  introduction of the 
desired amount of losses. This  procedure ensures  good  numerical  properties and a 
good  control over stability [Smi86, Vai931. In  ideal terms,  the  quality of a prototype 
lossless reverberator is evaluated  with  respect to  the whiteness and  smoothness of 
the noise that is generated as response to  an impulse. The fine control of decay time 
at different frequencies is decoupled from the  structural  aspects of the  reverberator. 

Among the classic reverberation  tools we should  also  mention the  structures 
proposed by Stautner  and  Puckette  [SP82],  and by Jot [Jot92].  These  structures 
form the basis of the Feedback Delay Networks, which will be discussed in greater 
detail  in section 6.5.3. 

Clusters of Comb/Allpass Filters 

The construction of high-quality  reverberators is half an  art  and half a science. 
Several structures  and  many  parameterizations were proposed in the  past, espe- 
cially in non-disclosed form  within  commercial  reverb  units  [Dat97].  In  most cases, 
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Figure 6.26 Moorer’s reverberator. 

the various structures  are combinations of comb and allpass  elementary blocks, as 
suggested by Schroeder in his early works. As an example, we briefly describe the 
Moorer’s preferred structure [Moo79], depicted in Fig. 6.26. The block (a) of the 
Moorer’s reverb  takes  care of the early reflections by means of a tapped delay line. 
The  resulting signal is forwarded to  the block (b), which is the parallel of a  direct 
path  on one  branch,  and a delayed, attenuated diffuse reverberator on the other 
branch. The  output of the  reverberator is delayed in such  a way that  the last of 
the early echoes coming out of block (a) reaches the  output before the first of the 
non-null samples coming out of the diffuse reverberator.  In  Moorer’s  preferred im- 
plementation, the reverberator of block (b) is best  implemented as a  parallel  group 
of six comb filters, each with a first-order lowpass filter in the loop,  and a single 
allpass  filter. In [Moo79], it is suggested setting  the allpass delay length to G ms 
and  the allpass coefficient to 0.7. Despite the fact that  any allpass filter does not 
add coloration in the  magnitude frequency  response, its  time response  can give a 
metallic  character to  the  sound, or add some unwanted  roughness and  granularity. 
The feedback attenuation coefficients and  the lowpass filters of the comb  filters  can 
be  tuned to resemble a realistic and  smooth decay. In particular,  the  attenuation 
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coefficients gi determine the overall decay time of the series of echoes generated by 
each comb  filter. If the desired decay time (usually defined for an  attenuation level 
of 60 dB) is T d ,  the gain of each comb filter has to be  set to 

gi = 10- , 3% (6.37) 

where fs is the sampling rate  and mi is the delay length in samples. Further at- 
tenuation at high frequencies is provided by the feedback lowpass filters, whose 
coefficient can  also  be  related  with decay time at a specific frequency or fine tuned 
by direct  experimentation.  In [Moo79], an example  set of feedback attenuation  and 
allpass coefficients is provided,  together  with  some  suggested values for the delay 
lengths of the comb  filters. As a  general  rule,  they  should  be  distributed over a ratio 
1 : 1.5 between 50 and 80  ms.  Schroeder  suggested  a  number-theoretic  criterion for 
a  more precise choice of the delay  lengths [Sch73]: the  lengths in samples  should  be 
mutually  coprime  (or  incommensurate) to reduce the superimposition of echoes in 
the impulse  response, thus reducing the so called flutter echoes. This  same  criterion 
might  be  applied to  the distances between each echo and  the direct  sound in early 
reflections. However, as  it was noticed by Moorer [Moo79], the results  are usually 
better if the  taps  are positioned  according to  the reflections computed by means of 
some  geometric  modeling  technique,  such as  the image method. As will be  explained 
in section  6.5.3, even the lengths of the recirculating  delays  can  be  computed from 
the geometric  analysis of the normal  modes of actual room  shapes. 

6.5.3 Feedback Delay Networks 

In 1982, J. Stautner  and M. Puckette [SP82] introduced  a  structure for artificial 
reverberation  based on delay lines interconnected in a feedback loop by means of 
a matrix (see Fig. 6.27). More recently, structures such as this have been called 
Feedback Delay Networks (FDN).  The  Stautner  and  Puckette  FDN was obtained 
as a vector  generalization of the recursive  comb filter 

y(n) = z (n  - m) + g .  y(n  - m) , (6.38) 

where the  m-sample delay line was replaced by a  bunch of delay lines of different 
lengths,  and  the feedback gain g was replaced by a feedback matrix G. Stautner 
and  Puckette proposed the following feedback matrix: 

0 1 1  
G -  g [ - l  

f i  1 0 0  
(6.39) 

0 1 - 1  0 

Due to  its sparse  special structure, G requires only one  multiply  per output channel. 

More recently,  Jean-Marc Jot  has investigated the possibilities of FDNs very 
thoroughly. He proposed using some classes of unitary  matrices allowing efficient 
implementation. Moreover, he showed how to control  the positions of the poles of 
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Figure 6.27 Fourth-order  feedback  delay  network. 

the  structure  in  order  to impose a desired decay time at  various frequencies [Jot92]. 
His considerations were driven by perceptual  criteria  and  the  general goal is to 
obtain  an ideal diffuse reverb. In  this  context, Jot introduced  the  important design 
criterion that all the modes of a frequency  neighborhood  should decay at the same 
rate, in order to avoid the persistence of isolated,  ringing  resonances in the  tail of 
the reverb  [JC91]. This is not  what  happens in real  rooms  though, where different 
modes of close resonance frequencies can  be differently affected by  wall absorption 
[Morgl]. However, it is generally believed that  the slow variation of decay rates with 
frequency  produces  smooth and pleasant  impulse  responses. 

General Structure 

Referring to Fig. 6.27, an FDN is built starting from N delay lines, each being 
~i = miT, seconds long, where T, = l/fs is the sampling  interval. The FDN is 
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completely  described by the following equations: 

N 

N 

sz(n + mi) = c ai , js j (n)  + biz(n) 
j=1 

(6.40) 

where s i (n) ,  1 5 i 5 N ,  are  the delay outputs  at  the  n-th  time sample. If mi = 1 
for every i ,  we obtain  the well-known state space  description of a  discrete-time 
linear  system  [Kai80].  In  the  case of FDNs, mi are typically  numbers of the  orders 
of hundreds or thousands,  and  the variables s i (n)  are only a  small  subset of the 
system state  at  time n, being the whole state represented by the content of all the 
delay lines. 

From the state-variable  description of the  FDN,  it is possible to find the  system 
transfer  function  [Roc96, RS97] as 

A]-'b + d. (6.41) 

The diagonal  matrix D(z)  = diag (zPm1, z-mz ,... z - ~ ~ )  is called the delay ma- 
trix,  and A = [ a i , j ] ~ ~ ~  is called the feedback matrix. 

The stability  properties of a FDN  are all  ascribed to  the feedback matrix.  The 
fact that llAll" decays  exponentially  with n ensures that  the whole structure is 
stable [Roc96, RS971. 

The poles of the  FDN  are found as  the solutions of 

det[A - D(z-l)] = 0 . (6.42) 

In  order to  have  all the poles on  the  unit circle, it is sufficient to choose a unitary 
matrix.  This choice leads to  the construction of a lossless prototype  but  this is not 
the only choice allowed. 

The zeros of the  transfer  function can  also  be  found  [Roc96, RS97] as  the solu- 
tions of 

det[A - b-cT - D(.-')] = 0 
1 
d 

(6.43) 

In  practice,  once we have constructed a lossless FDN  prototype, we must  insert 
attenuation coefficients and filters in the feedback loop. For instance, following the 
indications of Jot  [JC91], we can  cascade every delay  line  with  a  gain 

g .  - (p 
2 -  (6.44) 

This  corresponds to  replacing D ( z )  with D ( z / a )  in (6.41).  With  this choice of the 
attenuation coefficients, all the poles are  contracted by the same  factor a. As a 
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consequence, all the modes decay with the same rate,  and  the  reverberation  time 
(defined for a level attenuation of 60 dB) is given by 

T d = - .  
- 3Ts 
log a (6.45) 

In  order to have a faster decay at higher  frequencies, as happens in real  en- 
closures, we must  cascade the delay lines with lowpass filters. If the  attenuation 
coefficients gi  are replaced by lowpass filters, we can  still  get a local smoothness of 
decay times at various frequencies by satisfying the condition (6.44), where gi and 
a have been made  frequency  dependent: 

G ~ ( z )  =  ami(^), (6.46) 

where A ( z )  can  be  interpreted as per-sample  filtering  [JS83,  JC91, Smi921. 

It is important  to  note  that a uniform  decay of neighboring  modes, even though 
commonly desired in artificial  reverberation, is not  found in real  enclosures. The 
normal  modes of a room are associated  with stationary waves, whose absorption 
depends on the  spatial directions  taken by these waves. For instance, in a rectangn- 
lar  enclosure,  axial waves are  absorbed less than oblique waves [Morgl].  Therefore, 
neighboring  modes  associated  with different directions  can have different reverber- 
ation  times.  Actually, for commonly found  rooms  having  irregularities  in the geom- 
etry  and in the  materials,  the response is close to  that of a room  having diffusive 
walls, where the energy  rapidly  spreads  among the different modes.  In  these  cases, 
we can find that  the decay time is quite uniform among  the modes  [Kut95]. 

Parameterization 

The main  questions  arising  once we have  established  a  computational structure 
called FDN  are:  What  are  the numbers that can  be put in place of the  many 
coefficients of the  structure? How should  these  numbers  be chosen? 

The most  delicate part of the  structure is the feedback matrix.  In  fact,  it governs 
the  stability of the whole structure. In particular,  it is desirable to  start with  a 
lossless prototype, i.e. a reference structure providing an endless,  flat decay. The 
reader  interested in general matrix classes that might work as prototypes is referred 
to  the  literature  [Jot92, RS97, Roc97, Gar98bl. Here we only mention the class of 
circulant  matrices,  having the general  form 

A matrix such as  this is used in the Csound babo opcode. The stability of a FDN is 
related to  the magnitude of its eigenvalues, which can  be  computed by the Discrete 
Fourier Transform of the first row, in  the case of a  circulant matrix. By keeping 
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these eigenvalues on the  unit circle (i.e., magnitude  one) we ensure that  the whole 
structure is stable  and lossless. The control over the angle of the eigenvalues can 
be  translated  into a direct  control over the degree of diffusion of the enclosure 
that is being  simulated by the  FDN.  The limiting cases are  the diagonal matrix, 
corresponding to perfectly reflecting walls, and  the  matrix whose rows are sequences 
of equal-magnitude  numbers  and  (pseudo-)randomly  distributed  signs [Roc97]. 

Another  critical  set of parameters is given by the lengths of the delay lines. Sev- 
eral  authors suggested the use of sample  lengths that  are mutually  coprime  numbers 
in order to minimize the collision of echoes in the impulse  response. However, if the 
FDN is linked to a physical and geometrical interpretation,  as  it is done  in the 
Ball-within-the-Box (BaBo) model [Roc95], the delay  lengths  are derived from  the 
geometry of the room  being  simulated and  the resulting  digital  reverb  quality is 
related to  the quality of the  actual  room. How such  derivation of delay lengths is 
actually  performed is understandable from Fig. 6.23. A delay line will be associated 
to a  harmonic  series of normal  modes,  all obtainable from a  plane wave loop that 
bounces  back and  forth  within  the enclosure. The delay length for the  particular 
series of normal  modes  represented in Fig.  6.23 is given by the time  interval between 
two  consecutive collisions of the  plane wavefront along the main  diagonal, i.e. twice 
the  time  taken to travel the distance 

(6.47) 

being fo the  fundamental frequency of the  harmonic  modal series. The extension of 
the  BaBo model to spherical  enclosures was presented  in [RDOl]. 

6.5.4 Convolution  with  Room  Impulse  Responses 

If the impulse  response of a target room is readily  available, the most  faithful 
reverberation  method would be  to convolve the  input signal  with  such a response. 
Direct  convolution  can  be  done by storing  each  sample of the impulse  response as a 
coefficient of an  FIR filter whose input is the  dry signal.  Direct  convolution becomes 
easily impractical if the  length of the  target response exceeds small  fractions of a 
second, as it would translate  into several  hundreds of taps in the filter structure. One 
solution is to perform the convolution block by block in the frequency  domain: Given 
the Fourier  transform of the impulse  response, and  the Fourier  transform of a block 
of input  signal,  the two  can  be  multiplied  point by point and  the result  transformed 
back to  the  time domain. As this kind of processing is performed on successive 
blocks of the  input  signal,  the  output signal is obtained by overlapping  and  adding 
the  partial  results [OS89]. Thanks  to  the FFT computation of the discrete Fourier 
transform, such  techniques  can  be significantly faster. A drawback is that, in order 
to be  operated  in  real  time, a block of N samples must  be  read  and  then processed 
while a second block is being  read.  Therefore, the  input-output latency in samples is 
twice the size of a  block, and  this is not  tolerable in practical  real-time  environments. 

The complexity-latency trade-off is illustrated  in Fig. 6.28,  where the direct-form 
and  the block-processing  solutions  can  be  located,  together  with a third efficient yet 



6.5 Reverberation 185 

low-latency solution  [Gar95, Mii1991. This  third realization of convolution is based 
on a decomposition of the impulse response into increasingly large  chunks. The 
size of each  chunk is twice the size of its predecessor, so that  the latency of prior 
computation  can  be  occupied by the  computations  related to  the following impulse- 
response  chunk.  Details and discussion on convolution were presented in section 
2.2.4. 

l Direct  form FIR 

I Block-based FFT 

latency 

Figure 6.28 Complexity vs. latency trade-off  in convolution. 

Even if  we have enough  computer power to compute  convolutions by long im- 
pulse responses in real  time,  there  are still  serious  reasons to prefer reverberation 
algorithms  based on feedback delay networks in many  practical  contexts. The rea- 
sons are similar to those that make a CAD description of a scene preferable to a 
still  picture whenever several views have to be  extracted or the environment has 
to be modified interactively. In  fact,  it is not easy to modify a room  impulse re- 
sponse to reflect some of the room attributes, e.g. its high-frequency absorption, 
and  it is even less obvious how to spatialize  the echoes of the impulse  response 
in  order to get a proper sense of envelopment. If the impulse  response is coming 
from a spatial  rendering  algorithm, such as  ray  tracing,  these  manipulations  can  be 
operated  at  the level of room  description,  and  the coefficients of the room  impulse 
response transmitted  to  the real-time convolver. In the low-latency block based im- 
plementations, we can even have faster  update  rates for the smaller  early  chunks 
of the impulse  response, and slower update  rates for the  reverberant  tail. However, 
continuous  variations of the room  impulse  response are rendered more easily using 
a model of reverberation  operating  on a sample-by-sample  basis, such as those of 
section 6.5.3. 

Music  Applications  and  Control 

Reverberation  has been used as a  compositional dimension by some authors. Again, 
Chowning gave one of the most important examples in the piece “Turenas”, es- 
pecially for the use of reverberation as a  means to achieve a sense of distance,  as 
explained in section 6.2.3. 
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Luigi Nono made extensive use of reverberators to extend the possibilities of ac- 
tual  performance halls. For instance, in [m-Non88] sudden  changes  in  reverberation 
time give the impression of doors that momentarily  open  the view to larger  spaces. 
Moreover, the  timbral  features of running  reverberance,  with an  ultra-natural decay 
time of 30 S, are used to  give an intense  expressive  character to a  sustained low note 
of the  tuba. 

There  are several  examples of reverberation by direct  convolution  with the pe- 
culiar  impulse  response of existing  spaces.  In the work of some authors, such as 
Barry  Truax or  Agostino Di Scipio, reverberation is often  a  byproduct of granular 
synthesis that can  be somehow controlled by governing the density  and  distribution 
of concrete  or synthetic  sound  grains. 

Feedback  delay  networks  can  be interpreted  as models of 3-D resonators  rather 
than  strict  reverberators. If these  resonators  are varied in time in their size and 
geometry,  several  kinds of interesting  filtering effects can  be achieved, ranging  from 
irregular  comb-filtering of the voice [m-Bat93] to colored drones  carrying an intrinsic 
sense of depth [m-Doa98]. 

A new interesting  perspective  on  spatial  control of audio effects has been opened 
up by some  recent works by Di Scipio, where the amplification  chain and  the lis- 
tening  room become parts of the composition itself as they  concur to determine 
the overall character of a piece. For instance, in [m-DiSOO] the live performance 
makes use of a few microphones, whose input is compared  with  the  synthetic  sound 
material,  and  the difference signals are used to control  several  aspects of the  sound 
transformation process.  In this way, the final result is a combination of the original 
material,  the  sound  transformation  algorithms,  the peculiarities and variability of 
the room/audience  combination,  and the real-time  actions of the performer [DiS98]. 

6.6 Spatial  Enhancements 

6.6.1 Stereo Enhancement 

In  this  chapter, we have looked at  the problem of reproducing the  spatial image 
of a sound  source  using different approaches.  At  one  extreme,  one  can  record  a 
couple of sound  signals by means of a  dummy  head  and  reproduce  it by means 
of headphones  or  transaural loudspeaker  arrangements.  This  approach  has  both 
practical  advantages  and  drawbacks that have previously been  explained in sec- 
tions 6.3.4 and 6.4.5. Moreover, when it is used to collect samples to be played 
by sound  samplers,  another severe problem  occurs: the waveform loops, commonly 
used to  lengthen a steady  sound beyond its  stored  length,  tend to magnify any 
spatial shift of the sound  image, which is perceived as floating cyclically in space. 
Instead of doing  such an “integral  sampling”, the  spatial  information  can  be intro- 
duced in a  post-processing stage by implementation of HRTF filters. However, this 
approach  tends to consider  sources as being point-like and  not  too close to  the ears. 
A typical  example of instrumental  sound  that is difficult to spatialize  properly is 
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the  piano. For the  pianist,  the  sound  source is perceived as  changing  its  spatial cen- 
troid  according to  the  note  that is being  played (the  hammers  are displaced  along 
a relatively wide area)  and  during a single note decay (as different contributions 
from the  soundboard,  the  frame,  and  the  resonating  strings become evident).  It is 
clear that  any form of binaural or transaural processing that reproduces  this  kind 
of effects would be  quite  complicated.  Fortunately,  there  are simplified approaches 
to  the rendering of spatial  attributes of extended  sound sources. The general  idea 
is that of constructing a simple parametric model that  captures  the  spatial  sound 
features of interest.  The most  interesting  feature is the  mutual  correlation between 
two audio  channels,  already  defined in (6.9). If the two  channels  are  presented bin- 
aurally, a low degree of correlation is usually  perceived as  an  externalization of the 
sound  image,  and  the  fluctuations of the  correlation  function  in  time  are associ- 
ated  with a spatial impression of the enclosed  space.  Some authors [Ken95b,  K0831 
have  investigated how the cross-correlation between  two audio  channels is perceived 
through a pair of loudspeakers. The  peak value R of the function  (6.9),  computed 
on windowed portions of discretized signal,  can  take  values in the  range between 
-1 and +l, where 

1 identical signals (modulo a time  shift) 

0 uncorrelatecl signals . 
R = {  -1 180-degrees out of phase signals (modulo  a  time  shift) } (6.48) 

Experiments  with noise and  natural sources  have  shown that, in a  standard  stereo 
loudspeaker  layout,  changes  in  the  degree of correlation R give rise to a  combination 
of changes in  apparent source  width and  distance,  as  depicted in Fig. 6.29. This 
picture  illustrates  a  qualitative  behavior,  the  actual  width  and  distance of sound 
sources will depend  on  their own sonic nature,  as well as  on  the kind of processing 
that leads to a specified value of R. In fact,  aspects of the  correlation  function  other 
than  the peak  value will also contribute  to  the perceived  imagery, for instance by 
changing the degree of coupling  between  distance and  width. 

Apparent  Source Width * * 

R=O 

R=-l 

Figure 6.29 Apparent  source  width and distance for varying  degrees of correlation R. 

Kendall  [Ken95b]  proposes adjusting  the degree of correlation  between  two  audio 
channels by means of a  couple of filters whose  impulse  responses are  set  to  the desired 
value of R. Even though  the  perception of spatial  width seems to  be  mainly affected 
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by frequencies below 2-3 kHz, a proposed filter design  criterion  consists of taking  the 
full-range  Inverse  Fourier  Transform (IFT) of two sequences having flat magnitude 
and  random  phases 41 and $2.  Values of R between 0 and If1 are  obtained by 
composition of the two  phase  sequences, and  taking  the inverse transform  with  the 
phase  sequences (41, k41  + 4 2 ) .  In this way, a catalog of FIR filters  having  various 
degrees of mutual  correlation can  be  pre-constructed. The underlying  assumption 
is that a flat magnitude response would not  induce  coloration in the decorrelated 
signals. However, this  assumption collides with the following facts: 

As explained in section 6.4.2, a  pure  phase difference between two sinusoidal 
components at the loudspeakers  induces a level difference at the ears.  There- 
fore, the  presumed  magnitude  transparency of the filters is not  preserved at  
the  ears. 

Between the specified frequency points,  the  magnitude can  vary widely. One 
can  increase the number of points  (and  the size of the IFT), but  this comes at  
the expense of longer FIR filters. Besides being  more  expensive, if these  filters 
extend  their impulse  response  beyond 20 ms, a diffusion effect is introduced. 

Still  under the assumption that a  flat  magnitude  response at  the loudspeaker 
is an  important  requirement,  an  alternative decorrelation is proposed in [Ken95b], 
which makes use of allpass  filters whose poles are  randomly  distributed within the 
unit circle. This  technique ensures that  the magnitude  response at  the loudspeakers 
is flat in the whole frequency  range. Moreover, it is easier to implement  dynamic 
variations of the filter coefficients without  reading  precomputed values in a table. 
Dynamic  filter  variations  produce  interesting effects that resemble variations in the 
geometry of a source  or a room.  In  both  the  FIR  and  the allpass  decorrelators, 
the filter  order has  to be  quite high (several  hundred) to achieve good degrees of 
decorrelation. Also, working only with  random  phase  variations  can  introduce an 
unpleasant  character, called “phasiness”  [Ger92b, Ger92a1, to  the perceived spatial 
image. If  we consider the Fourier  transforms y1 and y2 of the two  channels of a 
binaural  recording, we can define the two  quantities 

0 Apparent  position: X( E) 
Phasiness: S (z) . 

The phasiness is considered as a  negative attribute, especially because it induces 
listening  fatigue.  In  order to minimize phasiness,  Gerzon  [Ger92a]  proposes  linear 
phase FIR filters  with  irregular  magnitude. Between the filters  applied to  the two 
channels,  the  magnitude responses  should be complementary to avoid  coloration. 
Since realizing  these  requirements in practice  can  be difficult and expensive,  one 
possibility is to  use allpass  filters  networked to form a multi-input  multi-output 
allpass block. 

Considering the prescriptions of Kendall, who recommends using flat-magnitude 
decorrelation  filters,  and  those of Gerzon, who recommends using linear-phase fil- 
ters, one  might argue  that in practice  neither of the two ways is necessarily the 
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best. A third way is found by using a feedback delay  network (see section 6.5.3), 
where two  relatively  uncorrelated outputs  can  be  taken by using two  distinct  sets 
of output coefficients. The scheme for such a decorrelator is depicted  in  Fig. 6.30, 
where the d coefficients weight the  contribution of the stereo  input, ma and m, are 
the delays of direct  signals, and mf is the delay of the signal  circulated in the  FDN. 
The delay lengths  can  be set long enough to avoid coloration and coprime to each 
other  to minimize temporal  artifacts. Alternatively, if one is aware of the physical 
reasons for decorrelation at the  ears,  the delay lengths  might  be  tuned  based on 
some physical object involved in sound diffusion and  propagation. For instance, in 
the case of the  piano  it is likely that  the soundboard plays a key role in providing 
the  appropriate decorrelation to  the  ears of the  pianist. Therefore, the delay lengths 
can  be tuned  to match the lowest resonances of a  piano  soundboard. 

'1,1 a1.2 a1,3 '1.4 

'2.1 ' 2 . 2  '3.2 a4,2 

'3.1 a3,2 a3.3 '3.4 I 
Figure 6.30 Decorrelation of a stereo input pair by means of a feedback  delay  network. 

The model in Fig. 6.30 allows a fine tuning of the  central position of the sound 
image by adjustment of interaural  time  and  intensity differences, without  changing 
the overall width of the sound  image, which is essentially due  to  the FDN. It can also 
be  augmented  and  made  more  accurate by means of the  structural  binaural model 
presented in section 6.3.4. Finally, the properly  decorrelated signals can be played 
through headphones or, using the  structures of section 6.4.5, through a  loudspeaker 
pair. 

Figure 6.31 shows the measured  interchannel  ratio of magnitudes,  apparent po- 
sition,  and phasiness of a lowpass filtered and subsampled  binaural  piano  recording, 
taken in a time window that extends for 100 ms right  after the  attack.  The  same 
quantities  can  be  plotted  after  replacing  the  two  binaural  channels  with  the out- 
puts of the network of Fig. 6.30. This  kind of visualization,  together  with  plots of 
the short-time  inter-channel  correlation, is beneficial as a complement to  the  aural 
feedback in the fine tuning  stage of the  decorrelator coefficients. 
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Figure 6.31 Frequency-dependent ratio of magnitudes, apparent position, and phasiness 
of a binaural  piano  sample. 
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Figure 6.32 Reported apparent sound  image  position  for  perfectly  correlated (thin line) 
and decorrelated (thick line)  signals (after Kendall  [Ken95b]). 

As noted in [Ken95b], a decorrelator is not only useful to increase the  apparent 
width of a sound  source,  but  can also  be effective in defeating the precedence effect 
to some extent.  Figure 6.32 shows how the listener perceives musical sounds  coming 
from a loudspeaker  pair as a function of the relative  time difference between signals 
(for instance,  due to  off-axis listening  positions) and for two  extreme degrees of 
correlation. 
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6.6.2 Sound Radiation  Simulation 

In  common musical thinking,  loudspeakers are often  considered transparent sources 
of either  spherical  (point  source)  or  plane  (planar infinitely extended  source) waves. 
These  assumptions  are  also  made, for the sake of simplicity, by the designers of most 
spatialization  systems. However, no  loudspeaker  system is transparent because it 
introduces  linear  and  nonlinear  distortion,  and  its  radiation  pattern  can never be 
described as a  sphere  or a plane. As a consequence, there  are  spatial  and signal 
distortions that can  degrade  the  quality of music played by means of loudspeakers. 
These  distortions become easily audible when there  are acoustic  instruments  ampli- 
fied  by loudspeaker  systems. As any  sound engineer can confirm, obtaining a good 
balance between the  natural source and  the loudspeakers  can  be  quite difficult, so 
that delays are often  introduced to deceive the audience using the precedence effect 
(see section 6.2.2), so that they believe that sounds are coming from the  natural 
source only. 

Sometimes, it is interesting to reproduce the  radiation  pattern of an acoustic 
source,  such as a musical instrument, by means of a system of loudspeakers.  This 
is seldom the case in regular  concert  layouts, but  it  can  be effective in sound in- 
stallations  and  sound  sculptures, where the listeners are supposed to move around 
and  through  the loudspeaker  system.  Another  special  application of sound  radiation 
simulation is found in digital  pianos: even if sound  samples are perfectly  recorded 
from a high-quality instrument,  the  spatial impression given to  the pianist by sounds 
as they  are played through a few small  loudspeakers  can  be quite  disappointing. 

Actual  Source (1) 
c. 

Loudspeaker  Ensemble (2) 
-. 

Figure 6.33 Sound  source radiation measured  along  a  boundary (l), and reconstruction 
of the sound  field  within the boundary by means of a  loudspeaker set (2).  

Sound  radiation  simulation  can  be  formulated as a problem of reconstruction of 
the acoustic field in a  space by means of a  finite  number of sources. The  situation 
is depicted in Fig. 6.33, where the  target  sound source is depicted  within a volume 
enclosed by a boundary, and  the  same volume encloses a  set of loudspeakers. The 
goal is to apply  some  filtering to  the loudspeakers so that  the system  on  the  right 
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has  the  same  radiation  properties as the  system  on  the  left.  In  mathematical  terms, 
this is expressed by 

N c ai(w)Pi(r,w) = R(r,w),  for any  point r on the  boundary d V  , (6.49) 
i=l 

where Pi(r, W )  is the frequency  response of loudspeaker i measured at  point r ,  and 
R(r,  W )  is the  frequency  response of the  target  sound  source  measured at the  same 
point r. If (6.49)  holds at the  boundary,  the equivalence of the two  systems of 
Fig. 6.33 is also true in the whole  enclosed  space  [EH69]. The frequency  responses 
Pi can  be  thought of as  vectors identifying a  vector  space V ,  so that  the set of 
coefficients ai that gives the  vector closest to R is obtained by orthogonal  projection 
of R onto V (see Fig.  6.34).  The  projection is such that  the scalar  product between 
the  distance  vector R - C j  ajPj and each basis vector Pj is identically zero. Since 
the scalar  product is computed by integration over the  boundary  [DCW95], we have 

Figure 6.34 Finding the minimum distance between  a  vector R and a vector  space V by 
orthogonal  projection. 

The  solution  to  (6.50)  can  be expressed as  the  solution  to  a  linear  system of 
equations in the unknowns a j ,  to be  solved for each  frequency W of interest.  The 
resulting  frequency  responses aj ( W ) ,  to be  imposed  on  each audio  channel,  can  then 
be  approximated by filter  design  techniques, or  inverted  and  implemented by direct 
or fast  convolution.  With  a  small  number of loudspeakers, the  radiation  pattern 
can  be fairly approximated only up  to  a few hundreds Hz [DCW95].  However, 
accurate  tuning of low-frequency  directivity can  be  enough  to give the impression 
of a directional  tone color similar to  an acoustic source. Some  researchers  have 
started collecting directional  impulse  responses of musical instruments  [CT98], so 
that a database of filter coefficients can  be designed, and  they  can be  switched and 
interpolated  interactively  in  electroacoustic  music  performances. 
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6.7 Conclusion 

Playing  with the  spatial  attributes of sound  has  been  an  intriguing  and challen- 
ging  task for many  musicians and  sound designers. The  multiplicity of techniques 
developed so far  has  been  roughly overviewed in the previous  pages.  Despite the 
thickness of this  chapter, we have  certainly  missed  many  important  contributions to 
the field. However, we endeavored to communicate the main  structural,  perceptual, 
or technological limitations  and possibilities of spatial  audio. We hope that  the 
sound  designer,  after  reading  this  chapter, will be  able to model  some spatial  features 
of sound  or,  at  least,  to  be conscious of those  features  that will be  part of the 
aesthetics of the design  process rather  than  part of the sonic outcome. 

Technological  progress will stimulate more  research in spatial  audio in the  future. 
A  particularly  promising  area is that of audio  embedded in everyday  objects  as  a 
feasible form of display for ubiquitous  computing. As the number  and flexibility 
of sound  sources are likely to increase in  this new context,  it is likely that new 
paradigms for spatial  sound design will emerge. 
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Chapter 7 

Time-segment Processing 

P. Dutilleux, G.  De  Poli, U. Zolzer 

7.1 Introduction 

In this  chapter we discuss  several  time  domain  algorithms which are a combina- 
tion of smaller  processing blocks like amplitude/phase  modulators, filters and delay 
lines. These effects mainly influence the  pitch  and  the  time  duration of the  audio 
signal. We  will first  introduce  some  basic effects like variable  speed  replay and pitch- 
controlled  resampling. They  are all based on  delay  line  modulation and  amplitude 
modulation.  Then we will discuss two  approaches for time  stretching  (time scaling) 
of audio  signals.  They are based  on an analysis  stage, where the  input signal is 
divided into segments (blocks) of fixed or variable  length, and a  synthesis  stage 
where the blocks of the analysis stage  are recombined by an overlap and  add pro- 
cedure.  These  time  stretching  techniques  perform time scaling without modifying 
the pitch of the signal. The  fourth section focuses on  pitch  shifting, and  introduces 
three techniques: block processing  based  on time  stretching  and resampling, delay 
line modulation  and pitch-synchronous block processing. Block processing  based on 
delay line modulation  performs  pitch  shifting by scaling the  spectral envelope of 
each block. Pitch-synchronous block processing  performs  pitch  shifting by resam- 
pling the spectral envelope of each block and  thus preserving the  spectral envelope. 
The  last section  on  time shuffling and  granulation  presents  a  more  creative use of 
time-segment processing. Short segments of the  input signal are freely assembled 
and  time placed in the  output signal.  In this case the  input  sound  can  be much 
less recognizable. The wide choice of strategies for segment organization implies a 
sound  composition attitude from the user. 

201 
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7.2 Variable Speed Replay 
Introduction 

Analog audio  tape  recorders allow replay  mode  over  a  wide  range of tape  speeds. 
Particularly in fast  forward/backward  transfer  mode, a monitoring of the  audio 
signal is possible which is used to locate a sound.  During  faster  playback  the  pitch 
of the  sound is raised  and  during slower playback  the  pitch is lowered. With  this 
technique the  duration of the  sound is lengthened, if the  tape is  slowed down,  and 
shortened if the  tape speed is increased.  Figure 7.1 illustrates a sound  segment 
which is lenghtened  and  shortened  and  their  corresponding  spectra. 

Signal Processing 

Variable speed  replay (v=I), time domain  signals 
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Figure 7.1 Pitch shifting: Variable speed  replay  leads to time compression/expansion and 
compression  and  expansion of the spectral  envelope. 

The  phrase  “variable  speed  replay” is used to mean that what  has  happened 
initially  during the  time  period nTs,in is now happening  during 

n T s , r e p l a y  nTs,in/v (7.1) 
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at  the relative  speed v, where Ts,in and Ts,replay are  the  initial  and replay  sampling 
periods. Time expansion  corresponds to W < 1. A straightforward  method of imple- 
menting the variable  speed  replay is hence to modify the sampling frequency while 
playing  back the sound  according to 

fs,replay = fs,in ‘ v (7.2) 

where fs,in and fs,replay are  the  initial  and replay  sampling frequencies. One  should 
distinguish  whether the  output should  be  digital  or  may  be  analog. If the  output 
is analog,  then a very effective method is to  modify the sampling  frequency of 
the  output DAC. The  spectrum of the signal is scaled by W and  the  analog recon- 
struction filter  should  be  tuned in order  to remove the  spectral images after  the 
conversion [Gas87, Mas981. 

If a  digital  output is required, then a  sampling  frequency conversion has  to  be 
performed between the desired replay  frequency fs,replay and  the  output  sampling 
frequency fs+,%t which is usually  equal to f s , i n .  

If v < 1 (time  expansion)  then fs,in > fs,replay < fS ,OPl t  and  more  output  samples 
are needed than available from the  input signal. The  output signal is an interpolated 
(over-sampled) version by the factor 1/v of the  input signal. If  v > 1 (time com- 
pression) then fs,in < fs,Teplay > fs+t and less output samples than available in 
the  input signal are necessary. The  input signal is decimated by the  factor v. Before 
decimation,  the  bandwidth of the  input signal has  to be  reduced to f s , T e p l a y / 2  by a 
digital lowpass filter [McN84]. The quality of the sampling  rate conversion depends 
very much on the interpolation filter used. A very popular  method is the linear 
interpolation between two  adjacent  samples. A review of interpolation  methods  can 
be found in [Mas98, CR83]. 

A discrete-time  implementation  can  be achieved by increasing/decreasing the 
transfer rate of a recorded  digital audio signal to  the DA converter,  thus chan- 
ging the  output  sampling frequency  compared to  the recording  sampling frequency. 
If the  output signal has  to  be in digital  format again, we have to resample the 
varispeed analog  signal  with the corresponding  sampling frequency. A discrete-time 
implementation  without  a DA conversion and new  AD conversion was proposed 
in [McN84] and is shown in Fig. 7.2. It makes use of multirate signal processing 
techniques and performs an approximation of the  DA/AD conversion approach. A 
further signal processing algorithm to achieve the acoustical  result of a  variable 
speed  replay is the delay line modulation  with a constant  pitch  change, which will 
be discussed in section 7.4.3. 

Musical Applications and Control 

As well as for analog  tape-based  audio  editing,  the  variable  speed  replay is very 
popular in digital  audio  editing  systems. See [m-Wis94c, ID 2.9 and 2.101 for a 
straightforward  demonstration of the effect on  a voice signal. 

The effect of tape speed  transposition  has been used by  Les Paul in the piece 
called “Whispering” in 1951 [Lee72]. This  method is very often used in electro- 
acoustic music when the pitch of concrete  sounds  cannot be controlled at the time 
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Figure 7.2 Variable speed  replay  scheme. 

of recording. P. Schaeffer designed the Phonogine chromatique to  transpose a  sound 
to  any one of the 12  degrees of the  equal  tempered scale. The device was based on 
a tape recorder  with  12 capstans  and pinch rollers. The  operation of the pinch 
rollers  could  be  controlled by a piano-like keyboard. An additional gear extended 
the  range of operation  to  two octaves [Mo160, p.  71];[Roa96,  p. 119];[Ges00]. Jacques 
Poullin  developed another version, the Phonogkne ci coulisse, which allowed contin- 
uous  speed  modifications. A pair of cones,  with a friction wheel in between,  consti- 
tutes a variable-ratio  mechanical link between the motor  and  the  capstan of the  tape 
player. The position of the friction wheel, and hence the replay  speed, is controlled 
by a mechanical  lever.  Stockhausen, in “Hymnen”,  transposed  orchestral  sounds  to 
give them  an overwhelming and  apocalyptic  character  [Chi82,  p. 531. 

In  computer music too,  the variable  speed  replay  provides an effective transposi- 
tion  scheme. J.-C. Risset  says: by “mixing a sound  with  transpositions of itself with 
a minute frequency difference (say, a twentieth of a Hertz), one  can turn  steady peri- 
odic  tones  into a pattern where the harmonics of the tone wax and wave a t  different 
rates,  proportional to  the  rank of the harmonic” [Ris98, p. 255];[m-INA3, Sud].  In 
“The  Gates of H.”, Ludger  Brummer  exploits  the  fact that variable  speed  replay 
modifies both  the  pitch  and  the  duration of a  sample  [m-Bru93,  14’40”-17’25”]. 
Seven copies of the same  phrase, played simultaneously a t  speeds 7.56, 4.49, 2.24, 
1.41,  0.94,  0.67,  0.42,  0.31 are overlapped. The resulting  sound  begins  with  a com- 
plex structure  and  an  extended  spectrum. As the piece continues, the faster copies 
vanish and  the slower versions emerge  one  after the  other.  The  sound  structure 
simplifies and  it evolves towards  the very low registers. 

The  character of the  transposed  sounds is modified because  all the  features of 
the  spectrum  are simultaneously  scaled. The formants  are scaled up leading to a 
“Mickey Mouse effect” or  down, as if the sounds were produced by oversized objects. 
The  time  structure is modified as well. The  transients  are  spread  or  contracted. A 
vibrato in the initial  sound will lose its  character  and will appear  as a slower or 
faster  modulation. The sounds  can  also  be played at  negative  speeds.  A  speed -1 
yields a sound  with the same  average spectrum  although  sounding very different. 
Think  about speech or percussive  sounds played backwards. Other  transposition 
schemes that  are free from  these  drawbacks  are achieved by more  sophisticated 
methods described  in further sections of this  book. 

A particular  application was desired by the composer Kiyoshi Furukawa. He 
wanted  a  sampler for which the speed would be controlled by the  amplitude of an 
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acoustical  instrument. A sound is stored in a sampler  and is played as a loop. In 
the  meantime,  the RMS amplitude of an incoming controlling signal is computed 
and  time averaged  with  independent attack  and decay time  constants.  This  ampli- 
tude is converted to decibels and scaled before  driving  the  speed of the sampler. 
The  parameters have to  be  tuned in such a way that  the speed  remains  within a 
valid range  and  the  speed  variations  are  intimately  related  to  the loudness and  the 
dynamics of the  instrument (see Fig. 7.3). 

I Loop-sampler 

I Decay time-constant 
Attack  time-constant 

Figure 7.3 A loop-sampler  controlled by an acoustical signal. 

This effect  is controlled by a clarinet in “Swim,  swan” and by a viola in “den 
ungeborenen  Gottern”  [m-Fur93, m-F‘ur971. The  pitch of the  acoustical  instrument 
selects words out of a  predefined  set  whereas the loudness  controls the replay  speed 
of these words. 

7.3 Time  Stretching 
Introduction 

In  order to  understand  the issue of time  stretching, let us take  the  example of a 
signal whose duration does  not fit the  time slot that is allocated to  its application. 
Think  about  a  speaker  that  has  already recorded 33 seconds of speech but whose 
contribution  to a commercial  may not  be longer than 30 seconds. If he  does  not  want 
to record his text  again,  the  sound engineer  may artificially contract his speech by 
10%. With  the  term  “time  stretching” we mean the  contraction or expansion of 
the  duration of an  audio  signal  (time compression, time  expansion,  time scaling -+ 
signal processing term). We have studied in 7.2 a method  that  alters  the  duration 
of a sound,  the variable speed  replay,  but  it  has  the  drawback of simultaneously 
transposing  the  sound.  The Harmonizer could  be  used to  transpose  the  sound in the 
opposite  direction  and the combination of both  methods  leads  to a time  stretching 
algorithm. 

The  main  task of time  stretching  algorithms is to  shorten  or  lengthen a sound 
file of M samples to a new particular  length M‘ = (Y . M ,  where Q is the scaling 
factor.  For  performing  time  stretching  algorithms the sound file has  to  be available 
in a stored  form  on  a  storage  medium like a sampler, DAT or a hard disc. Time 
stretching of a  sequence of audio  samples is demonstrated in Fig. 7.4. The  original 
signal is shown in the  upper  plot.  The middle plot shows the sequence  which is 
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Figure 7.4 Time stretching with scaling  factor a = 0 .5 ,2 .  

shortened by a scaling  factor a = 0.5 and  the lower plot shows the  stretching by a 
scaling  factor Q = 2. 

Signal Processing 

The  intended  time scaling does not  correspond to  the  mathematical  time scaling 
as realized by vary-speed. We rather  require  a scaling of the perceived timing  at- 
tributes,  such as speaking  rate,  without affecting the perceived  frequency attributes, 
such as pitch. We could  say that we want  the  time scaled  version of an acoustic sig- 
nal  to  be perceived as the  same sequence of acoustic  events as the  original signal 
being  reproduced  according to a scaled time  pattern.  The  time  stretching  algorithms 
should  not affect the pitch  or  the frequency contents of the processed signals. This 
is demonstrated by the  corresponding  spectra  (first 2000 samples) of the  discrete- 
time  signals in Fig. 7.4. For  comparison  only  the  traditional  technique for time 
stretching  based  on  the  variable  speed  replay  introduces  a  pitch  shift (see section 
7.2  and  Fig. 7.1). The  basic  idea of time  stretching by time-segment  processing is to 
divide the  input  sound  into  segments.  Then if the sound is to  be lengthened,  some 
segments  are  repeated, while if the sound is to be  shortened, some  segments  are dis- 
carded. A possible problem is amplitude  and  phase  discontinuity at the  boundaries 
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of the segments.  Amplitude  discontinuities are avoided by partially  overlapping the 
blocks, while phase  discontinuities are avoided by a proper  time  alignment of the 
blocks. Two different strategies will be  presented in subsections  7.3.2 and 7.3.3. 

Applications 

Special  machines  such as  the Phonogbne universe1 of Pierre Schaeffer or the Tem- 
pophon used by Herbert  Eimerts allowed alteration of the  time  duration as well as 
the pitch of sounds. The Phonogbne found  many  applications in rnusique concrbte 
as a “time  regulator”.  In  its composition “Epitaph fur Aikichi Kuboyama” , Herbert 
Eimerts uses the Tempophon in order to  iterate spoken word fragments.  The device 
allowed the scanning of syllables, vowels and plosives and could make them  shorter, 
longer or iterate  them  at will  [Ha195, p.  13];[m-Eim62]. 

As mentioned in the  Introduction,  the  stretching of signals can  be used to  match 
their  duration  to  an assigned time-slot. In Techno music, different pieces of music 
are played one  after  the  other  as a continuous stream.  This  stream is supposed to 
have only very smooth  tempo or bpm (beat  per  minute)  transitions  although  the 
musical excerpts usually do not have the  same  tempo. In  order to  adjust  the  tempo 
to each other,  the disc jockey modifies the replay  speeds at  the transition  from  one 
excerpt to  the  other.  This method  leads to  temporary pitch  modifications which 
could  be  objectionable. The use of time  stretching  methods could eliminate  this 
problem. 

After a brief presentation of the technology of the Phonogkne, the following 
sections  discuss  two  signal  processing  techniques which perform  time  stretching 
without  pitch  modifications. 

7.3.1 Historical  Methods - Phonoghe 

Fairbanks,  Everitt  and  Jaeger  report in 1954 on a modified tape recorder for time  or 
frequency  compression-expansion of speech [Lee72, Lar981. Springer develops a sim- 
ilar  machine  [Spr55, Spr591 and  Pierre Schaeffer praises a machine called Phonogbne 
universe1 that was designed as a combination of the aforementioned Phonogbne chro- 
matique and Phonogbne h coulisse with  the  rotating head drum of Springer [Mo160, 
p. 71-76];[Sch73, p. 47-48]; [m-Sch98, CD2,  ID.  50-52];[Pou54,  PS57, GesOO]. 

The modified tape recorder has several  playback  heads  mounted  on a rotating 
head  drum. The absolute  speed of the  tape  at  the  capstan determines  the  duration 
of the  sound whereas the relative  speed of the  heads  to  that of the  tape determines 
the  amount of transposition. By electrical  summation of the  outputs of the different 
heads, a continous  sound is delivered (Fig. 7.5). Moles reports a typical  operating 
range of +lo% to -40% [Mo160, p. 761. The Springer  machine was also known as 
Laufieitregler or Zeitdehner [Car92, p. 479-480];[End97]. 
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Figure 7.5 Tape-based time compression-expansion system (After [Mo160]). 

7.3.2 Synchronous Overlap and Add  (SOLA) 

A simple  algorithm for time  stretching based  on  correlation  techniques is proposed 
in [RW85, MEJ861. The  input  signal is divided into  overlapping blocks of a fixed 
length,  as shown in Fig. 7.6. In a  second step  these  overlapping  blocks  are shifted 
according to  the  time  scaling  factor Q. Then  the  similarities in the  area of the 
overlap  intervals  are  searched for a discrete-time  lag of maximum  similarity. At this 
point of maximum  similarity the overlapping  blocks  are  weighted by a fade-in and 
fade-out  function  and  summed  sample by sample. 

overlap  overlap 
interval  interval 

Figure 7.6 SOLA time  stretching. 
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Algorithm  description: 

1. Segmentation of the  input  signal  into blocks of length N with time shift of S, 
samples. 

2. Repositioning of blocks  with time  shift S, = a .  S, with scaling factor a. 

3. Computation of the cross-correlation 

~ L-m-l 

between z~l(n) and x ~ Z ( n ) ,  which are  the  segments of q ( n )  and x2(n) in the 
overlap  interval of length L. 

4. Extracting  the  discrete-time  lag 5, where the cross-correlation 
~,,,,,,(5,) = r,,, has  its  maximum value (see Fig.  7.7a). 

5 .  Using this  discrete-time lag IC,, fade-out z1(n) and fade-in x2(n). 

6. Overlap-add of z l (n)  and z2(n) for new output signal. 

Figure 7.7 illustrates  the difference between  simple  overlap and  add  with fade- 
out  and fade-in of the blocks and  the refined synchronous  method  with  the  point of 
maximum  similarity IC,. The SOLA implementation leads to  time scaling with  small 
complexity,  where the  parameters S,, N ,  L are  independent of the  pitch  period of 
the  input  signal. 

The following  M-file 7.1  demonstrates  the  implementation of the SOLA time 
scaling algorithm: 

M-file 7.1 (TimeScaleS0LA.m) 
% TimeScaleS0LA.m 
% Time  Scaling  with  Synchronized  Overlap and  Add 
% 
% Parameters: 
% 
% analysis  hop  size Sa = 256 (default parmater) 
% block  length N = 2048  (default  parameter) 

% overlap  interval  L = 256*alpha/2 
time  scaling  factor  0.25 <= alpha <= 2 

clear allyclose all 

[signal,Fs] = wavread(’xi.wav’); 
DAFx-in = signal’; 

Sa = input(’Ana1ysis hop size Sa in  samples = ’ ) ;  
N = input(’Ana1ysis  block  size N in samples = ’>; 
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Figure 7.7 SOLA: cross-correlation and time  stretching. 

if Sa > N 
disp(’Sa must  be  less than N ! ! ! ’ )  

end 
M = ceil(length(DAFx-in)/Sa); 

% Segmentation  into  blocks of length N every Sa samples 
% leads to M segments 

alpha  =input(’Time  stretching  factor  alpha = ’); 
Ss =round(Sa*alpha) ; 
L =input(’Overlap  in  samples (even) = ’ ) ;  
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if Ss >= N disp(’a1pha  is  not  correct, Ss is >= N’) 
elseif Ss > N-L  disp(’a1pha  is  not  correct, Ss is > N-L’) 
end 

DAFx-in(M*Sa+N)=O; 
Overlap = DAFx-in(l:N); 

% **** Main  TimeScaleSOLA  loop **** 
for  ni=l:M-l 
grain=DAFx-in(ni*Sa+l:N+ni*Sa); 
XCORRsegment=xcorr(grain(i:L),Overlap(i,ni*Ss:ni*Ss+(L-l))); 
[xmax(l,ni) ,index(l,ni)]=max(XCORRsegment); 
fadeout=i: (-l/(length(Overlap)-(ni*Ss-(L-l)+index(l,ni)-l))) :O; 
fadein=O:(i/(length(Overlap)-(ni*Ss-(L-l)+index(l,ni)-i))):l; 
Tail=Overlap(l,(ni*Ss-(L-l))+ . . .  

Begin=grain(l:length(fadein)).*fadein; 
Add=Tail+Begin; 
Overlap=[Overlap(l,l:ni*Ss-L+index(l,ni)-l) ... 

index(1,ni)-l:length(Overlap)).*fadeout; 

Add grain(length(fadein)+l:N)l ; 
end ; 
% **** end  TimeScaleSOLA  loop **** 
% Output  in  WAV  file 
sound(Overlap,44100); 
wavwrite(Overlap,Fs,’xl-time-stretch’); 

7.3.3 Pitch-synchronous Overlap and Add  (PSOLA) 

A variation  of  the SOLA algorithm  for  time  stretching is the  Pitch  Synchronous 
Overlap  and Add (PSOLA) algorithm  proposed  by  Moulines et al. [HMC89, MC901 
especially  for  voice  processing. It is based on the  hypothesis  that  the  input  sound 
is characterized  by a pitch,  as  for  example human voice  and  monophonic  musical 
instruments. 

In this case PSOLA can  exploit  the  knowledge  of  the  pitch  to  correctly  syn- 
chronize  the time segments,  avoiding  pitch  discontinuities. When we perform time 
stretching  of an  input  sound,  the time variation  of the pitch P ( t )  should  be  stretched 
accordingly. If t = at describes  the time scaling  function  or  time  warping  function 
that maps the  time t of  the  input  signal  into  the time 2 of  the  output  signal,  the  local 
pitch  of  the  output  signal p( i )  will be  defined  by P ( i )  = P(&) = P ( t ) .  More gen- 
erally, when the  scaling  factor a is not  constant, a nonlinear  time  scaling  function 
can  be  defined  as i = 7 ( t )  = S, C X ( T ) ~ T  and  used  instead  of i = a t .  

The algorithm is composed of two  phases:  the first phase  analyses  and  segments 
the  input  sound (see Fig. 7.8), and  the  second  phase  synthesizes a time  stretched 
version  by  overlapping  and  adding  time  segments  extracted  by  the  analysis  algo- 
rithm. 

t 
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Figure 7.8 PSOLA: Pitch analysis  and block windows. 

Analysis  algorithm (see Fig. 7.9): 

Determination of the pitch  period P ( t )  of the  input signal and of time  instants 
(pitch  marks) t i .  These  pitch  marks  are  in correspondence  with the maximum 
amplitude  or  glottal pulses at  a  pitch  synchronous  rate  during  the periodic 
part of the sound  and at  a constant  rate  during  the unvoiced portions.  In 
practice P( t )  is considered constant P ( t )  = P(ti)  = ti+l - ti on the  time 
interval ( t i ,   t i+l) .  

Extraction of a  segment  centered a t  every pitch  mark ti by using a Hanning 
window with the length Li = 2P(ti) (two  pitch  periods) to ensure fade-in and 
fade-out. 

PSOLA analysis 

I - ' segments 

7 
I I 

Figure 7.9 PSOLA pitch  analysis. 

Synthesis  algorithm (see Fig. 7.10): for every  synthesis  pitch  mark [k 

1. Choice of the  corresponding analysis  segment i (identified by the  time  mark 
t i)  minimizing the  time  distance lati - f k l .  
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2. Overlap  and  add  the selected segment.  Notice that some input  segments will 
be  repeated for a > 1 (time  expansion) or discarded  when a < 1 (time 
compression). 

3.  Determination of the  time  instant ik+,+l where the  next  synthesis  segment will 
be  centered, in order to preserve the local pitch, by the  relation 

U - segments - -LA time stretching 

Synthesis 
pitch marks 

Figure 7.10 PSOLA synthesis for time stretching. 

The basic PSOLA  synthesis  algorithm  can  be  implemented in MATLAB by the 
following  M-file 7.2: 

M-file 7.2 (pso1a.m) 
function out=psola(in,m,alpha,beta) 
% in input signal 
% m  pitch  marks 
% alpha  time stretching  factor 
% beta  pitch  shifting  factor 

P = diff (m) ; %compute pitch  periods 

if  m(  l)<=P( l ) ,  %remove first  pitch  mark 
m=m( 2 : length (m) ) ; 
P=P(2:length(P)); 

end 
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if m(length(m))+P(length(P))>length(in) %remove last pitch  mark 
m=m(l:length(m)-l); 
else 
P=[P  P(length(P))I ; 

end 

Lout=ceil(length(in)*alpha) ; 
out=zeros(l,Lout); %output  signal 

tk = P(l)+l; %output  pitch  mark 

while round(tk)<Lout 
[minimum i] = min(  abs(alpha*m - tk) ) ;  %find analysis  segment 
pit=P (i) ; 
gr = in(m(i)-pit:m(i)+pit) .* hanning(2*pit+l); 
iniGr=round(tk)-pit; 
endGr=round(tk)+pit; 
if endGr>Lout,  break; end 
out(iniGr:endGr) = out(iniGr:endGr)+gr; %overlap  new  segment 
tk=tk+pit/beta; 

end  %while 

It should  be  noticed that  the determination of the  pitch  and of the position of 
pitch  marks is not a trivial  problem and could be difficult to  implement  robustly in 
real-time.  Stretching  factors typically  range from Q = 0.25 to 2 for speech. Audible 
buzziness appears in unvoiced sound when larger values are  applied,  due to  the 
regular  repetition of identical input segments. In  order  to prevent the  algorithm 
from  introducing  such an artificial short-term correlation in the synthesis  signal, 
it is advisable to reverse the time  axis of every repeated version of an unvoiced 
segment.  With such an artifice,  speech  can  be slowed down by a  factor of four, even 
though some tonal effect is encountered in voiced fricatives, which combine voiced 
and unvoiced frequency regions and  thus  cannot reversed in time. 

It is possible to  further exploit the analysis  phase.  In fact, uniformly applied  time 
stretching  can  produce some artifacts  on  the non-periodic parts of the  sound. For 
example  a plosive consonant  can  be  repeated if the synthesis  algorithm chooses the 
time segment  containing  the  consonant twice. The analysis  can then  be  extended 
in order to  detect  the presence of fast  transitions.  During  synthesis,  the  time scale 
will not  be modified at  these  points,  thus  the segments will not  be  repeated.  This 
approach  can  be generalized for non-speech sounds where a large  time scale change 
during  transitions  (e.g.  attacks) would dramatically  change the  timbre identity. Also 
in this case it is possible to limit time  stretching  during  transitions  and  apply  it 
mainly to  the  steady  state portion of the  input  sound.  This technique is usually 
applied to digital  musical instruments based on wavetable  synthesis.  On the  other 
hand,  the  deformation of transient  parts  can  be considered an interesting  timbre 
transformation  and  can  be  appreciated  as a musically creative  audio effect. 
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7.4 Pitch Shifting 
Introduction 

Transposition is one of the basic tools of musicians. When we think  about providing 
this effect by signal  processing  means, we need to  think  about  the various  aspects 
of it. For a  musician,  transposing  means  repeating a melody after  pitch  shifting it 
by a fixed interval.  Each  time the performer  transposes the melody, he makes use of 
a different register of his instrument. By doing so, not only the pitch of the sound 
is modified but also the  timbre is affected. 

In the realm of DAFx,  it is a matter of choice to transpose  without  taking 
into account the  timbre modification  or  whether the  characteristic  timbre of the 
instrument  has to  be maintained in each of its registers. The first  method could 
be called “variable timbre  transposition” whereas the second approach would be 
called “constant  timbre  transposition”. To  get an insight into  the problem we have 
to  consider the physical origins of the  audio signal. 

The  timbre of a sound heavily depends  on the organization of its  spectrum. A 
model  can  be  derived  from the  study of the singing voice. The pitch of a singing 
voice  is determined by the vocal chords and  it  can  be  correlated  with  the set of 
frequencies available in the  spectrum.  The  timbre of the voice is mainly  determined 
by the vocal cavities.  Their effect  is to emphasize  some parts of the  spectrum which 
are called formants. A signal  model  can  be  derived where an excitation  part is 
modified by a  resonance part. In the case of the voice, the  excitation is provided 
by the vocal chords, hence related to  the frequencies of the  spectrum, whereas the 
resonances  correspond to  the formants.  When a, singer  transposes  a  tune,  he  has, to 
some extent,  the possibility of modifying the pitch and  the  formants independently. 
In  a  careful  signal processing implementation of this effect, each of these  two  aspects 
should be considered. 

If only the  spectrum of the  excitation is stretched  or  contracted, a pitch trans- 
position up  or down,  with  a  constant  timbre, is achieved. If only the resonances are 
stretched  or  contracted,  then  the  pitch remains the same but  the  timbre is varied. 
The harmonic  singing relies on this effect. If both  excitation  and resonance are de- 
liberately  and  independently  altered,  then we enter the domain of effects that can 
be perceived as  unnatural,  but  that might  have a vast musical potential. 

The  separation of a  sound into  its  excitation  and resonance part is a complex 
process that will be  addressed in Chapter 9. We  will present  here  methods which 
simultaneously alter  both  aspects such as  the harmonizer  or  pitch  shifting by delay- 
line modulation  in  section 7.4.3. A  more refined method  based  on  PSOLA, which 
allows pitch  shifting  with  formant  preservation, will be discussed in section 7.4.4. 
For more  advanced  pitch  shifting  methods we refer to  Chapters 8-11. 

Musical Applications 

Typical  applications of pitch  shifting in pop music are  the correction of the into- 
nation of instruments or singers as well as  the production of an effect similar to a 
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chorus.  When  the voice of a singer is mixed  with copies of itself that  are slightly 
transposed, a subtle effect appears  that gives the impression that one is listening to 
a choir instead of a single singer. 

The harmonizer  can  also  produce  surprising effects such as a man  speaking 
with  a  tiny high  pitched voice or  a female  with a gritty low-pitched one. Extreme 
sounds  can  be  produced  such  as  the  deep  snare  drum  sound on David Bowie’s 
“Let’s  Dance”  record  [Whi99]. It  has also been  used for scrambling  and  unscram- 
bling  speech  [GRH73]. In  combination  with  a  delay line and with  feedback of the 
transposed  sound  to  the  input, a kind of spiral  can  be  produced  where  the  sound is 
always transposed higher or lower at each iteration. 

A  subtle effect, similar to a  phasing,  can  be  achieved  with a set of harmonizers 
[Dut88]  coupled in parallel  and mixed to  the  input  sound, as shown in Fig. 7.11. The 
transposition  ratio of the nth harmonizer  should  be  set to 1 + nr  where r is of the 
order of 1/3000. If fo is the  pitch of the  sound,  the  outputs of the nth harmonizer 
will provide a pitch of fo + nA f, where A f = r fo. If A f is small  enough (a few 
1/100 Hz) the interferences  between  the  various  outputs of the  harmonizers will 
be clearly audible.  When  applied, for example, to a  low-pitched tuba  sound, one 
harmonic  after  the  other will be  emphasized.  Flanging  and  chorus effects can also 
be achieved by setting  the  pitch  control for a very slight amount of transposition 
(say,  1/10  to  1/5 of a  semitone)  and  adding  regeneration  [And95, p. 531. It  appears 
here that  tuning  an  audio effect  is very  dependent  on  the  sound  being  processed. It 
frequently  happens that  the  tuning  has  to  be  adjusted for each new sound or each 
new pitch. 

r=l.O003 

+* r=l.O009 +P -*B-t------ri__l r=1.0012 

Figure 7.11 A set of harmonizers that  produce a phasing-like effect. It is particularly 
effective for low-pitched (typ. 100 Hz) signals of long duration. 

Hans  Peter Haller  describes in [Ha195, pp. 51-55] some  applications of the  har- 
monizer for the  production of musical  works  from  Luigi  Nono and Andrk  Richard. 

7.4.1 Historical  Methods - Harmonizer 

The  tape-based machines  described  in 7.3.1 were also  able to modify the  pitch of 
sounds while  keeping their  initial  duration.  The Phonogdne universe1 was bulky 
and could not find a  broad diffusion but in the middle of the 1970s, a  digital  device 
appeared  that was called a Harmonizer. It implemented in the  digital  domain a 
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process  similar to  that of the Phonogdne universeb From there on the effect became 
very popular. Since Harmonizer is a trade  mark of the Eventide  company, other 
companies offer similar devices under  names  such as pitch  transposer or pitch  shifter. 

The  main  limitation of the use of the harmonizer is the characteristic  quality 
that  it gives to  the processed sounds. Moles states  that  the operating  range of 
the Phonogbne universel, used as a  pitch  regulator, was a t  least -4 to +3 semi- 
tones [Mo160, p. 741. Geslin estimates that  the machines available in  the  late six- 
ties  found  application in musique concr6te also at  much larger  transposition  ratios 
[GesOO]. 

The  digital  implementations in the form of the harmonizer  might allow for a 
better  quality  but  there  are  still severe limitations. For transpositions in the  order 
of a  semitone,  almost  no  objectionable  alteration of the sounds  can  be  heard. As the 
transposition  ratio grows larger,  in the practical  range of plus  or  minus 2 octaves, 
the  timbre of the  output sound obtains a character that is specific to  the harmonizer. 

This modification  can  be  heard both in the frequency  domain and in the time 
domain  and is due  to  the modulation of the signal by the chopping window. The 
spectrum of the  input signal is indeed convolved with that of the window. The 
time-domain  modulation  can  be  characterized by its  rate  and by the  spectrum of 
the window, which is dependent on its  shape  and  its size. The longer the window, 
the lower the  rate  and hence the narrower the  spectrum of the window and  the less 
disturbing  the  modulation.  The effect of a trapezoidal window will be  stronger than 
that of a smoother  one,  such  as  the  raised cosine window. 

On the  other  hand, a larger window tends  to deliver,  through the overlap-add 
process,  audible iterated copies of the  input signals. For the  transposition of per- 
cussive sounds, it is necessary to reduce the size of the window. Furthermore, to 
accurately  replay  transients  and  not  smooth  them  out,  the window should have 
sharp transit.ions. We see that a trade-off between audible  spectral  modulation  and 
iterated  transients  has  to  be found for each type of sound. Musicians using the 
computer as a musical instrument  might  exploit  these  peculiarities in the algorithm 
to give their  sound a unique flavor. 

7.4.2 Pitch Shifting by Time Stretching and Resampling 

The variable  speed  replay discussed in section 7.2 leads to a compression or ex- 
pansion of the  duration of a  sound and  to a pitch  shift.  This is accomplished by 
resampling in the  time domain.  Figure 7.1 illustrates  the discrete-time signals and 
the corresponding spectra.  The  spectrum of the sound is compressed or  expanded 
over the frequency  axis. The  harmonic  relations 

of the  sound  are not  altered  but  are scaled according to 
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The  amplitudes of the  harmonics  remain  the  same a;'" = In  order to rescale the 
pitch  shifted  sound  towards the original  length  a further  time  stretching  algorithm 
can  be  applied to  the sound. The result of pitch  shifting followed  by a  time  stretching 
algorithm is illustrated  in  Fig. 7.12. 

Pitch  scaling (GI), time  domain  signals 

0 2000 4000 6000 8000 
(a=0.5) 

-0.5 1 1 
0 2000 4000 6000 8000 

-0.5 1 1 
0 2000 4000 6000 8000 

n +  

O 7  

Pitch  scaling (a=l), spectra 

-20 

2 -40 
-60 

-80 

- 

0 1000 2000 3000 4000 5000 

-20 O+ - 
-40 

-60 

-an "" 
0 1000 2000 3000 4000 5000 

(a=2) 

-20t h h i 
h 2 -40 
-60 

-an 
I- 

O 1000 2000 3000 4000 5000 
f in Hz + 

Figure 7.12 Pitch  shifting followed by time  correction. 

The order of pitch  shifting and  time scaling  can  be  changed, as shown in Fig. 7.13. 
First, a time scaling  algorithm  expands  the  input  signal from length NI to length NZ. 
Then a resampling operation  with  the inverse ratio Nl/N2 performs  pitch  shifting 
and a reduction of length NZ back to length N I .  

x(n,d l ime Scaling I 4 Resampling y(n) 
(ratio NZ/N1) (ratio  NlJN2) 

Figure 7.13 Pitch  shifting by time scaling and resampling. 

The following M-file 7.3 demonstrates  the  implementation of the SOLA time 
scaling and  pitch scaling  algorithm: 

M-file 7.3 (PitchSca1eSOLA.m) 
% PitchScaleS0LA.m 
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% Parameters: 
% analysis  hop  size Sa = 256  (default  parmater) 
% block  length  N = 2048 (default  parameter) 
% pitch  scaling  factor  0.25 <= alpha <= 2 
% overlap  interval L = 256*alpha/2 
clear  al1,close  all 
[signal,Fs] = wavread(’x1.wav’); 
DAFx-in = signal’; 

Sa=256;N=2048; % time  scaling  parameters 
M=ceil(length(DAFx-in)/Sa); 

ni=512;n2=256; % pitch  scaling  ni/n2 
Ss=round(Sa*ni/n2) ; 
L=256*  (ni/n2) /2; 

DAFx-in(M*Sa+N)=O; 
Overlap=DAFx-in(1:N); 

% ****** Time  Stretching  with  alpha=n2/ni****** 
. . . . . . .  include  main  loop  TimeScaleS0LA.m 

% ****** End  Time  Stretching ****** 

% ****** Pitch  shifting  with  alpha=ni/n2 ****** 
lfen=2048;lfen2=lfen/2; 
wI=hanningz(lfen);w2=~1; 

% for  linear  interpolation  of  a  grain  of  length  lx  to  length  lfen 
Ix=f  loor  (If  en*ni/n2) ; 
x=i+(o:lfen-i)’*lx/lfen; 
ix=floor(x);ixi=ix+i; 
dx=x-ix;dxi=i-dx; 
% 
lmax=max  (If en, 1x) ; 
Overlap=Overlap’; 
DAFx-out=zeros(length(DAFx-in) ,l) ; 

pin=O;pout=O; 
pend=length(Overlap)-lmax; 

while  pincpend 
Pitch  shifting  by  resampling  a  grain of length  lx  to  length  lfen 

grain2=(0verlap(pin+ix).*dxi+Overlap(pin+ixi).*dx).* wi; 
DAFx~out(pout+i:pout+lfen)=DAFx_out(pout+l:pout+lfen)+grain2; 
pin=pin+nl;pout=pout+n2; 

end ; 
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7.4.3 Pitch Shifting by Delay Line Modulation 

Pitch  shifting  or  pitch  transposing based on block processing is described in several 
publications.  In [BB891 a pitch  shifter  based  on an overlap add scheme with two 
time-varying  delay lines is proposed (see Fig.  7.14).  A cross-fade block combines 
the  outputs of the two delay lines according to a cross-fade function. The signal is 
divided  in  small  chunks. The chunks are  read  faster  to produce  higher  pitches  or 
slower to produce lower pitches. In  order to produce a continuous  signal output, 
two  chunks are  read simultaneously  with a time delay  equal to one half of the 
block length. A cross-fade is made  from  one  chunk to  the  other  at each  end of a 
chunk  [WG94,  pp. 257-2591. 

Figure 7.14 Pitch shifting. 

The length of the delay lines is modulated by a sawtooth-type  function. A similar 
approach is proposed in [Dat87] where the  same configuration is used for time 
compression and  expansion. A periodicity  detection  algorithm is used for calculating 
the cross-fade  function in order to avoid cancellations  during the cross-fades. 

An enhanced  method for transposing  audio  signals is presented in [DZ99]. The 
method is based  on an overlap-add scheme and does  not need any  fundamental 
frequency  estimation. The difference from other  applications is the way the blocks 
are  modulated  and combined to  the  output signal. The enhanced  transposing  system 
is based  on an overlap-add scheme with  three parallel  time-varying delay lines. 

Figure 7.15 illustrates how the  input signal is divided into blocks, which are 
resampled (phase  modulation  with a ramp  type  signal),  amplitude  modulated  and 
summed yielding an  output signal of the same  length as the  input signal.  Adjacent 
blocks overlap  with 2/3 of the block length. 

The modulation  signals  form  a  system of three 120"-phase shifted  raised cosine 
functions. The  sum of these  functions is constant for all  arguments.  Figure 7.16 
also shows the topology of the pitch  transposer. Since a  complete cosine is used for 
modulation,  the perceived  sound  quality of the processed  signal  is much better  than 
in simple twofold overlap-add  applications using several windows. The amplitude 
modulation  only  produces  sum  and difference frequencies with  the base frequency of 
the modulation  signal, which can be very low  (6-10 Hz). Harmonics are not  present 
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Figure 7.15 Pitch transposer: block  processing, time shifting and overlap-add. 

in the modulation  signal  a,nd hence cannot  form  sum  or difference frequencies of 
higher  order. The perceived artifacts  are phasing-like effects and  are less annoy- 
ing than local discontinuities of other  applications based on twofold overlap-add 
methods. 

v 
Z-O+frac3 

Figure 7.16 Pitch transposer: block diagram. 

If  we want to change the pitch of a  signal  controlled by another signal or signal 
envelope, we can  also  make use of delay line modulation.  The effect can  be achieved 
by performing  a  phase  modulation of the recorded  signal  according to y(n) = x(n - 
D(n) ) .  The modulating  factor D ( n )  = M + DEPTH. x,,,(n) is  now dependent on 
a  modulating  signal xmOd(n). With  this  approach  the  pitch of the  input signal ~ ( n )  
is changed  according to  the envelope of the  modulating signal (see Fig. 7.17). 
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Modulation Depth 

Figure 7.17 Pitch controlled by envelope of signal zmOd(n). 

7.4.4 Pitch Shifting by PSOLA  and  Formant Preservation 

This  technique is the  dual  operation to resampling  in  time  domain,  but in this 
case  a  resampling of the  short-time  spectral envelope is performed.  The  short-term 
spectral envelope  describes  a  frequency  curve  going  through  all  amplitudes of the 
harmonics.  This is demonstrated in Fig. 7.18, where the  spectral envelope is shown. 
The harmonics  are  again scaled  according to f:"" = p . &'ld, but  the  amplitudes 
of the harmonics U?" = env(f,""") # .:ld are now determined by sampling  the 
spectral envelope.  Some  deviations of the  amplitudes from the precise envelope  can 
be noticed.  This  depends  on  the chosen pitch  shifting  algorithm. 

The PSOLA  algorithm  can  be conveniently  used for pitch  shifting a voice sound 
maintaining  the  formant  position,  and  thus  the vowel identity [ML95, BJ951. The 
basic  idea  consists of time  stretching  the  position of pitch  marks, while the segment 
waveform is not  changed.  The  underlining  signal model of speech production is a 
pulse train  filtered by a time  varying filter corresponding to  the vocal tract.  The 
input  segment  corresponds  to  the filter impulse  response and  determines  the for- 
mant  position.  Thus,  it  should  not  be modified.  Conversely, the  pitch  mark  distance 
determines  the speech period,  and  thus should  be  modified accordingly. The  aim of 
PSOLA  analysis is to  extract  the local filter impulse  response. As can  be seen in Fig. 
7.19, the  spectrum of a segment  extracted using a Hanning  window  with a length 
of two  periods  approximates the local spectral envelope.  Longer  windows tend  to 
resolve the fine line structure of the  spectrum, while shorter windows tend  to  blur 
the  formant  structure of the  spectrum.  Thus if  we do  not  stretch  the  segment,  the 
formant  position is maintained.  The  operation of overlapping  the  segments at the 
new pitch  mark  position will resample  the  spectral envelope at  the desired  pitch 
frequency. When we desire  a  pitch  shift by a factor p, defined as  the  ratio of the 
local synthesis  pitch  frequency  to the original  one p = & ( i ) / f o ( t ) ,  the new pitch 
period will be given by P ( i )  = P(t ) /P ,  where in this case i = t because time is not 
stretched. 

The  analysis  algorithm is the same  as  that previously  seen for PSOLA  time 
stretching in section 7.3.3 (see Fig. 7.9).  The  synthesis  algorithm is modified (see 
Fig. 7.20) according to  the following steps: 

for every  synthesis  pitch  mark fk 

1. Choice of the corresponding  analysis  segment i (identified by the  time 
mark t i )  minimizing the  time  distance (ti - &l.  
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Figure 7.18 Pitch shifting by the PSOLA method:  frequency  resampling the spectral 
envelope. 

2. Overlap  and  add  the selected segment.  Notice that some input  segments 
will be  repeated for p > 1 (higher  pitch) or discarded  when p < 1 (lower 
pitch). 

3. Determination of the  time  instant l k + l  where the  next  synthesis  segment 
will be  centered, in order  to preserve the local pitch, by the relation 

&+l = ik + P&)  = ik + P(tZ)/O. 

0 for large  pitch  shifts,  it is advisable to compensate the  amplitude  variation, 
introduced by the  greater or lesser overlapping of segments, by multiplying 
the  output signal by l /p .  

It is possible to combine time  stretching by a factor a! with  pitch  shifting.  In  this 
case for every  synthesis  pitch  mark & the first step of the  synthesis  algorit,hm 
above  presented will be  modified as choice of the corresponding  analysis  segment i 
(identified by the  time  mark ti) minimizing the  time  distance Iati - fkl. 

The PSOLA algorithm is very effective for speech  processing and is computation- 
ally very efficient, once the sound  has  been  analyzed, so it  is widely used for speech 
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Figure 7.19 Spectrum of segments extracted from a vowel /a/ by using a  Hanning window 
respectively long 4 (dotted  line), 2 (solid line), and 1 (dashed line)  pitch  periods. It can 
be noticed that  the solid line approximates  the local spectral envelope. 

synthesis  from a database of diphones, for prosody  modification, for automatic  an- 
swering  machines etc. For wide variation of the pitch it  presents some artifacts.  On 
the  other  hand  the necessity of a preliminary  analysis stage for obtaining  a  pitch 
contour  makes the real-time  implementation of an  input signal  modification diffi- 
cult. Also the  estimation of glottal pulses  can be difficult. A  solution is to  place 
the pitch  marks a t  a pitch  synchronous rate, regardless of the  true position of the 
glottal pulses. The resulting  synthesis  quality will be  only  slightly  decreased (see 
for example  Fig. 7.21). 

A further effect that can  be  obtained by a  variation of PSOLA is linear scaling 
of formant  frequencies (see Fig. 7.22). In fact, we saw that a time scale of a signal 
corresponds to  an inverse  frequency scale. Thus when we perform  time  scaling of the 
impulse  response of a  filter, we inversely scale the frequency of formants.  In  PSOLA 
terms,  this  corresponds  to  time scaling the selected input segments before overlap 
and  add  in  the  synthesis  step,  without  any change  in the  pitch  marks  calculation. To 
increase the frequencies of formants by a  factor y, every segment  should  be  shortened 
by a  factor l/y by resampling. For example, the average  formant frequencies of 
female adults  are  about 16 percent  higher than those of male adults,  and children's 



7.4 Patch Shifting 225 

Figure 7.20 PSOLA: synthesis  algorithm for pitch  shifting. 

formants  are  about 20 percent  higher  than female formants. Notice that  care should 
be  taken when the frequencies increase in order to avoid foldover. Ideally band- 
limited  resampling  should  be used. 

The following  M-file 7.4 shows the  implementation of the basic PSOLA synthesis 
algorithm. It is based  on the PSOLA time  stretching  algorithm shown in sect,ion 
7.3.3. 

M-file 7.4 (psolaf .m) 
function out=psolaF(in,m,alpha,beta,gamma) 
% . . .  
% gamma newFormantFreq/oldFormantFreq 
% 
% the internal  loop  as 
tk = P(1)+1; %output pitch  mark 
while round(tk)<Lout 

. . .  

[minimum i]=min(abs(alpha*m-tk) ) ;  % find  analysis  segment 
pit=P(i) ;pitStr=floor(pit/gamma) ; 
gr=in(m(i)-pit:m(i)+pit) .*hanning(2*pit+l); 
gr=interpl(-pit:l:pit,gr,-pitStr*gamma:gamma:pit);% stretch  segm. 
iniGr=round(tk)-pitStr;endGr=round(tk)+pitStr; 
if endGr>Lout,  break; end 
out(iniGr:endGr)=out(iniGr:endGr)+gr; % overlap  new segment 
tk=tk+pit/beta; 
end % end of while 
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Figure 7.21 Comparison of a  segment extracted in the correspondence  with glottal pulse 
with one extracted between  pitch pulses. 

7.5 Time Shuffling and  Granulation 

7.5.1 Time Shuffling 

Introduction 

Musique  concrbte has  made intensive use of splicing of tiny  elements of magnetic 
tape.  When  mastered well, this assembly of hundreds of fragments of several tens 
of milliseconds  allows an  amalgamation of heterogeneous  sound  materials, at  the 
limit of the  time discrimination  threshold.  This  manual  operation called micro- 
splicing was very  time-consuming.  Bernard  Parmegiani  suggested in 1980 at the 
Groupe  de Recherches  Musicales (GRM)  that  this could  be  done by computers. 
An initial version of the software was produced in the  early eighties. After  being 
rewritten] improved and  ported several times,  it was eventually  made available on 
personal  computers in the form of the  program called brassage in French that will 
be  translated  here  as  time shuffling [Ges98, GesOO]. 
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Figure 7.22 PSOLA: variation of PSOLA as linear  formant  scaling. 

Signal Processing 

Let  us  describe  here an elementary  algorithm for time shuffling that is based  on the 
superposition of two  time  segments that  are picked randomly from the  input signal 
(see Fig. 7.23): 

1. Let x(n)  and y(n) be the  input  and  output signals. 

2. Specify the  duration d of the  fragments  and  the  duration D 2 d of the  time 
period [n - D, n] from which the  time segments will be  selected. 

3. Store  the incoming  signal x(.) in a delay line of length D .  

4. Choose at  random  the delay  time T I  with d 5 TI 5 D. 

5 .  Select the signal  segment x 1 d  of duration d beginning at x(n - 7 1 ) .  

6. Follow the  same  procedure  (steps 4 and 5 )  for a second time segment x2d. 

7. Read x 1 d  and x 2 d  and  apply  an  amplitude envelope W to each of them in 
order to smooth  out  the discontinuities at  the borders. 
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Figure 7.23 Time shuffling: 2 input segments,  selected at random from the  past  input 
signal, are overlap-added to  produce  an  output  time segment. When one of the  input 
segment is finished,  a new one is selected. 

8. When the reading of xld or x 2 d  is finished, iterate  the  procedure for each of 
them. 

9.  Compute  the  output  as  the overlap add of the sequence of x1d and x 2 d  with 
a time shift of d/2 .  

Musical Applications  and Control 

The version described  above  introduces local disturbances  into  the signal’s actual 
timing, while preserving the overall continuity of its  time sequence.  Many  further 
refinements of this  algorithm  are possible. A random  amplitude coefficient could be 
applied to  each of the  input segments in order to modify the density of the  sound 
material.  The  shape of the envelope could be modified in  order to  retain more of 
the  input  time  structure  or, on the  contrary, to smooth  it  out  and blend different 
events  with  each other.  The replay  speed of the segments could be varied in order 
to  produce  transposition or  glissandi. 

At a time when  computer  tools were not  yet  available,  Bernard  Parmegiani 
magnificently illustrated  the technique of tape-based micro-splicing in works such 
as “Violostries” (1964) or  “Dedans-Dehors” (1977) Im-Par64, m-Par771. The ele- 
mentary  algorithm  presented above  can be  operated in real  time but  other off-line 
versions have also  been  implemented which offered many  more  features.  They have 
the  ability to merge  fragments of any size,  sampled from a  random field, also of 
any dimension:  from  a few samples to several  minutes.  Thus apart from generating 
fusion phenomena, for which the  algorithm was conceived, the software was able to 
produce cross-fading of textured  sound  and  other  sustained  chords, infinitely small 
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variations in signal  stability,  interpolation of fragments  with silence or  sounds of 
other  types [Ges98]. Jean-Claude  Risset used this effect to  perform sonic develop- 
ments  from  short  sounds, such as stones  and  metal chimes [m-INA3, Sud-I, 3’44” to 
4’38”];[Ris98, GesOO] and  to  produce a “stuttering”  piano,  further processed by ring 
modulation [m-INA3, Sud-I,  4’30”,  5’45”J.  Starting from  “found  objects”  such as 
bird  songs,  he  rearranged them in a  compositional  manner to  obtain first a pointil- 
listic  rendering,  then  a  stretto-like  episode [m-INA3, Sud-I, 1’42” to 2’49”l. 

7.5.2 Granulation 

Introduction 

In  the previous  sections about  pitch shifting and  time  stretching we have proposed 
algorithms that have limitations  as  far as  their  initial  purpose is concerned. Beyond 
a limited  range of modification of pitch or of time  duration, severe artifacts  appear. 
The  time shuffling method considers these  artifacts from an  artistic point of view and 
takes  them for granted.  Out of the possibilities offered by the methods  and by their 
limitations, it aims to create new sound  structures.  Whereas  the  time shuffling effect 
exploits the possibilities of a given software arrangement, which could be  considered 
here as a “musical instrument”,  the idea of building  a complex sound out of a  large 
set of elementary  sounds could find a  larger  framework. 

The physicist Dennis Gabor proposed in 1947 the  idea of the  quantum of sound, 
an indivisible unit of information from the psychoacoustical  point of view. According 
to his theory,  a  granular  representation could describe  any  sound. Granular synthesis 
was first  suggested as a  computer music technique for producing complex sounds by 
Iannis  Xenakis (1971) and  Curtis  Roads (1978). This technique  builds up acoustic 
events  from  thousands of sound  grains. A sound  grain  lasts a brief moment  (typically 
1 to 100 ms), which approaches  the minimum perceivable event time for duration, 
frequency, and  amplitude discrimination  [Roa96,  Roa98, TruOOa]. 

The granulation effect is an application of granular  synthesis where the material 
out of which the  grains  are formed is an  input signal. Barry  Truax  has developed this 
technique  [Tru88, Tru941 by a first  real-time  implementation  and using it extensively 
in his compositional pieces. 

Signal Processing 

Let x ( n )  and y(n) be the  input  and  output signals. The grains g k ( i )  are  extracted 
from the  input signal  with the help of a window function z u k ( i )  of length L k  by 

g k ( i )  = x(i  + i k ) w k  (i) (7.6) 

with i = 0 , .  . . , L k - 1 .  The  time  instant a k  indicates the point where the segment 
is extracted;  the  length L k  determines  the  amount of signal extracted;  the window 
waveform w k ( i )  should  ensure fade-in and fade-out at  the border of the grain  and 
affects the frequency  content of the  grain. Long grains  tend to maintain  the  timbre 



230 7 Time-segment Processing 

identity of the  portion of the  input  signal, while short ones  acquire a pulse-like 
quality.  When the  grain is long,  the window has a flat top  and  it used  only to 
fade-in  and  fade-out  the  borders of the  segment. 

The following M-files 7.5 and 7.6  show the  extraction of short  and long grains: 

M-file 7.5 (grainSh.m) 
function y = grainSh(x,init,L) 
% extract a short  grain 
% x input  signal 
% init  first  sample 
% L grain  length  (in  samples) 
y=x(init:init+L-l).*hanning(L)’; 

M-file 7.6 (grainLn.m) 
function y = grainLn(x,iniz,L,Lw) 
% extract a long  grain 
% x input  signal 
% init  first  sample 
% L grain  length  (in  samples) 
% LW  length  fade-in and fade-out  (in  samples) 
if  length(x) <= iniz+L , error(’length(x)  too  short.’),  end 
y = x(iniz:  iniz+L-l) ; % extract  segment 
W = hanning(2*Lw+l)’; 

y(L-Lw+l:L) = y(L-Lw+l:L)  .*w(Lw+2:2*Lw+l);  fade-out 
y(1:Lw) = y(1:Lw)  .*w(i:Lw); % fade-in 

The synthesis  formula is given by 

where ak is an  eventual  amplitude coefficient and nk is the  time  instant where the 
grain is placed in the  output  signal. Notice that  the grains  can  overlap. To overlap 
a grain gk (grain) at instant n k  = (iniOLA) with  amplitude ak, the following 
MATLAB instructions  can  be used 

endOLA = iniOLA+length(grain)-1; 
y(ini0LA:endOLA) = y(ini0LA:endOLA) + ak * grain; 

An example of granulation  with  random values of the  parameters  grain  initial 
point  and  length,  output  point  and  amplitude is shown in Fig. 7.24. The M-file 7.7 
shows the  implementation of the  granulation  algorithm. 

M-file 7.7 (granu1ation.m) 
% granulation. m 
f=fopen(’a-male.mI1’); 
x=f  read (f , int  16 ) ; 
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Ly=length(x) ; y=zeros (1, Ly) ; 
% Constants 
nEv=4;  maxL=200;  minL=50;  Lw=20; 

L = round((maxL-minL)*rand(l,nEv))+minL; 
initIn = ceil((Ly-maxL)*rand(l,nEv)); 
initout= ceil((Ly-maxL)*rand(l,nEv)); 
a = rand(1,nEv); 
endOut=initOut+L-1; 
Synthesis 

for  k=l:nEv, 
grain=grainLn(x,initIn(k) ,L(k) ,LW) ; 

Initializations 

%output signal 

%grain  length 
%init grain 
%init  out grain 
%ampl. grain 

y(initOut(k)  :endOut(k))=y(initOut(k)  :endOut(k))+a(k)*grain; 
end 

Figure 7.24 Example of granulation. 

This technique is quite general and  can  be employed to  obtain very different 
sound effects. The result is greatly influenced by the criterion used to  choose the 
instants nk. If these  points  are  regularly  spaced in time  and  the  grain waveform 
does  not  change too much, the technique  can be interpreted  as a filtered pulse train, 
i.e. it produces a periodic  sound whose spectral envelope is determined by the  grain 
waveform interpreted  as  impulse  response. An example is the PSOLA  algorithm 
shown in the previous  sections 7.3.3 and 7.4.4. When the  distance between two 
subsequent  grains is much greater  than Lk, the sound will result in grains  separated 
by interruptions or silences. with  a specific character.  When  many  short  grains 
overlap (i.e. the distance is less than Lk) ,  a  sound  texture effect  is obtained. 
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The  strategies for choosing the synthesis  instants  can  be  grouped  into two rather 
simplified categories:  synchronous,  mostly  based  on  deterministic  functions;  and 
asynchronous,  based  on  stochastic  functions.  Grains  can  be  organized in streams. 
There  are  two  main  control variables: the delay between grains for a single stream, 
and  the degree of synchronicity  among  grains  in different streams. Given that  the 
local spectrum affects the global  sound structure,  it is possible to use input sounds 
that can  be  parsed in grains  without  altering  the complex characteristics of the 
original sound,  as  water  drops for stream-like  sounds. 

It is further possible to modify the grain waveform with a time  transformation, 
such as modulation for frequency  shifting  or time  stretching for frequency scal- 
ing  [DP91]. The  main  parameters of granulation  are:  grain  duration, selection order 
from input  sound,  amplitude of grains,  temporal  pattern in synthesis,  grain  density 
(i.e.  grains  per  second).  Density is a primary  parameter,  as  it  determines  the overall 
texture,  whether  sparse or  continuous.  Notice that  it is possible to  extract  grains 
from different sound files to  create hybrid textures, e.g. evolving from one texture 
to  another. 

Musical Applications 

A demonstration of the effect is provided  in [m-Tod99]. Further examples  can be 
found  in [m-Wis94c]. Barry  Truax  has used the technique of granulation to process 
sampled  sound as compositional  material. In  “The Wings of Nike” (1987) he has 
processed only short “phonemic”  fragments but longer sequences of environmental 
sound  have  been used in pieces such as “Pacific”  (1990). In each of these works, the 
granulated  material is time  stretched by various amounts  and  thereby produces  a 
number of perceptual changes that seem to originate from within the sound [TruOOb, 
m-Tru951. 

In “Le Tombeau  de  Maurice”,  Ludger  Brummer uses the granulation  technique 
in  order to  perform timbral,  rhythmic  as well as harmonic  modifications  [m-Bru97]. 
A transition  from  the original  sound color of an orchestral  sample  towards noise 
pulses is achieved by reducing progressively the size of the grains. At an intermediate 
grain  size, the pitch of the original  sound is still  recognizable  although the time 
structure  has  already  disappeared [m-Bru97,  3’39”-4’12”]. A melody  can be played 
by selecting  grains of different pitches and by varying the  tempo  at which the 
grains  are replayed  [m-Bru97,  8’38”-9’10”]. New melodies can even appear  out of a 
two-stage granulation scheme. A  first series of grains is defined out of the original 
sample  whereas the second is a  granulation of the first  one.  Because of the  stream 
segregation  performed by the hearing  system, the rhythmic as well as  the  harmonic 
grouping of the grains is constantly evolving [m-Bru97,  9’30”-10’33”l. 

7.6 Conclusion 

The effects described in this  chapter  are based  on the division of the  input sound 
into  short  segments.  These  segments  are processed by simple  methods  such as time 
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scaling by resampling or  amplitude  multiplication by an envelope. The segment 
waveform is not  changed, thus  maintaining  the  characteristic of the source  signal. 

Two  categories of effects can  be  obtained,  depending  on  the  strategy used to 
place the segments in time  during  the synthesis. If the  order  and  organization of 
extracted segments are carefully maintained,  time  stretching  or  pitch  shifting  can  be 
performed. Basic methods, SOLA and  PSOLA,  are presented and  their characteris- 
tics  are discussed.  These effects aim  to produce  sounds that  are perceived as similar 
to  the original, but  are modified in  duration or  pitch. As often  happens  with  digital 
audio effects, the  artifacts produced by these  methods  can be used as a method for 
deformation of the  input  sound, whilst maintaining  its main  characteristics.  The 
low computational  complexity of time-segment processing allows efficient real-time 
applications.  Nevertheless,  these  algorithms  produce artifacts  that limit  their  scope 
of application. More advanced  methods for time  stretching  and  pitch  shifting will 
be  introduced in Chapters 8-11. 

The second category  changes  the  organization  and  the  order of the segments to  
a great  extent,  and  thus leads to time shuffling and  granulation.  In  this  case,  the 
input  sound  can  be much less recognizable. The  central element becomes the  grain 
with its  amplitude envelope and  time organization.  These  techniques can produce 
results from sparse  grains to dense textures,  with a very loose relationship  with 
the original  sound. It should  be  noticed that  the wide choice of strategies for grain 
organization implies a sound  composition attitude from the user. Thus  granulation 
became a sort of metaphor for music composition starting from the microlevel. 
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Chapter 8 

Time-frequency  Processing 

D. Arfib, F. Keiler, U. Zolzer 

8.1 Introduction 

This  chapter describes the use of time-frequency  representations of signals  in  or- 
der to produce  transformations of sounds. A very interesting  (and  intuitive) way of 
modifying a sound is to make a two-dimensional representation of it, modify this 
representation in some or ot,her way and  reconstruct a new signal  from this repre- 
sentation (see Fig. 8.1). Consequently a digital  audio effect based on time-frequency 
representations  requires  three  steps: an analysis  (sound to  representation), a trans- 
formation (of the  representa,tion)  and a resynthesis (getting back to a sound). 

Short-time 
Spectra 

n l %  n 
Time 

Figure 8.1 Digital  audio  effects  based on analysis,  transformation and synthesis  (resyn- 
thesis). 

The direct scheme of spectral analysis,  transformation  and  resynthesis will be 
discussed in  section 8.2. We will explore the modification of the  magnitude IX(k)l  
and  phase cp(k) of these  representations before resynthesis. The analysis/synthesis 
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scheme is termed  the phase vocoder (see Fig. 8.2).  The  input  signal x(.) is multiplied 
by a sliding  window of finite length N ,  which yields successive windowed  signal 
segments.  These  are  transformed to  the  spectral  domain by FFTs. In this way 
a time-varying  spectrum X ( n ,  IC) = IX(n ,  IC)lejp(n,k) with k = 0,1, .  . . , N - 1 is 
computed for each  windowed  segment. The  short-time  spectra  can  be modified or 
transformed for a digital  audio effect. Then each  modified spectrum is applied  to  an 
IFFT and windowed in  the  time  domain.  The windowed output  segments  are  then 
overlapped  and  added yielding the  output signal. It is also possible to complete  this 
time-frequency  processing by spectral processing,  which is dealt  with in the next 
two chapters. 

Time-domain - * 
7 4 

€ 
me 
K -  F 
2 &  

Windowin 

g $  
(0 ‘E 

0 
LL 

Magn i tude  and Phase 
+ 

- T - ~ ” c , u c ! y 4  

IFFT + 
Overlap-add 

Time-domain 

Figure 8.2 Time-frequency  processing  based  on the phase  vocoder:  analysis,  transforma- 
tion and synthesis. 

8.2 Phase Vocoder Basics 

The  concepts of short-time Fourier  analysis  and  synthesis have  been widely de- 
scribed in the  literature [Pori’6, Cro80, CR831.  We  will  briefly summarize the basics 
and define our  notation of terms for the  application  to  digital  audio effects. 
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Figure 8.3 Sliding  analysis  window and short-time  Fourier  transform. 

The  short-time Fourier transform (STFT) of the signal x(.) is given by 
02 

X ( n , k )  = c x(m)h(n -m)W?k, k = 0 , 1 , . ' .  , N  - 1 
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X ( n ,  IC) is  a  complex  number  and  represents the  magnitude ( X ( n ,  k ) (  and  phase 
p(n, k )  of a time-varying  spectrum  with  the  frequency  bin  (index) 0 5 k 5 N - 1 
and  time  index n. Note that  the  summation  index is m in (8.1). At each time 
index n the signal .(m) is weighted by a finite length window h(n - m). Thus  the 
computation of (8.1) can  be  performed by a  finite  sum  over m with  an FFT of length 
N .  Figure 8.3 shows the  input  signal .(m) and  the sliding window h(n - m) for 
three  time indices of n. The middle plot shows the finite length windowed segments 
.(m) .h(n-m). These  segments  are  transformed by the FFT yielding the  short-time 
spectra X ( n ,  k )  given by (8.1). The lower two  rows in Fig. 8.3 show the  magnitude 
and  phase  spectra of the corresponding  time  segments. 

8.2.1 Filter Bank Summation Model 

The  computation of the time-varying  spectrum of an  input  signal  can also be  inter- 
preted  as a parallel  bank of N bandpass  filters,  as  shown in Fig. 8.4, with  impulse 
responses  and  Fourier  transforms given by 

H k  (e'' ) 

Each  bandpass  signal yk(n) is obtained by filtering the  input  signal x(.) with the 
corresponding  bandpass filter hk(n). Since the  bandpass  filters  are complex-valued, 
we get  complex-valued output signals yk(n), which  will be  denoted by 

yk(n) = X ( n ,  I C )  = ( ~ ( n ,  I C ) [  . ej+(nlk). (8.6) 

These  filtering  operations  are  performed by the convolutions 
W CO 

yk(n) = c z(m)hk(n - m )  = c z(m)h(n - m)W,(n-m)k (8.7) 

From (8.6) and (8.8) it is important  to  notice  that 

X(n, k )  = winkx(n, I C )  = w & ~ ' I x ( ~ ,  k ) [ e j ~ ( ~ > ~ )  (8.9) 

@(n, IC) = -n + cp(n,k). (8.10) 

Based  on  equations (8.7) and (8.8) two different implementations  are possible, as 
shown in Fig. 8.4. The  first  implementation is the so-called complex  baseband im- 
plementation  according to  (8.8). The  baseband signals X ( n ,  IC) (short-time Fourier 
transform)  are  computed by modulation of z(n) with WGk and lowpass filtering 
for each  channel IC. The  modulation of X ( n ,  k )  by W i n k  yields the  bandpass signal 
X ( n ,  IC). The second  implementation is the so-called complex bandpass  implementa- 
tion, which  filters the  input  signal  with hk(n) given by (8.4)) as shown in the lower 

27rk 
N 
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Figure 8.4 Filter bank  description of the short-time  Fourier  transform.  Two  implementa- 
tions of the  kth channel are shown in the lower  left part.  The discrete-time and discrete- 
frequency  plane  is  shown  in the right part.  The marked  bandpass  signals yk(n) are the 
horizontal  samples X ( n ,  k ) .  The different  frequency  bands Y k  corresponding to each  band- 
pass  signal are shown  on top of the filter  bank. The frequency bands for the baseband 
signal X ( n ,  k )  and  the bandpass  signal X ( n ,  k )  are shown  in the lower  right part. 

left part of Fig. 8.4. This  implementation leads  directly to  the complex-valued band- 
pass  signals X(n, IC). If the equivalent  baseband  signals X ( n ,  IC) are necessary, they 
can be  computed by multiplication  with WGk. The operations for the  modulation 
by WGk yielding X ( n ,  IC) and back  modulation by WNnk (lower left part of Fig. 8.4) 
are only shown to point out  the equivalence of both  implementations. 

The  output sequence ?/(*a) is the sum of the bandpass  signals  according to 

N - l  N - l  N- l  

y(n) = c yk(n) = 1 X ( n , k )  = c x(n,IC)WNnk. (8.11) 
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bands shown in the  upper  part of Fig. 8.4. The  property X(n,  k )  = X*(n, N - k )  
together  with  the  channel  stacking  can  be used for the formulation of real-valued 
bandpass  signals  (real-valued  kth  channel) 

X(n, N - k )  = X(n,  k )  + X*(n ,  C) (8.12) 

(8.13) + e - M n > k )  1 
. cos (8.14) 
. . , N/2 - 1. 

highpass channel. 

Besides  a dc  and a highpass  channel we have N/2 - 1 cosine signals with fixed 
frequencies RI, and  time-varying  amplitude  and  phase.  This  means  that we can  add 
real-valued output  signals &(n) to yield the  output  signal 

N / 2  

Y(n) = x G k ( n ) .  (8.18) 
k=O 

This  interpretation offers analysis of a signal by a filter bank, modification of the 
short-time  spectrum X(n,  k )  on  a  sample-by-sample basis and  synthesis by a sum- 
mation of the  bandpass  signals y k ( n ) .  Due to  the  fact  that  the baseband signals are 
bandlimited by the lowpass filter h(n),  a  sampling  rate  reduction  can  be performed 
in each  channel to yield X(sR,  k ) ,  where  only  every Rth sample is taken  and S 

denotes  the new time  index.  This  leads  to  a  short-time  transform X(sR,  k) with a 
hop size of R samples.  Before  the  synthesis  upsampling  and  interpolation  filtering 
has  to be performed  [CR83]. 

8.2.2 Block-by-Block  Analysis/Synthesis Model 

A detailed  description of a phase  vocoder  implementation  using the  FFT can  be 
found in [Por76,  Cro80,  CR83].  The  analysis  and  synthesis  implementations  are 
precisely described in [CR83,  p. 318, Fig. 7.19 and  p. 321, Fig. 7.201. A simplified 
analysis  and  synthesis  implementation, where the window length is less or equal to 
the FFT length, were proposed in [Cro80].  The  analysis  and  synthesis  algorithm  and 
the discrete-time  and  discrete-frequency  plane  are  shown in Fig. 8.5. The  analysis 
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Figure 8.5 Phase  vocoder  using the FFT/IFFT for the short-time  Fourier  transform. The 
analysis  hop  size R, determines the sampling of the two-dimensional  time-frequency  grid. 
Time-frequency  processing allows the reconstruction  with a synthesis hop size R,. 

algorithm [Cro80] is given b y  

a, 

X ( s R , , k )  = c z(m)h(sR, - m)WFk (8.19) 

m=-m 

where the  short-time Fourier transform is sampled every R, samples in time  and S 

denotes  the  time index of the  short-time  transform at  the decimated  sampling rate. 
This means that  the  time index is now n = sR,, where R, denotes  the analysis  hop 
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size. The analysis window is denoted by h(n).  Notice that X ( n ,  k )  and X ( n ,  k )  in the 
FFT implementation  can  also  be  found in the filter  bank  approach. The circular 
shift of the windowed segment before the FFT and  after  the  IFFT is derived in 
[CR83] and provides a zero-phase  analysis and  synthesis  regarding  the center of the 
window. Further  details will be discussed in the  next section.  Spectral  modifications 
in the time-frequency  plane  can now be  done which yields Y(sR,, k ) ,  where R, is 
the synthesis  hop size. The synthesis  algorithm [Cro80] is given by 

03 

Y(n) = c f(n-sRs)y,(n-sRs) (8.23) 
,=--W 

where f(n) denotes the synthesis window. Finite  length  signals y , (n)  are derived 
from  inverse  transforms of short-time  spectra Y (sR,, k ) .  These  short-time segments 
are weighted by the synthesis window f (n)  and  then  added by the overlap-add 
procedure given by (8.23) (see Fig.  8.5). 

8.3 Phase Vocoder Implementations 

This section  describes  several  phase vocoder implementations for digital  audio ef- 
fects. A useful representation is the time-frequency  plane where one  displays the 
values of the  magnitude / X ( n ,  k)l and  phase $(n, k )  of the X ( n ,  k )  signal. If the 
sliding  Fourier transform is used as an analysis  scheme, this  graphical  representa- 
tion is the  combination of the  spectrogram, which displays the  magnitude values 
of this  representation,  and  the  phasogram which displays the  phase. However, pha- 
sograms  are  harder to  read when the hop size is not  small.  Figure 8.6 shows a 
spectrogram  and a phasogram which correspond to  the discrete-time  and  discrete- 
frequency  plane  achieved by a filter  bank (see Fig.  8.4)  or a block-by-block FFT 
analysis (see Fig.  8.5) described in the previous  section. In a  horizontal  direction 
a  line  represents the  output magnitude IX(n ,  k)l and  the  phase $(n, k )  of the  kth 
analysis  bandpass filter over the  time index n. In  the  vertical direction  a line rep- 
resents  the  magnitude IX(n ,  k)I and  phase $(n, k )  for a fixed time index n,  which 
corresponds to a short-time  spectrum over frequency bin k at  the center of the  anal- 
ysis window located at time index n. The spectrogram in Fig. 8.6 with  frequency 
range  up  to 2 kHz shows five horizontal  rays over the  time axis  indicating  the mag- 
nitude of the harmonics of the analyzed  sound  segment. The phasogram shows the 
corresponding  phases for all five horizontal  rays $(n, k ) ,  which rotate according to 
the frequencies of the five harmonics.  With a hop size of one we get a visible tree 
structure. For a larger  hop size we get a sampled  version, where the  tree  structure 
usually  disappears. 

The analysis  and  synthesis  part  can come from the filter bank  summation model 
(see  basics), in which case the resynthesis part consists in summing  sinusoids, whose 
amplitudes  and frequencies are coming from  a  parallel  bank of filters. The analysis 
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Figure 8.6 Magnitude IX(n, k)l (upper plot) and  phase @(n, k )  (lower plot)  display of a 
sliding Fourier  transform  with  a  hop  size R, = 1 or a  filter  bank  analysis  approach. For the 
upper  display the grey  value  (black = 0 and  white = maximum  amplitude)  represents the 
magnitude  range. In the lower  display the phase  values  are  in the range -7r 5 @(TI, k )  5 7r. 
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part  can  also come  from a sliding FFT algorithm, in which case it is possible to 
perform the resynthesis  with  either a summation of sinusoids or  an  IFFT approach. 

8.3.1 Filter Bank Approach 

From a musician's  point of view the idea  behind  this technique is to represent  a 
sound  signal as a sum of sinusoids.  Each of these  sinusoids is modulated in amplitude 
and frequency. These  sinusoids  represent  filtered versions of the original  signal. 
The manipulation of the  amplitudes  and frequencies of these  individual signals will 
produce a digital effect including time  stretching or pitch  shifting. 

l 

Figure 8.7 Filter  bank  implementation. 

One  can  use  a  filter  bank,  as shown in Fig. 8.7, to split the  audio signal into 
several  filtered  versions. The  sum of these  filtered versions reproduces the original 
signal. For a  perfect  reconstruction the sum of the filter  frequency  responses  should 
be unity. In  order to  produce  a  digital  audio effect, one  needs to alter  the  inter- 
mediate  signals,  that  are  analytical signals  consisting of real and  imaginary  parts 
(double lines in  Fig. 8.7). The implementation of each filter can  be  performed by a 
heterodyne  filter, as shown in Fig. 8.8. 

Analysis 

Synthess 
Os~~l la lorw~th variable 
rnagnttude and phase 

I I I I 

Figure 8.8 Heterodyne  filter  implementation. 

The implementation of a stage of a heterodyne  filter  consists of a complex- 
valued oscillator  with a fixed frequency R k ,  a  multiplier and  an  FIR filter. The 
multiplication  shifts  the  spectrum of the  sound,  and  the  FIR filter  limits the width 
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of the frequency  shifted spectrum.  This  heterodyne filtering  can  be used to  obtain 
intermediate  analytic  signals, which can  be  put in the form 

The difference from classical bandpass  filtering is that here the  output signal is 
located in the  baseband.  This  representation leads to a slowly varying  phase cp(n, k )  
and  the derivation of the phase is a measure of the frequency  deviation  from the 
center  frequency f l k .  sinusoid x(.) = cos[Rkn + PO] with  frequency &. can  be 
written as x(.) = cos[$(n)]; where $(n) = Rkn + po.  The derivation of $(n) gives 
the frequency f l k  = F. 'The derivation of the phase $(n,IC) at the  output of a 
bandpass filter is termed  the  instantaneous frequency given by 

Oi(n,  k )  = Wi(n, k)T = 27r fi(n, k ) /  f s  (8.28) 

(8.29) 

(8.32) 

The instantaneous  frequency  can  be  described  in a musical way as  the frequency 
of the filter output signal in the filter bank  approach.  The  phase of the  baseband 
output signal  is p(n, k) and  the  phase of the bandpass  output signal is $(n, k )  = 
Rkn + p(n, k )  (see Fig. 8.8). As soon as we have the  instantaneous frequencies, we 
can build an oscillator  bank and eventually  change the  amplitudes  and frequencies 
of this  bank to build  a  digital  audio effect. The recalculation of the phase from a 
modified instantaneous  frequency is done by computing  the  phase according to 

$(n, IC) = $(O, k )  + 27r fi(T, k)dT.  inT (8.33) 

The result of the  magnitude  and  phase processing  can  be written as Y ( n ,  k )  = 
lY(n, k ) [ e j ' f ' y ( n l k ) ,  which is t8hen used as  the  magnitude  and  phase for the complex- 
valued oscillator  running  with  frequency Ok. The  output signal is then given by 

The resynthesis of the  output signal  can then  be performed by summing  all  the 
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individual  back  shifted  signals  (oscillator bank)  according to 

N - l  N - l  

y(n) = c Y ( n ,  IC) = c Y ( n ,  IC) . e j Q k n  (8.36) 
k=O k=O 

NI 2 

= c A(n, k )  cos [ a k n  f (Py(n7 IC)] 7 (8.37) 
k=O 

where  (8.37) was already  introduced by (8.18). The  modification of the  phases  and 
frequencies for time  stretching  and pitch  shifting  needs further  explanation  and will 
be  treated in a following subsection. 

The following M-file 8.1 shows a filter  bank implementation  with  heterodyne 
filters as  shown in Fig.  8.8  (see  also  Fig. 8.4). 

M-file 8.1 (VXhetxothing.m) 
% VX-het-n0thing.m 
clear;  clf 
l===== this  program  implements  a  heterodyne  filter  bank 
%===== then  filters  a  sound  through  the  filter  bank 
y===== and  reconstructs  a  sound 

”/---- user  data ----- 
WLen 
nChannel 
nl 

CDAFx-in,  FSI = 
L 
DAFx-  in 

- - 
- - 
- - 

- - 
- - 

256 ; 
128; % nb  of  channels 
1024; % block  size  for  calculation 

wavread(’la.wav’); 
length(DAFx-in); 
CDAFx-in;  zeros(nl,l)] / max(abs(DAFx-in)); 

% (must  be  a  multiple  of  WLen) 

y----- window  and  arrays ----- 
window = hanningz(WLen); 
DAFx-out = zeros(length(DAFx-in), 1) ; 
X = zeros (nl , nChanne1) ; 
Z = zeros(WLen-l,  nchannel); 

y----- initialization  of  the  filters ----- 
t = (0:ni-l)); 
het = zeros(n1,nChannel); 
for  k=l:nChannel 
wk = 2*pi*i*(k/WLen) ; 
het(:  ,k) = exp(wk*(t+WLen/2)); 
het2(:  ,k) = exp(-wk*t) ; 
end 

%colormap(gray) ; imagesc(angle(het1 ’1 ; axis(’xy’) ; pause; 
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tic 
%4 
p = 0; 
pend = length(DAFx-in) - nl; 
while  pcpend 
P 
grain = DAFx-in(p+i:p+nl) ; 
y------------------------------------------- 

0 
----------- 

y----- f iltering ----- 
for  k=l:nChannel 
[X(:,k),  z(:,k)] = filter(window,  1,  grain.*het(:,k),  z(:,k)); 
end 
X-tilde = X.*het2; 

% imagesc(angle(X-tilde’)); axis(’xy’);  drawnow 

res = real  (sum(X-tilde , 2) ) ; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DAFx-out  (p+l  :p+nl) = res ; 
p = p + ni; 
end 
%d 

’/----- d  rawing ----- 

y----- reconstruction ----- 

toc 

y----- 1 istening  and  saving  the  output ----- 
DAFx-out = DAFx-out  (nChannel+i  :nChannel+L) / max(abs  (DAFx-out) ; 
soundsc(DAFx-out,FS); 
wavwrite(DAFx-out, FS, ’la-het-nothing.wav’); 

M-file 8.2 demonstrates  the second filter bank  implementation  with  complex- 
valued bandpass  filters,  as  shown in Fig.  8.4. 

M-file 8.2 (VX-fi1ternothing.m) 
% VX-filter-n0thing.m 
clear;  clf 
x===== this  program  performs  a  complex-valued  filter  bank 
x===== then  filters  a  sound  through  the  filter  bank 
X===== and  reconstructs  a  sound 

y----- user  data ----- 
WLen = 256; 
nChannel = 128; % nb  of  channels 
nl = 1024;  block  size  for  calculation 
[DAFx-in,  FS] = wavread(  ’1a.wav’) ; 
L = length(DAFx-in) ; 
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DAFx-in = [DAFx-in;  zeros(n1,l)l / max(abs(DAFx-in)); 

”/---- window  and  arrays ----- 

window = hanningz(WLen); 
DAFx-out = zeros(length(DAFx-in) ,l) ; 
X-tilde = zeros(n1,nChannel); 
Z = zeros(WLen-l  ,nChannel) ; 

y----- initialisation of the  filters ----- 
t = (-WLen/2:WLen/2-1)’; 
ourFilter = zeros(WLen,  nchannel); 
f o r  k=l:nChannel 
wk = 2*pi*i*  (k/WLen) ; 
ourFilter(:,k) = window.*exp(wk*t); 
end 

%colormap  (gray) 

X----- listening  and  saving  the  output ----- 
DAFx-out = DAFx-out(nChannel+l:nChannel+L) / max(abs(DAFx-out)); 
soundsc  (DAFx-out , FS) ; 
wavwrite(DAFx-out, FS, ’la-filter-nothing.wav’); 
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8.3.2 Direct FFT/IFFT Approach 

The FFT algorithm  also  calculates the values of the  magnitudes  and phases  within 
a time  frame allowing a shorter calculation  time. So many  analysis-synthesis algo- 
rithms use this  transform.  There  are different ways to  interpret a sliding Fourier 
transform,  and consequently to invent a method of resynthesis starting from this 
time-frequency  representation.  The  first  one is to apply  the inverse FFT on each 
short-time  spectrum  and use the overlap-add method  to  reconstruct  the signal. The 
second one is to consider a horizontal line of the time-frequency representation (con- 
stant frequency  versus time)  and  to  reconstruct a filtered version for each line. The 
third  one is to  consider  each  point of the time-frequency  representation and  to make 
a  sum of small  grains called gaborets.  In each interpretation  one  must  test  the abil- 
ity of obtaining a perfect  reconstruction if one  does  not modify the representation. 
Another  important fact is the ability to provide effect implementations that do  not 
have too  many  artifacts when one modifies on purpose  the values of the sliding 
FFT, especially in  operations  such as time  stretching  or  filtering. 

We  now describe the direct FFT/IFFT approach.  A time-frequency representa- 
tion  can  be seen as a series of overlapping FFTs with  or  without windowing. As 
the FFT is invertible,  one  can  reconstruct  a  sound by adding  the inverse FFT of a 
vertical line (constant  time  versus  frequency),  as shown in Fig. 8.9. 

Figure 8.9 FFT and  IFFT: vertical line interpretation. At  two time instances two spectra 
are  used to compute  two  time  segments. 

A perfect  reconstruction  can  be  achieved, if the sum of the overlapping windows 
is unity (see Fig.  8.10). A modification of the FFT values can  produce  time  aliasing, 
which can  be avoided by either  zero-padded windows or using windowing after  the 
inverse FFT. In this case the  product of the two windows has  to  be unity. An 
example is shown in Fig. 8.11. This  implementation will be used most  frequently in 
this  chapter. 



252 8 Time-frequency  Processing 

Sum of the square of overlapped Hanning windows 

I I 1 I I I l I I l I 

0 100 200 300 400 500 600 700 800 900 1000 

original grain x(n) 
1 

0.5 

0 

-0.5 

-1 

n +  

Figure 8.10 Sum of small  windows. 
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Figure 8.11 Sound  windowing, FFT modification and IFFT. 

The following M-file 8.3 shows  a  phase  vocoder  implementation  based on the 
direct FFT/IFFT approach, where the  routine itself is given  two  vectors for the 
sound,  a window and  a  hop size. 
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M-file 8.3 (VX-pvn0thing.m) 
% VX-pv-n0thing.m 
x===== this  program  is  a  simple  phase  vocoder,  with: 

x===== WLen  is  the  length  of  the  windows 
x===== ni  and  n2:  steps  (in  samples)  for  the  analysis and synthesis 
clear;  clf 
'/----- user  data ----- 
nl = 512; 
n2 = nl; 
WLen = 2048; 

'/===== wi and w2 windows  (analysis  and  synthesis) 

W1 = hanningz(WLen) ; 
W2 = wl; 
[DAFx-in,  FS] = wavread( ' la. wav') ; 
L = length(DAFx-in); 
DAFx-in = [zeros(WLen, 1) ; DAFx-in; . . . 

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-in)) ; 
'/----- initializations ----- 
DAFx-out = zeros  (length(DAFx-in), l) ; 
tic 
x w v w w v v w w r r m n n r r r w r n n n r u u w w w w r r w u  
pin = 0; 
pout = 0; 
pend = length(DAFx-in) - WLen; 

while  pin<pend 
grain = DAFx-in(pin+i:pin+WLen).* wi; 
'/------------------------------------------- 
f = fft(fftshift(grain)); 
r = abs(f); 
phi = angle(f) ; 
ft = (r.*  exp(i*phi)); 
grain = fftshift(real(ifft(ft))).*w2; 
7 ........................................... 
DAFx-out(pout+l:pout+WLen) = . . .  

pin = pin + ni; 
pout = pout + n2; 
end 
x v w m n r m r v w m n n n n n r r n r w w w u w w r n r r n r w r n r  
'/----- 1 istening  and  saving  the  output ----- 

I 
-________________----------------- 

I 
-________________------------------ 

DAFx-out(pout+i:pout+WLen) + grain; 

toc 

XDAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx-out  (WLen+l : WLen+L) / max  (abs  (DAFx-out) ) ; 
soundsc  (DAFx-out , FS) ; 
wavwrite(DAFx-out, FS, 'la-pv-nothing.wav'); 
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The kernel  algorithm  performs  successive FFTs, inverse FFTs  and overlap-add of 
successive  grains. The key point of the implementations is how to go from the FFT 
representation,  where the  time  origin is at the beginning of the window to  the phase 
vocoder  representation  used  in  section 8.2, either  in  its  filter  bank  description or its 
block-by-block  approach. 

The  first  problem we have to solve is the fact that  the  time origin  for an FFT 
is on the left of the window. We would like to have it  centered, so that for  example 
the  FFT of a centered  impulse would be  zero  phase.  This is done by a circular  shift 
of the signal, which is a commutation of the first  and second part of the buffer. The 
discrete-time  Fourier  transform of 2(n) = x (n  - N / 2 )  is X(ej")  = e-j'%X(ej"). 
With o k  = $/c the discrete  Fourier  transform gives X ( k )  = e-3 F 2 X ( k ) ,  which is 
equivalent to X (k) = (- 1) le X (k) . The circular  shift  in  time  domain  can  be  achieved 
by multiplying the result of the  FFT by (-l)k.  With  this circular  shift, the  output 
of the  FFT is equivalent to a filter  bank,  with  zero  phase  filters.  When  analyzing 
a sine wave, the display of the values of the phase g(n, 1) of the time-frequency 
representation will  follow the phase of the sinusoid.  When  analyzing a harmonic 
sound,  one  obtains a tree  with successive  branches  corresponding to every  harmonic 
(top of Fig. 8.12). 

' 2 * k x  

100 200 300 400 500 600 700 800 900 1000 
n +  

100 200 300 400 500 600 700 800 900 1000 
n +  

Figure 8.12 Different  phase  representations: (a) +(n, k )  and (b) p(n, k )  = +(n, k )  - 
2rmk/N.  
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If  we want to  take  an absolute value as  the origin of time, we have to  switch 
to  the notation used in section 8.2. We have to multiply the result of the FFT by 
W;k where m is the  time  sample in the middle of the FFT and k is the number 
of the bin of the FFT. In this way the display of the  phase cp(n,k) (bottom of 
Fig. 8.12) corresponds to a frequency which is the difference between the frequency 
of the analyzed  signal  (here  a  sine wave) delivered by the FFT and  the analyzing 
frequency (the center of the  bin).  The phase p(n, k )  is calculated  as cp(n,k) = 
@(n, k) - 27rmk/N ( N  length of FFT, k number of the  bin, m time  index). 

8.3.3 FFT Analysis/Sum of Sinusoids Approach 

Conversely, one  can  read  a  time-frequency  representation  with  horizontal lines, as 
shown in Fig. 8.13. Each  point  on  a  horizontal  line  can  be seen as the convolution 
of the original  signal  with an  FIR filter, whose filter coefficients have been given by 
(8.4). The filter bank  approach is very close to  the heterodyne filter implementa- 
tion. The difference comes from the fact that for heterodyne  filtering  the complex 
exponential is running  with  time  and the sliding FFT is considering for each point 
the  same  phase  initiation of the complex exponential. It means that  the heterodyne 
filter measures the  phase deviation between a cosine and  the filtered  signal and  the 
sliding FFT measures the  phase  with a time origin a t  zero. 

f A  r--- I 

I -  I 

l 

Figure 8.13 Filter  bank  approach:  horizontal  line  interpretation 

The  reconstruction of a sliding FFT on a horizontal line with a hop size of one 
is performed by filtering of this line with  the filter  corresponding to  the frequency 
bin (see Fig. 8.13). However, if the analysis  hop size is greater  than  one, we need 
to interpolate  the  magnitude values IX(n,  k)l and  phase values @(n, k ) .  Phase in- 
terpolation is based  on  phase  unwrapping, which will be  explained in section 8.3.5. 
Combining  phase  interpolation  with  linear  interpolation of the  magnitudes IX(n ,  k)l 
allows the reconstruction of the sound by the  addition of a  bank of oscillators as 
given in (8.37). 

M-file 8.4 illustrates  the  interpolation  and  the  sum of sinusoids. Starting from 
the  magnitudes  and phases taken from a sliding FFT the synthesis  implementation 
is performed by a  bank of oscillators. It uses linear  interpolation of the magnitudes 
and phases. 

M-file 8.4 (VX-bankn0thing.m) 
% VX-bank-n0thing.m 
X===== t h i s  program performs an FFT analysis and 
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l===== oscillator  bank  synthesis,  with: 
l===== WLen  is  the  length  of  the  windows 
l===== nl  and  n2:  steps  (in  samples) for the  analysis  and  synthesis 
y===== wl  and  w2  windows  (analysis  and  synthesis) 
clear;  clf 
y----- user  data ----- 
nl = 200; 
n2 = nl; 
WLen = 2048; 
W1 = hanningz  (WLen) ; 
W2 = wl; 

L = length(DAFx-in) ; 
[DAFx-in,  FS] = wavread(’la.wav’1; 

DAFx-in = [zeros(WLen, l) ; DAFx-in; . . . 
y----- some  initializations ----- 
DAFx-out = zeros(length(DAFx-in) ,l) ; 
11 = WLen/2; 
omega = 2*pi*ni* [O : 11-11  ’/WLen; 
phi0 = zeros(l1, l) ; 
rO = zeros (11,l) ; 
psi = zeros (11,1) ; 
grain = zeros(WLen,l); 
res = zeros(n2,i) ; 

zeros(WLen-mod(L,nl)  ,113 / max(abs(DAFx-in)); 

tic 
%l 

pout = 0; 
pin = 0; 

pend = length(DAFx-in) - WLen; 

while  pincpend 
grain = DAFx-in(pin+l:pin+WLen).* wl; 
............................................ 
fc = fft(fftshift(grain)); 
f = fc(1:ll); 
r = abs(f); 
phi = angle(f) ; 
delta-phi = omega + princarg(phi-phi0-omega); 

% now  we  have  the  unwrapped  difference  of  phase 
% on  each  bin  for  the  hop  size  of n2 

delta-r = (r-rO)/nl; 
delta-psi = delta-phi/nl; 

% and now  we  have  the  increment of phase  and  of  magnitude 
% to  make  a  linear  interpolation  and  reconstruction 

for  k=l:n2 
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rO = rO + delta-r; 
psi = psi + delta-psi; 
res(k) = rO’*cos(psi) ; 

end 
1 this tricky line is making the sum of weighted cosine 

X----- f o r  next time ------ 
phi0 = phi; 
rO = r; 
psi = princarg(psi) ; 
7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DAF~-out(pout+I:pout+n2) = DAFx-out(pout+l:pout+n2) + res; 
pin = pin + nl; 
pout = pout + n2; 
end 
% w v v w v w m n n n r w v w v w w w u w w w u w r n r u  
toc 

x-- - - -  listening and saving the output ----- 
%DAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx~out(WLen/2+nl+l:WLen/2+ni+L) / max(abs(DAFx-out)); 
soundsc(DAFx-out,FS); 
wavwrite(DAFx-out, FS, ’1a-bank-nothing.wav’); 

8.3.4 Gaboret Approach 

The idea of the  “Gaboret Approach” is the reconstruction of a signal  from a time- 
frequency  representation  with  the  sum of “gaborets” weighted by the values of 
the time-frequency  representation [AD93]. The  shape of a  gaboret is a windowed 
exponential (see Fig. 8.1411, which can  be given by gn,(n)  = e-jnkng,(n). The 
approach is based on the  Gabor  transform, which is a short-time Fourier transform 
with the smallest time-frequency window, namely  a  Gaussian  function g,(n) = 

-- with a > 0. The discrete-time  Fourier  transform of ga(n) is again a 
Gaussian  function  in the Fourier domain. The  Gaboret  approach is very similar to 
the wavelet transform  [CGT89, Chu921: one  does  not consider time  or  frequency as 
a privileged axis and one  point of the time-frequency  plane is the scalar product of 
the signal  with a small gaboret.  Further  details  can  be found in [QC93, WR901. The 
reconstruction from a time-frequency representation is the  sum of gaborets weighted 
by the values of this time-frequency  plane  according to 

dzz;;;“. 2o 

“ 2  

(8.38) 

Although this point of view is totally equivalent to windowing plus FFT/IFFT plus 
windowing, it allows a good  comprehension of what  happens in case of modification 
of a point in the plane. 
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t r  t 

Figure 8.14 Gaboret approach: the upper left part shows real and imaginary values of 
a gaboret and the upper right part shows a possible 3D repesentation with axis t ,  z 
and y. The lower part shows a gaboret associated to a specific  point of a time-frequency 
representation (for every  point we can  generate a gaboret in the time domain and then 
make the sum of all gaborets). 

The reconstruction of one single point of a time-frequency  representation yields 
a gaboret in the  time  domain,  as shown in Fig. 8.15. Then a new time-frequency  rep- 
resentation of this  gaboret is computed. We get a new image, which is the called the 
reproducing  kernel  associated to  the transform.  This new time-frequency  represen- 
tation is different from the single point of the original  time-frequency  representation. 

So a  time-frequency  representation of a real  signal has some  constraints: each 
value of the time-frequency  plane  must  be the convolution of the neighborhood 
by the reproducing  kernel  associated to  the transformation.  This  means that if an 
image  (time-frequency  representation) is not valid and  that we force the recon- 
struction of a  sound by the weighted summation of gaborets,  the time-frequency 
representation of this  transformed  sound will be in a different form than  the ini- 
tial time-frequency  representation.  There is no way to avoid this  and  the  beautiful 
art of making  good  transforms  often relies on the ability to provide  “quasi-valid” 
representations [AD93]. 

This  reproducing kernel is only a 2-D extension of the well-known problem of 
windowing: we find the  shape of the FFT of the window around  one horizontal ray. 
But  it brings new aspects.  When we have two spectral lines,  their time-frequency 
representations  are  blurred  and, when summed,  appear  as  beats.  Illustrative exam- 
ples are shown in Fig. 8.16. The  shape of the  reproducing kernel  depends on the 
shape of the window and is the key point for differences in  representations between 
different windows. The  matter of finding spectral lines starting from  time-frequency 
representations is the  subject of Chapter 10. Here we only  consider the fact that 
any signal  can  be  generated as  the sum of small  gaborets.  Frequency  estimations in 
bins are obviously  biased by the interaction  between  rays  and  additional noise. 
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Figure 8.15 Reproducing  kernel: the lower three plots  represent the forced  gaboret and 
the reproducing  kernel  consisting of spectrogram and phasogram.  (Note:  phase  values  only 
make  sense  when the magnitude is not too small.) 

The following M-file 8.5 demonstrates  the  Gaboret analysis and synthesis ap- 
proach. 

M-file 8.5 (VX-gabnothing . m) 
% VX-gab-n0thing.m 
%= this  program  performs  the  convolution of the  signal  with  gaborets 
clear; clf 
y----- 
WLen = 512; 

user  data ----- 
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Figure 8.16 Spectrogram and phasogram  examples: (a) upper part: the effect  of the 
reproducing  kernel  is to thicken the line and giving  a rotating phase at the frequency of 
the sinusoid. (b) middle part: for  two  sinusoids we have  two  lines with two rotations, if the 
window  is  large.  (c)  lower part: for  two  sinusoids  with a shorter window the two  lines  mix 
and we can see beatings. 

window = hanningz(WLen); 
nChannel = WLen/2; 
nl = 128; 
n2 = nl; 
[DAFx-in, FS] = wavread(’la.wav’) ; 

DAFx-in = [zeros(WLen, 1) ; DAFx-in; . . . 
L = length(DAFx-in) ; 

zeros(WLen-mod(L,nI),l)] / max(abs(DAFx-in)); 

DAFx-out = zeros(length(DAFx_in),l); 

t = (-WLen/2:WLen/2-1); 
gab = zeros(nChanne1,WLen); 
f o r  k=l:nChannel 
wk = 2*pi*i* (k/WLen) ; 

y----- initializations calculation of gaborets ----- 
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gab(k, :) = window’.  *exp(wk*t) ; 
end 

tic 
% w v w w m r v w v m r v w v w m r u w w r n r u w u u w r r u  
pin = 0; 
pout = 0; 
pend = length(DAFx-in) - WLen; 

while  pincpend 
grain = DAFx-in(pin+l:pin+WLen); 
y------------------------------------------- 

vec = gab*grain; 

res = real  (gab’  *vec) ; 
y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DAFx-out(pout+l:pout+WLen) = DAFx-out(pout+l:pout+WLen) + res; 
pin = pin + nl; 
pout = pout + n2; 
end 
% w v w v v w w v v w r r m n r m n r w r r u u w u w w w w u  

e----------- 

y----- complex  vector  corresponding  to  a  vertical  line 

y----- reconstruction  from  the  vector  to  a  grain 

toc 

y----- 1 istening  and  saving  the  output ----- 
%DAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx-out  (WLen+l:  WLen+L) / max(abs  (DAFx-out) ) ; 
soundsc(DAFx-out , FS) ; 
wavwrite(DAFx-out, FS, ’la-gab-nothing.wav’) ; 

8.3.5 Phase Unwrapping and Instantaneous Frequency 

For the  tasks of phase  interpolation  and  instantaneous frequency calculation for 
every frequency bin k we need a  phase  unwrapping  algorithm.  Starting from Fig. 8.4 
we perform  unwrapping of 

Ok 

by the unwrapping of p ( n ,  k )  and  adding  the  phase  variation given by f l k n  for all k ,  
as  already shown by (8.10). We also need a  special  function which puts  an  arbitrary 
radian  phase value into  the  range ] - T ,  3-1. We  will call this  function principle 
argument [GBAOO], which is defined by the expression y = princarg[27rrn+yx] = y a ,  
where -7r < cpx 5 7r and m it; an integer  number. The corresponding Matlab function 
is shown in Fig. 8.17. 
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y=princarg[x] 

f '  
function phase=princarg(phasein) p 
phase=rnod(phasein+pi,-2*pi)+pi; .- c 

/ 
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Figure 8.17 Principle  argument  function (Matlab code and illustrative plot). 
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Figure 8.18 Basics of phase  computations for frequency  bin IC. 

The phase  computations  are based  on the  phase values $(sR,, k )  and $ ( ( S  + 
l)&, k ) ,  which are  the  results of the  FFTs of two  consecutive  frames.  These  phase 
values are shown in Fig. 8.18. We  now consider the  phase values regardless of the 
frequency  bin k .  If a stable sinusoid  with  frequency f l k  exists, we can  compute  a 
target  phase $ t ( ( s  + l ) R a )  from the previous  phase value $(sR,) according to 

$%((S  + I)%) = $(S&) + flkR,. (8.39) 

The unwrapped  phase 

@,((S + 1)Ra) = @ t ( ( S  + 1)Ra) + @ d ( ( S  + 1)RU)  (8.40) 

is computed by the  target  phase & ( ( S +  1)R,) plus  a  deviation  phase $d((s+ l)Ra). 
This  deviation  phase can be  computed by the measured  phase $( ( S  + l)R,) and  the 
target  phase & ( ( S  + l)&) according to  

$d( ( s  + l)&) = princarg[$((s + l)&) - $t ( (s  + l)R,)] . (8.41) 
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Now  we formulate the unwrapped  phase (8.40) with  the  deviation  phase (8.41), 
which leads to  the expression 

+ 1 ) ~ ~ )  = $ t ( ( s  + 1)Ra) + princarg[$((s + l )Ra)  - $t ( (s  + 
= $(sRa) + RbR, + princarg[$((s + l )&)  - $(sRa) - RkRa]. 

From the previous  equation we can  derive the unwrapped  phase difference 

Ac~( ( s  + l )&)  = + U ( ( .  + - $(S&) 

= &R, + princarg[+((s + l )&)  - $(S&) - 

(8.42) 

between two  consecutive  frames. From this  unwrapped  phase difference we can 
calculate  the  instantaneous fi-equency for frequency bin k at time  instant (S + l)Ru 
by 

(8.43) 

The  Matlab  instructions for the  computation of the unwrapped  phase difference 
given by (8.42) for every frequency bin k are given here: 

omega = 2*pi*nl*[O:ll-i:1’/WLen; 
% 11 = N/2  with N length of the FFT 
% nl=R-a 
delta-phi= omega+princarg(phi-phi0-omega); 

The  term phi represents $ ( ( S  + l)&) and phi0 the previous  phase value $(sRtL). 
In  this  manner delta-phi represents  the  unwrapped  phase variation Acp((s+ l)R,) 
between two successive frames for every frequency bin k.  

8.4 Phase Vocoder Effects 

The following subsections will describe  several  modifications of a time-frequency 
representation before resynthesis in order to achieve audio effects. Most of them use 
the FFT analysis followed by either a summation of sinusoids or an IFFT synthesis, 
which is faster  or  more  adaptfed to  the effect. But all  implementations give equivalent 
results  and  can  be used for audio effects. 

8.4.1 Time-frequency Filtering 

Filtering a sound  can  be  done  with  recursive (IIR) or  nonrecursive (FIR) filters. 
However, a musician would like to define or even to draw a frequency  response 
which represents the gain for each  frequency  band. An intuitive way  is to use a time- 
frequency  representation  and  attenuate  certain zones, by multiplying the  FFT result 
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Figure 8.19 Circular  convolution and fast  convolution. 

in every frame by a filtering  function in the frequency  domain. One  must  be  aware 
that  in  that case we are  making a circular  convolution (during  the  FFT ~ inverse 
FFT process), which  leads to  time  aliasing  as shown in  Fig. 8.19. The  alternative 
and  exact  technique for using  time-frequency representations is the design of an  FIR 
impulse  response  from the filtering  function.  The  convolution of the signal  segment 
~ ( n )  of length N with the impulse  response of the  FIR filter of length N + 1 leads to 
an  2N-point  sequence y(n) = X(.) * h(n). This  time  domain convolution or  filtering 
can  be  performed  more efficiently in the frequency  domain by multiplication of the 
corresponding FFTs Y (IC) = X ( k )  . H ( k ) .  This  technique is called fast convolution 
(see Fig. 8.19) and is performed by the following steps: 

1. Zero-pad the signal  segment z(n) and  the  impulse  response h(n) up  to  length 
2N. 

2. Take the  2N-point FFT of these two  signals. 

3. Perform  multiplication Y ( k )  = X(IC) . H ( k )  with k = 0,1 , .  . . , 2N - 1. 

4. Take the  2N-point  IFFT of Y ( k ) ,  which yields y(n) with n = 0,1, .  . . , 2 N -  1. 

Overlap 
+ add 

Figure 8.20 FFT filtering. 
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Now  we can work with successive segments of length N of the  original  signal (which 
is equivalent to use a  rectangular  window),  zero-pad  each  segment  up to  the length 
2 N  and perform the fast  convolution  with the filter impulse  response.  The  results 
of each  convolution are  added in an overlap-add  procedure,  as  shown in Fig. 8.20. 
The  algorithm  can  be  summarized  as 

1. Start from an  FIR filter of length N + 1, zero  pad it  to 2 N  and  take  its FFT 
+ H ( k ) .  

2.  Partition  the  signal  into  segments Q(.) of length N and  zero-pad each  segment 
up  to length 2 N .  

3. For each  zero-padded  segment si (n) perform the FFT + X i ( k )  with k = 
0 , l  .... , 2 N - 1 .  

4. Perform the multiplication y i ( k )  = X i ( k )  . H ( k ) .  

5. Take the inverse FFT of these  products y i ( k ) .  

6 .  Overlap-add  the convolution  results (see Fig. 8.20). 

The following  M-file 8.6 demonstrates  the FFT filtering  algorithm. 

M-file 8.6 ( U X 1  ilter .m) 
% VX-fi1ter.m 
%===== this  program  performs  time-frequency  filtering 
x===== calculation of the  fir  (here  band  pass) 

clear;  clf 

y----- user  data ----- 
FirLength = 1280; % length  of  the  fir 
WLen = 2*FirLength; % for  zero  padding 
[DAFx-in , FS] = wavread ( ’ la. wavy ) ; 

DAFx-in = [DAFx-in; zeros(WLen-mod(L,FirLength) ,l)] . . . 
L = length(DAFx-in); 

/ max  (abs  (DAFx-in) ; 

y----- initializations ----- 
X = 1:FirLength; 
fr = 1000/FS; 
alpha = -0.002; 
fir = (exp(alpha*x).*sin(2*pi*fr*x))’; % FIR coefficients 
plot (f  ir) ; 

f  ir2 = [fir; zeros(WLen-FirLength,I)]; 
f  corr = fft (f  ir2) ; 
DAFx-out = zeros  (length  (DAFx-in)+FirLength,  1) ; 
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grain = zeros (WLen, 1) ; 

tic 
%l 
pin = 0; 
pout = 0; 
pend = length(DAFx-in) - FirLength; 

y----- 1 istening and saving the output ----- 
%DAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx-out / max(abs(DAFx-out)); 
soundsc(DAFx-out , FS) ; 
wavwrite(DAFx-out, FS, 'la-filter.wav'); 

The design of an  N-point FIR filter  derived  from  frequency  domain  specifications is 
a classical problem of signal processing. A simple design algorithm is the frequency 
sampling  method [Zo197]. 

8.4.2 Dispersion 

When a sound is transmitted over telecommunications lines, some of the frequency 
bands  are delayed. This  spreads a sound in time,  with some  components of the 
signal  being  delayed. It is usually  considered a default in telecommunications but 
can  be used musically. This dispersion effect is especially significant on  transients, 
where the sound loses its coherence, but  can also blur the  steady  state  parts. 

A dispersion effect can  be  simulated by a  filter, especially an  FIR filter, whose 
frequency  response has a frequency-dependent  time delay. The only  change to  the 
previous  program is to  change the calculation of the  FIR vector fir. We  will  now 
describe  several  filter  designs for a dispersion effect. 

Design 1. As an example, a linear  chirp  signal is a sine wave with  linearly 
increasing  frequency and  has  the  property of having a time delay proportional to  its 
frequency. A mathematical definition of a linear  chirp  signal starting from  frequency 
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zero and going to frequency f1 during  time tl is given by 

Chirp(t) = sin(at2) with a = T-. 

Sampling of this  chirp signal yields the coefficients for an  FIR filter.  Time-frequency 
representations of a linear and  an  exponential  chirp signal are shown in  Fig.  8.21a. 

fl (8.44) 
tl 

Figure 8.21 Time-frequency  representations: (a) linear/exponential  chirp  signal and (b) 
time-frequency  warping  for the linear/exponential chirp. 

Design 2. It is also possible to numerically  approximate a chirp by integrating 
an  arbitrary frequency  function of time.  In  this case the MATLAB function cumsum 
can  be used to calculate the phase p(n) = S,”’27rf(7-)d~+(p(O) as  the integral of tjhe 
time-dependent  frequency j ( t ) .  A linear  chirp  with 300 samples  can be comput,ed 
by the MATLAB instructio:ns: 

and  an  exponential chirp by 

n = 300; 
x = (l:n>/n; 
fO = 50; 
fl = 4000; 
rap = fl/fO; 
freq = (2*pi*f0/44100) * (rap.-x); 
fir = (sin(cumsum(freq,)>>’; 

Any other frequency  function f ( t )  can  be used for the calculation of freq. 
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Design 3. Nevertheless  these  chirp  signals deliver the frequency as a function 
of time delay. We would be  more likely to define the  time delay as a function 
of frequency. This is only possible with  the previous  technique if the function is 
monotonous. Thus in a more  general  case we can use the phase  information of an 
FFT as an indication of the  time delay  corresponding to a frequency  bin: the phase 
of a delayed  signal z(n - M ) ,  which has a discrete  Fourier  transform X ( I C ) e - j M F  
with IC = 0,1 , .  . . , N / 2 ,  is cp(IC) = --M% where M is the delay in samples, IC is the 
number of the frequency  bin and N is the length of the FFT. 

A  variable  delay for each  frequency  bin  can  be achieved by replacing the fixed 
value M (the delay of each  frequency  bin) by a  function M(lc),  which leads to 
X ( t ) e - j M ( k ) F .  For example, a linearly  increasing time delay for each frequency 
bin is given by M ( k )  = M . with IC = 0,1 , .  . . , N / 2  - 1. The derivation of the 
FIR coefficients can  be achieved by performing an IFFT of the positive part of the 
spectrum  and  then  taking  the real part of the resulting complex-valued coefficients. 
With  this  technique a  linear  chirp  signal  centered around  the middle of the window 
can  be  computed by the following MATLAB instructions: 

M = 300; 
WLen = 1024; 
mask = [l; 2*ones(WLen/2-1,1); l ; zeros(WLen/2-l,l)l; 
fs = M*(O:WLen/2) / WLen; % linear increasing delay 
teta = [-2*pi*f S. * (0 : WLen/2) /WLen ; zeros (WLen/2-1,1) 1 ; 
f2 = exp(i*teta) ; 
fir = fftshift(real(ifft(f2.*mask))); 

It should  be  noted that  this technique  can  produce time aliasing. The length of 
the  FIR filter will be  greater  than M .  A  proper choice of N is needed, for example 
N > 2 M .  

Design 4. A final technique is to draw an  arbitrary curve  on a time-frequency 
representation, which is an invalid image, and  then resynthesize a signal by forcing 
a reconstruction, for example, by using a  summation of gaborets.  Then we can use 
this  reconstructed signal as  the impulse  response of the  FIR filter. If the curve 
displays the dispersion of a filter, we get a dispersive  filter. 

In  conclusion, we can  say that dispersion, which is a  filtering operation,  can 
be perceived as a delay operation.  This leads to a warping of the time-frequency 
representation,  where  each  horizontal  line of this  representation is delayed according 
to  the dispersion  curve (see Fig.  8.21b). 

8.4.3 Time Stretching 

Time-frequency  scaling is one of the most  interesting  and difficult tasks that can  be 
assigned to time-frequency  representations:  changing  the  time  scale  independently of 
the “frequency content”. For example,  one  can  change the  rhythm of a  song  without 
changing its  pitch, or conversely transpose a song  without  any  time  change.  Time 
stretching is not a problem that can  be  stated  outside of the  perception: we know, 
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for example, that a sum of two  sinusoids is equivalent to a product of a carrier  and a 
modulator.  Should a time  stretching of this signal  still be a sum of two sinusoids or 
the same  carrier  with a lower modulation?  This  leads  us to  the perception of tremolo 
tones  or  vibrato  tones.  One generally  agrees that tremolos and  vibratos  under 10 
Hz are perceived as such and  those over are perceived as a sum of sinusoids. 

A first  technique has been evaluated in the time  domain (see PSOLA in section 
7.3.3). Here we  will deal  with another technique in the time-frequency domain using 
the phase vocoder implementations of section 8.3. There  are two  implementations 
for time-frequency scaling by the  “traditional” phase  vocoder. Historically, the first 
one uses a  bank of oscillators, whose amplitudes  and frequencies vary over time. If 
we can  manage to  model a sound by the  sum of sinusoids,  time  stretching and  pitch 
shifting  can  be  performed by expanding the amplitude  and frequency  functions. 
The second implementation uses the sliding Fourier transform  as the model for 
resynthesis: if  we can  manage to  spread the image of a  sliding FFT over time 
and  calculate new phases,  then we can  reconstruct a new sound  with  the help of 
inverse FFTs.  Both of these  techniques rely on  phase  interpolation, which need 
an unwrapping  algorithm at the analysis  stage, or equivalently an instantaneous 
frequency  calculation, as introduced  in  section 8.3.5. 

The  time  stretching  algorithm mainly  consists of providing a synthesis  grid which 
is different from the analysis  grid, and  to find a way to reconstruct a signal from 
the values on  this  grid.  Though  it is possible to use any  stretching  factor, we will 
here only deal  with the case where we use an integer both for the analysis  hop size 
R,, and for the synthesis  hop size R,. 

As seen in section 8.3, changing the values and  their  coordinates  on  a  time- 
frequency  representation is generally  not  a valid operation, in the sense that  the 
resulting  representation is not the sliding Fourier transform of a  real  signal. How- 
ever it is always possible to force the  reconstruction of a sound  from an  arbitrary 
image but  the time-frequency representation of the signal issued from this forced 
synthesis will be different from what was expected.  The goal of a good transforma- 
tion  algorithm is to find a strategy  that preserves the  time  stretching  aspect  without 
introducing  too  many  artifacts. 

The classical way  of using a phase vocoder for time  stretching is to keep the 
magnitude  unchanged and  to modify the phase in such a way that  the instantaneous 
frequencies are preserved.  Providing that  the grid is enlarged from an analysis  hop 
size R, to a synthesis  hop size R,, this  means  that  the new phase values must  satisfy 
A$(k) = %Acp(k) (see Fig. 8.22). Once the grid is filled with  these values one  can 
reconstruct a signal using either  the filter bank  approach  or  the block-by-block IFFT 
approach. 

Filter Bank  Approach (Sum of Sinusoids) 

In  the FFT analysis/sum of sinusoids  synthesis  approach, we calculate  the  instan- 
taneous frequency for each bin and  integrate  the corresponding  phase  increment in 
order to reconstruct  a  signal as  the weighted sum of cosines of the phases. However, 



270 8 Time-frequency Processing 

. . 
n (samples) n (samples) 

Figure 8.22 Time stretching principle: the analysis  with  hop  size R, gives the time- 
frequency  grid  shown  in the left part, where Acp(k) = +((. + l ) R a , k )  - +(sR,, k )  denotes 
the phase  difference  between the unwrapped  phases. The synthesis  is  performed  from 
the modified  time-frequency  grid  with  hop  size R, and  the phase  difference A$(k)  = 
G((s  + l )& ,  k )  - G ( s R s , k ) ,  which  is illustrated in the right part. 

here the hop size for the resynthesis is different from the analysis.  Therefore the 
following steps  are necessary: 

1. Calculate the phase  increment  per  sample by d+(k) = Acp(IC)/Ra. 

2. For the  output samples of the resynthesis integrate  this value according to 
4(n  + 1, IC) = 4(n, IC) + d$(IC). 

3. Sum the  intermediate signals which yields y(n) = Cfii A(n,  IC) cos(G(n, IC)) 
(see Fig. 8.23). 

A complete  MATLAB  program for time  stretching is given by M-file 8.7 

* 
n (samples) 

s(n) = c A(n,k).cos(@(n.k)) 

Figure 8.23 Calculation of time-frequency  samples.  Given the values of A and 4 on 
the representation grid, we can  perform  linear interpolation with a hop  size of one  in 
between  two  successive  values  on the grid. The reconstruction is achieved  by a summation 
of weighted  cosines. 
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M-file 8.7 (VX-tstretch-bank.m) 
x VX-tstretch-bank.m 
x===== this  program  performs  time  stretching 
x===== using  the  oscillator  bank  approach,  with: 
x===== wl  and  w2  windows  (analysis  and  synthesis) 
x===== WLen  is  the  length  of  the  windows 
x===== nl  and  n2:  steps  (in  samples)  for  the  analysis  and  synthesis 

clear;  clf 

y----- user  data ----- 
ni = 256; 
n2 = 512; 
WLen = 2048; 

W2 = wl; 
W1 = hanningz(WLen); 

[DAFx-in,  FS] = wavread(’la.wav’); 

DAFx-in = [zeros(WLen, I ) ;  DAFx-in; . . .  
L = length(DAFx-in); 

zeros(WLen-mod(L,nl)  ,l)] / max(abs(DAFx-in)) ; 

y----- initializations ----- 
tstretch-ratio = n2/nl 
DAFx-out = zeros(WLen+ceil(length(DAFx-in)*tstretch_ratio),l); 
grain = zeros W e n ,  1) ; 
11 = WLen/2; 
omega = 2*pi*nl* CO: 11-13  ’/WLen; 
phi0 = zeros(l1,l) ; 
rO = zeros(l1,i) ; 
psi = zeros(l1,i) ; 
res = zeros(n2,l) ; 

tic 
x w w m n n r v w w v w w v w w m r w r n r w w u u w r r u  
pout = 0; 
pin = 0; 

pend = length(DAFx-in)-WLen; 

while  pincpend 
grain = DAFx-in(pin+l:pin+WLen).* wi; r====-------------_------------------------- _____-___----_----_-------------------- 
f c = f  f  t (f f  tshift  (grain) 1 ; 
f = fc(1:ll); 
r = abs(f); 
phi = angle(f1; 
delta-phi = omega + princarg(phi-phi0-omega); 

. 
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delta-r = (r-rO) /n2; 
delta-psi = delta-phi/nl; 
for  k=i:n2 
rO = rO + delta-r; 
psi = psi + delta-psi; 
res(k) = rO’*cos(psi) ; 
end 

b 

phi0 = phi; 
rO = r; 
psi = princarg(psi); 
7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% DAFx-out (pout+i :pout+nZ)=DAFx-out  (pout+i :pout+n2)+res; 
DAFx~out(pout+l:pout+n2) = res; 
pin = pin + ni; 
pout = pout + n2; 
end 
% w m n n n n n n r m n n n n r w r n n n n n n r w r n n n r u w u u w u  
toc 

y----- 1 istening and saving the output ----- 
XDAFx-in = DAFx-in(WLen+l:WLen+L) ; 
DAFx_out=DAFx-out(WLen/2+nl+i:length(DAFx_out))/max(abs(DAFx-out)) ; 
soundsc (DAFx-out , FS) ; 
wavwrite(DAFx-out, FS, ’la-tstretch-bank.wav’); 

This  program  first  extracts a series of sound  segments  called  grains. For each  grain 
the FFT is computed  to yield a magnitude  and  phase  representation every ni sam- 
ples (ni is the analysis  hop size Ra). It  then calculates a sequence of n2 samples 
(n2 is the synthesis  hop size R,) of the  output signal by interpolating the values of 
r and  calculating  the  phase psi in such  a way that  the  instantaneous frequency de- 
rived  from psi is equal to  the one  derived  from phi. The unwrapping of the phase 
is then  done by calculating (phi-phiO-omega), putting  it in the range ] - T , T ]  

and  again  adding omega. A  phase  increment  per  sample d-psi is calculated  from 
delta-phi/ni. The calculation of the  magnitude  and  phase  at  the resynthesis is 
done in the loop for k=i :n2 where r and psi are  incremented by d-r and d-psi. 
The  program uses the vector facility of MATLAB t o  calculate the sum of the co- 
sine of the angles weighted by magnitude in one step.  This gives a buffer res of n2 
output samples which will be  inserted  into  the DAFx-out signal. 

Block-by-Block Approach (FFT/IFFT) 

Here we  follow the FFT/IFFT implementation used in  section 8.3, but  the hop size 
for resynthesis is different from the analysis. So we have to calculate new phase 
values in order to preserve the  instantaneous frequencies for each  bin.  This is again 
done by calculating an unwrapped  phase difference for each  frequency  bin, which is 
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proportional  to 9. We also  have to  take  care of some  implementation  details  such as 
the  fact  that  the period of the window has  to  be  equal to the length of the FFT (this 
is not  the case for the  standard MATLAB  functions).  The  synthesis  hop size should 
at least allow a  minimal  overlap of windows, or  should  be a submultiple of it.  The 
following  M-file 8.8 demonstrates  the block-by-block FFT/IFFT implementation. 

M-file 8.8 (VX-tstretch-real-pv.m) 
% VX-tstretch-real-pv.m 
x===== this  program  performs  time  stretching 

x===== for  real  ratio,  and  using 
x===== wi  and  w2  windows  (analysis  and  synthesis) 
x===== WLen  is  the  length  of  the  windows 
x===== nl  and  n2:  steps  (in  samples)  for  the  analysis  and  synthesis 

y===== using  the  FFT-IFFT  approach, 

clear;  clf 

y----- user  data ----- 
nl = 200; 
n2 = 512; 
WLen = 2048; 
W1 = hanningz  (WLen) ; 
W2 = wl; 

L = length(DAFx-in); 
[DAFx-in,FS] = wavread(’la.wav’); 

DAFx-in = [zeros(WLen, l ) ;  DAFx-in; . . . 
zeros(WLen-mod(L,nl),l)l / max(abs(DAFx-in)); 

y----- lnitializations . ----- 
tstretch-ratio = n2/nI 
DAFx-out = zeros(WLen+ceil(length(DAFx_in)*tstretch-ratio),l); 
omega = 2*pi*ni*  [O:!dLen-il  ’/WLen; 
phi0 = zeros  (WLen, :l) ; 
psi = zeros  (WLen, 1) ; 

tic 
% v v w r r w w v w m n r w v v w m r t n n n r r n n r u w r r r n n r w  

pout = 0; 
pin = 0; 

pend = length(DAFx-in)-WLen; 
while  pincpend 
grain = DAFx-in(pin+l:pin+WLen).* wl; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
f = fft(fftshift(grain)); 
r = abs(f); 
phi = angle(f) ; 
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delta-phi= omega + princarg(phi-phiO-omega); 
phi0 = phi; 
psi = princarg(psi+delta-phi*tstretch-ratio); 
ft = (r.*  exp(i*psi)); 
grain = fftshift(real(ifft(ft))).*w2; 
% plot(grain);drawnow; 
y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DAFx-out(pout+l:pout+WLen) = . . .  

pin = pin + nl; 
pout = pout + n2; 
end 

DAFx-out(pout+l:pout+WLen) + grain; 

% w w v w v v v v w v w v v w v v v v w w w r r w w u w u  
toc 

X----- listening and saving the output ----- 
XDAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx-out(WLen+l:length(DAFx-out))/max(abs(DAFx-out)); 
soundsc(DAFx-out , FS) ; 
wavwrite(DAFx-out, FS, 71a-tstretch-noint-pv.wav7); 

This  program is much faster than  the preceding one. It  extracts  grains of the  input 
signal by windowing the original  signal DAFx-in, makes a transformation of these 
grains  and overlap-adds  these  transformed  grains to get a sound DAFx-out. The 
transformation consists of performing the FFT of the grain  and  computing  the 
magnitude  and  phase  representation r and phi. The unwrapping of the  phase is 
then  done by calculating (phi-phiO-omega), putting  it in the range ] - 7 r ,  7 r ]  and 
again  adding omega. The calculation of the  phase psi of the transformed  grain is 
then achieved by adding the phase  increment delta-phi multiplied by the  stretching 
factor ral to  the previous  unwrapped  phase value. As seen before, this is equivalent 
to keeping the  same  instantaneous frequency for the  synthesis  as  it is calculated  for 
the  analysis.  The new output grain is then  calculated by an inverse FFT, windowed 
again  and overlap-added to  the  output signal. 

Hints and drawbacks. As we have noticed,  phase vocoding can  produce arti- 
facts. It is important  to know them in order to face them. 

1. Changing the phases before the  IFFT is equivalent to using an all-pass filter 
whose Fourier  transform  contains the phase  correction that is being  applied. 
If  we do  not use a window for the resynthesis, we can  ensure  the circular 
convolution  aspect of this filtering operation. We  will have discontinuities at  
the edges of the signal buffer. So it is necessary to use a synthesis window. 

2. Nevertheless, even with  a  resynthesis window (also called tapering window) 
the circular  aspect  still  remains: the result is the aliased version of an infinite 
IFFT. A way to  counteract  this is to choose a  zero-padded window for analysis 
and  synthesis. 
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3. Shape of the window: one  must  ensure that a  perfect  reconstruction is given 
with a ratio 2 equal to one  (no  time  stretching). If  we use the same window 
for analysis and synthesis, the  sum of the square of the windows, regularly 
spaced at the resynthesis  hope size, should  be one. 

4. For a  Hanning window without  zero-padding the hop size R, has  to  be a 
divisor of N/4.  

5 .  Hamming and Blackman windows provide  smaller  side lobes in the Fourier 
transform. However, they have the inconvenience of being non-zero at  the 
edges so that no  tapering is done by using these windows alone. The resyn- 
thesis  hop size should  be a divisor of N/8.  

6. Truncated  Gaussian windows, which are good  candidates,  provide a sum that 
always has oscillations, but which can be below the level of perception. 

An important problem is the difference of phase  unwrapping between different 
bins, which is not solved by the algorithms we presented:  the  unwrapping  algorithm 
of the analysis gives a phase that is equal to  the measured  phase  modulo 27r. So the 
unwrapped  phase is equal to  the measured  phase  plus  a term  that is a  multiple of 
27r. This second term is not  the  same for every bin. Because of the multiplication 
by the  time  stretching  ratio,  there is a  dispersion of the phases.  One  cannot even 
ensure that two  identical successive sounds will be  treated in the  same way. This is 
in  fact the main  drawback of the phase vocoder and  its removal is still  a matter of 
research [QM98, Fer99, LD99aI. 

However, when the  time  stretching  ratio is an integer  (e.g. time  stretching by 
200 percent, 300 percent),  the  unwrapping is no longer necessary in the algorithm, 
because the 27r modulo  relation is still  preserved when the phase is multiplied by 
an integer. The key point  here is that we can  make a direct  multiplication of the 
analysis  phase to  get  the  phase for synthesis. So in this case it is more obvious and 
elegant to use the following algorithm given by  M-file 8.9. 

M-file 8.9 (VX-tstretch-int-pv.m) 

x===== this program performs time stretching using the phase 

x===== wl  and w2 windows (analysis and synthesis) 
x===== lfen is the length of the windows 
x===== ni and n2: steps (in samples) for  the analysis and synthesis 

VX-tstretch-int-pv.m 

y===== vocoder approach, with an integer ratio, with: 

clear; clf 

y----- user data ----- 
nl = 64; 
n2 = 512; 
WLen = 2048; 
W1 = hanningz(WLen1; 
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W2 = wi; 

L = length(DAFx-in) ; 
[DAFx-in,FS] = wavread(’la.wav’) ; 

DAFx-in = [zeros(WLen, 1) ; DAFx-in; . . . 
zeros(WLen-mod(L,nl),l)l / max(abs(DAFx-in)); 

X----- initializations ----- 
tstretch-ratio = n2/nl 
DAFx-out = zeros(WLen+ceil(length(DAFx-in)*tstretch-ratio) , l )  ; 
grain = zeros(WLen,l); 

tic 
%4 
pin = 0; 
pout = 0; 
pend = length(DAFx-in)-WLen; 

while  pin<pend 
grain = DAFx-in(pin+l:pin+WLen) .* wl; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
f = fft(fftshift(grain1); 
r = abs(f); 
phi = angle(f) ; 
ft = (r.* exp(i*tstretch-ratio*phi)); 
grain = fftshift(real(ifft(ft))) .*w2; 

DAFx-out(pout+l:pout+WLen) = . . .  
DAFx-out(pout+l:pout+WLen) + grain; 
pin = pin + nl; 
pout = pout + n2; 

7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

end 
%l 
toc 

y----- 1 istening  and  saving  the  output ----- 
%DAFx-in = DAFx-in(WLen+l : WLen+L) ; 
DAFx-out = DAFx-out(WLen+l:length(DAFx-out))/max(abs(DAFx-out)); 
soundsc  (DAFx-out , FS) ; 
wavwrite(DAFx-out, FS, ’1a-stretch-int-pv.wav’) ; 

8.4.4 Pitch Shifting 

Pitch  shifting is different from  frequency  shifting: a frequency  shift is an addition 
to  every  frequency, while pitch  shifting is the multiplication of every frequency by a 
transposition  factor.  Pitch shifting  can  be  directly linked to  time stretching.  Resam- 
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pling  a  time-stretched  signal  with  the inverse of the time  stretching  ratio performs 
pitch  shifting  and going back to  the initial  duration of the signal (see Fig.  8.24). 
There  are, however, alternative  solutions which allow the direct  calculation of a 
pitch  shifted version of a sound. 

lime Stretching 
(ratio N*/Nq) 

Resampling 
(ratio NdN2) 

Figure 8.24 Resampling of a time stretching algorithm. 

Filter Bank  Approach (Sum of Sinusoids) 

In  the  time  stretching  algorithm using the  sum of sinusoids (see section  8.3) we have 
an evaluation of instantaneous frequencies. As a matter of fact  transposing  all  t,he 
instantaneous frequencies can  lead to  an efficient pitch  shifting  algorithm.  Therefore 
the following steps have to be  performed (see Fig.  8.25): 

1. Calculate the phase  increment  per  sample by dcp(k) = Acp(k)/Ra. 

2. Multiply the phase  increment by the  transposition  factor t ranspo  and in- 
tegrate  the modified phase  increment  according to 4 ( n  + 1, k) = 4(n, k) + 
t ranspo  . Acp(k)/R,. 

3.  Calculate the sum of sinusoids: when the  transposition  factor is greater than 
one, keep only frequencies under  the Nyquist  frequency bin N/2.  This  can  be 
done by taking only the N/(2*transpo) frequency  bins. 

Ra - RS=Ra - . . 
n (samples) n (samples) 

Figure 8.25 Pitch  shifting  with the filter  bank  approach: the analysis  gives the tixne- 
frequency  grid  with  analysis hop size R,. For the synthesis the hop  size is set to R, = R, 
and the phase  difference  is  calculated  according to Atj(k) = transpoAcp(k). 

The following M-file 8.10 is similar to  the program given by M-file 8.7  with  the 
exception of a few lines: the definition of the hop size and  the resynthesis  phase 
increment have been  changed. 
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M-file 8.10 (VX-pitch-bank.m) 
% VX-pitch-bank.m 
x===== this  program  performs  pitch  shifting 
x===== using  the  oscillator  bank  approach,  with: 

%===== WLen:  is  the  length  of  the  windows 
x===== nl:  step  (in  samples)  for  the  analysis  and  synthesis 
x===== pit-ratio:  pitch  shifting  ratio 

x===== wl  and  w2:  windows  (analysis  and  synthesis) 

clear;  clf 

y----- user  data ----- 
nl = 512; 
pit-ratio = 1.0 
WLen = 2048; 
W1 = hanningz  (WLen) ; 
W2 = wl; 

L = length(DAFx-in) ; 
[DAFx-in, FS] = wavread( ’ la.  wav’ ) ; 

DAFx-  in = [zeros(WLen, I); DAFx-in; . . . 
zeros(WLen-mod(L,nl)  ,111 / max(abs(DAFx-in)) ; 

y----- initializations ----- 
DAFx-out = zeros(length(DAFx-in) ,l> ; 
grain = zeros  (WLen, 1) ; 
11 = WLen/2; 
omega = 2*pi*nl* CO : 11-11 ’ /WLen; 
phi0 = zeros(l1,i) ; 
rO = zeros(l1,i) ; 
psi = phi0; 
res = zeros (nl ,l) ; 

tic 
%l 

pout = 0; 
pin = 0; 

pend = length(DAFx-in)-WLen; 

while  pincpend 
grain = DAFx-in(pin+l:pin+WLen).* wl; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
fc = fft(fftshift(grain)); 
f = fc(1:ll); 
r = abs(f); 
phi = angle(f) ; 
delta-phi = omega + princarg(phi-phi0-omega); 
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delta-r = (r-rO)/nl; 
delta-psi = pit-ratio*delta-phi/nl; 
for k=l:nl 
rO = rO+delta-r; 
psi = psi+delta-psi; 
res (k) = rO'*cos  (psi) ; 
end 
% plot  (res) ;pause; 
phi0 = phi; 
rO = r; 
psi = princarg(psi) ; 
y ==----------------------------------------- 

DAFx-out(pout+l:pout+nl) = DAFx-out(pout+l:pout+nl) + res; 
pin = pin + nl; 
pout = pout + nl; 
end 

I --_-__-_---__---_-_---------------------- 

% w w v v w m r w v w w w w w t r w v w w r r w w r r r n r  
toc 

The program is derived from the time-stretching  program using the oscillator bank 
approach in a straightforward way: this  time  the hop size for analysis and synthesis 
are  the  same,  and a  pitch  transpose  argument pit must  be defined. This  argument 
will be multiplied by the  phase increment delta-phi/nl derived from the analysis 
to get  the  phase increment d-psi in the calculation loop. This  means of course that 
we consider the pitch  transposition as fixed in this  program,  but  easy changes may 
be  done to make it vary witJh time. 

Block-by-Block Approach (FFT/IFFT) 

The regular way to deal  with  pitch  shifting using this technique is first to resample 
the whole output once  computed,  but  this  can  alternatively  be  done by resampling 
the result of every IFFT  and overlapping  with  a  hop size equal to  the analysis  one 
(see Fig. 8.26). Providing that R, is a  divider of N (FFT length), which is quite  a 
natural way for time  stretching  (to  ensure  that  the  sum of the  square of windows is 
equal to  one), one  can  resample each IFFT result to a length of N 2  and overlap 
with  a  hop size of R,. Another  method of resampling is to use the  property of the 
inverse FFT: if R, < R,, we can take  an IFFT of length Ng by taking only the 

' first  bins of the initial FFT. If R, > R,, we can zero pad  the FFT, before the  IFFT 
is performed. In each of these cases the result is a  resampled  grain of length N 2 .  
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Time  Stretching Resampling 
(ratio N2/N1) (ratio N1/N2) 

0 0 
0 

0 

0 

Figure 8.26 Pitch  shifting  with  integrated  resampling:  for  each  grain a time stretching 
and  resampling are performed. An overlap-add  procedure delivers the  output  signal. 

The following M-file 8.11 implements  pitch  shifting  with  integrated  resampling 
according to Fig. 8.26. The M-file is similar to the program given by M-file 8.9, 
except for the definition of the hop sizes and  the calculation for the  interpolation. 

M-file 8.11 (VX-pitch-pv.m) 
% VX-pitch-pv.m 
x===== this  program  performs  pitch  shifting 

x===== wl  and  w2:  windows  (analysis  and  synthesis) 
x===== WLen:  is  the  length  of  the  windows 

y===== using  the  FFT/IFFT  approach 

y===== nl and n2:  steps  (in  samples)  for  the  analysis  and  synthesis 

clear;  clf 

ni = 500; 
n2 = 512; 
tstretch-ratio = n2/nl; 
WLen = 2048; 
W1 = hanningz(WLen); 
W2 = wl; 

L = length(DAFx-in) ; 
[DAFx-in,  FS] = wavread(’flute2’); 

DAFx-in = [zeros(WLen, 1) ; DAFx-in; . . . 
zeros(WLen-mod(L,ni) ,l)] / max(abs(DAFx-in)) ; 

y----- f or  linear  interpolation  of  a  grain  of  length  WLen ----- 
1x = floor(WLen*ni/n2); 
x = 1+(0:1x-I) ’*WLen/lx; 
ix = f loor(x) ; 
ixl = ix+l; 
dx = x-ix; 
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y----- lnitializations . ----- 
DAFx-out = zeros  (lx+length(DAFx-in) ,l) ; 
omega = 2*pi*nl*  CO:WLen-Il  '/WLen; 
phiO = zeros  (WLen, 1) ; 
psi = zeros  (WLen , 1) ; 

tic 
%l 
pin = 0; 
pout = 0; 
pend = length(DAFx-in)-WLen; 

delta-phi = omega + princarg(phi-phi0-omega); 
phiO = phi; 
psi = princarg(psi+delta-phi*tstretch-ratio); 

ft = (r.*  exp(i*psi)); 
grain = fftshift(real(ifft(ft))) .*w2; 

y----- interpolation 
grain2 = [grain;O] ; 
grain3 = grain2(ix).*dxl+grain2(ixl).*dx; 
% plot(grain);drawnow; 
y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DAFx-out(pout+l:pout+lx) = DAFx-out(pout+l:pout+lx) + grain3; 
pin = pin + nl; 
pout = pout + nl; 
end 
% w w m n n n n r w v v w w v w r r v u u w r r u u u w u u u w u  
toc 

y----- 1 istening  and  saving  the  output ----- 
XDAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx-out(WLen+l:WLen+L) / max(abs(DAFx-out)); 
soundsc(DAFx-out , FS) ; 
wavwrite(DAFx-out, FS, 'flute2-pitch-pv.wav'); 
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This  program is adapted from the time-stretching  program  using  the FFT/IFFT 
approach. Here the grain is linearly  interpolated before the reconstruction.  The 
length of the  interpolated  grain is now 1x and will be  overlapped and  added  with a 
hop size of n l  identical to  the analysis  hop size. In  order to speed up  the calculation 
of the  interpolation, four vectors of length 1x are precalculated  outside the main 
loop, which give the necessary parameters for the  interpolation ( i x ,   i x l ,  dx and 
dxl) .  As stated previously, the linear  interpolation is not necessarily the best  one, 
and will surely  produce  some foldover when the pitch  shifting  factor is greater  than 
one. Other  interpolation schemes can  be  inserted  instead.  Further  pitch  shifting 
techniques can  be found in [QM98, Lar98, LD99bI. 

8.4.5 Stable/Transient  Components  Separation 

This effect extracts  “stable  components” from a signal by selecting  only  points of 
the time-frequency  representation that  are considered as “stable  in  frequency”  and 
eliminating  all  the  other  grains. Basic  ideas  can be found  in [SL94]. From a musical 
point of view, one would think  about  getting only  sine waves, and leave aside  all the 
transient signals. However, this is not so: even with  pure noise, the time-frequency 
analysis  reveals  some zones where we can  have stable  components. A pulse will also 
give an analysis  where the  instantaneous frequencies are  the ones of the analyzing 
system  and  are very stable. Nevertheless this  idea of separating a sound into two 
complementary  sounds is indeed  a musically good one. The result  can  be  thought 
as  an LLetherization” of the sound for the  stable  one,  and a “fractalization” for the 
transient one. 

The algorithm for components  separation is based  on instantaneous frequency 
computation.  The  increment of the phase  per  sample for frequency bin k can  be 
derived as 

We  will  now sort  out  those  points of a given FFT that give 

where df is a  preset  value.  From (8.45) and (8.46) we can  derive the condition 

From a geometrical  point of view we can  say that  the value (P(sRa, IC) should  be in 
an angle d f R a  around  the  expected  target value (Pt(sRa, IC), as shown in Fig. 8.27. 

It is important  to  note  that  the  instantaneous frequencies may  be out of the  range 
of frequencies of the bin  itself. The reconstruction  performed by the inverse FFT 
takes only bins that follow this condition. In  other words, only gaborets  that follow 
the “frequency stability over time”  condition are kept during  the  reconstruction. 
The following M-file 8.12 follows this guideline. 
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Figure 8.27 Evaluation of stable/unstable grains. 

M-file 8.12 (VX-stab1e.m) 
% VX-stable  .m 
l===== this  program  extracts  the  stable  components  of  a  signal 
x===== wi  and  w2:  windows  (analysis  and  synthesis) 
l===== WLen:  is  the  length of the  windows 
ye=---- ---- nl  and  n2:  steps  (in  samples)  for  the  analysis  and  synthesis 

clear;  clf 

%----- user  data ----- 
test = 0.4 
ni = 256; 
n2 = nl; 
WLen = 2048; 
W1 = hanningz(WLen); 
W2 = wl; 

L = length(DAFx-in) ; 
[DAFx-in, FS] = wavread(’redwhee1  .wav’) ; 

DAFx-  in = [zeros(WLen, l) ; DAFx-in; . . . 
zeros(WLen-mod(L,nl)  ,111 / max(abs(DAFx-in)); 

y----- initializations ----- 
devcent = 2*pi*ni/WLen; 
vtest = test*devcent 
DAFx-out = zeros  (length(DAFx-in), l) ; 
grain = zeros(WLen, 1) ; 
theta1 = zeros(WLen, 1) ; 
theta2 = zeros  (WLen, L) ; 

tic 
x w m n n n n n n n r r r w r r v w v w u w w w r r w u u w r n n r u  
pin = 0 ;  
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pout = 0 ;  
pend = length(DAFx-in)-WLen; 

y----- 1 istening and saving  the  output ----- 
%DAFx-in = DAFx-in(WLen+i:WLen+L); 
DAFx-out = DAFx-out(WLen+i:WLen+L) / max(abs(DAFx-out)); 
soundsc(DAFx-out , FS) ; 
wavwrite(DAFx-out, FS, ’redwheel-stable.wav’) ; 

So the algorithm for extraction of stable  components performs the following steps: 

1. Calculate the  instantaneous frequency by making the derivative of the phase 
along the  time axis. 

2. Check if this frequency is within its  “stable  range”. 

3. Use the frequency bin or not for the  reconstruction. 

The value of vtest is particularly  important because it  determines the level of the 
selection  between stable  and  unstable  bins. 

The algorithm for transient  components  extraction is the same,  except that we 
keep only  bins  where the condition (8.47) is not  satisfied. So only  two lines have to 
be changed  according to 

test =2 % new  value  for  test 

ft = f*(abs(dev)>vtest); % new  condition 
. . .  
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In  order  to  enhance  the  unstable  grains  the value vtest is usually  higher for the 
transient  extraction. 

8.4.6 Mutation  between  Two Sounds 

The idea is to calculate an  arbitrary time-frequency  representation from two  original 
sounds  and to reconstruct  a  sound from it.  Some of these  spectral  mutations (see 
Fig. 8.28) give a flavor of' cross-synthesis and  morphing, a subject that will be 
discussed later,  but  are different from it, because  here the effect is only incidental 
while in  cross-synthesis  hybridization of sounds is the  primary objective.  Further 
ideas  can  be  found in [PE96]. There  are different ways to calculate  a new combined 
magnitude  and phase  diagram from the values of the original  ones. As stated in 
section 8.3, an  arbitrary image is not valid in the sense that  it is not the time- 
frequency  representation of a sound, which means that  the result will be musically 
biased by the resynthesis scheme that we must use. Usually phases and  magnitudes 
are calculated in an independent way, so that many  combinations are possible. Not 
all of them  are musically relevant,  and  the result  also  depends  upon the  nature of 
the  sounds  that  are combined. 

Figure 8.28 Basic  principle of spectral  mutations. 

The following M-file 8.13 performs mutation between two  sounds where the 
magnitude is coming from one  sound  and  the  phase from the  other.  Then only a 
few lines need to  be  changed to give different variations. 

M-file 8.13 (VX3utation.m) 
l VX-mutat  ion. m 
x===== this program performs a mutation between two sounds, 
x===== taking the phase of the first one and the modulus 
l===== of the second one, and using: 
x===== wi and w2 windows (analysis and synthesis) 
x===== WLen is the length of the windows 
x===== nl  and n2: steps (in samples) for the analysis and synthesis 

clear; clf 

y----- user data ----- 
ni = 512; 
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n2 = nl; 
WLen = 2048; 

W2 = wl; 
[DAFx_inl,FSl = wavread(’xl.wav’); 
DAFx-  in2 = wavread(’x2.wav’); 

W1 = hanningz  (WLen) ; 

y----- initializations ----- 

DAFx-in1 = [zeros(WLen, I); DAFx-inl; . . . 

DAFx-in2 = [zeros(WLen, 1) ; DAFx-in2; . . . 
DAFx-out = zeros(length(DAFx-in11 , 1) ; 

L = min(length(DAFx-inl) , length(DAFx-in2)) ; 

zeros(WLen-mod(L,nI) ,l)] / max(abs(DAFx-inl)); 

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-in2)); 

tic 
%l 
pin = 0; 
pout = 0 ;  
pend = length(DAFx-inl) - WLen; 

while  pincpend 
grainl = DAFx-inl(pin+l:pin+WLen).* wl; 
grain2 = DAFx_in2(pin+I:pin+WLen).* wl; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
fl = f  f  t (f f tshif  t  (grainl) ) ; 
rl = abs(f1); 
theta1 = angle(f1) ; 

r2 = abs  (f2) ; 
theta2 = angle(f2) ; 

r = rl; 
theta = theta2; 

grain = f f tshif  t  (real  (if  f  t  (f  t) )) . *w2; 

DAFx-out(pout+l:pout+WLen) = . . .  

pin = pin + nl; 
pout = pout +. n2; 

f2 = fft(fftshift(grain2)); 

y----- th e  next  two  lines  can  be  changed  according  to  the  effect 

ft = (r.*  exp(i*theta)); 

y ........................................... ................................ 
I 

DAFx-out(pout+l:pout+WLen) + grain; 

end 
%+ 
toc 

%----- listening  and  saving  the  output ----- 
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XDAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx-out(WLen+l:WLen+L) / max(abs(DAFx-out)); 

wavwrite(DAFx-out, FS, ’rlp2.wav’); 
1 soundsc (DAFx-out , FS) ; 

Possible  operations on the  magnitude  are: 

1. Multiplication of the magnitudes r=rl.*r2 (so it is an  addition in the  dB 
scale).  This corresponds to a logical “AND” operation,  because  one keeps all 
zones where energy is located. 

2 .  Addition of the magnitude: the equivalent of a logical “ O R  operation. How- 
ever, this is different from mixing,  because  one only operates  on  the  magnitude 
according to  r=rl+d!. 

3. Masking of one  sound by the  other is performed by keeping the magnitude of 
one  sound if the  other  magnitude is under  a fixed or  relative  threshold. 

Operations  on  phase  are really important for combinations of two  sounds. Phase 
information is very important  to  ensure  the validity (or  quasivalidity) of time- 
frequency  representations,  and  has an influence on the quality: 

1. One  can keep the  phase from only one  sound while changing the magnitude. 
This is a strong cue for the  pitch of the resulting  sound (theta=theta2). 

2 .  One  can add  the two  phases. In  this  cme we strongly  alter the validity of the 
image (the  phase  turns  with a  mean  double speed). We can  also  double the 
resynthesis  hop size 112=2*nl. 

3. One  can  take  an  arbitrary combination of the two  phases but  one should 
remember that phases are given modulo 27r (except if they have been un- 
wrapped). 

4. Design of an  arbitrary variation of the phases. 

As a matter of fact,  these  mutations  are very experimental,  and  are very near to 
the  construction of a true  arbitrary time-frequency  representation,  but  with some 
cues coming from the analysis of different sounds. 

8.4.7 Robotization 

This technique puts zero phase values on every FFT before reconstruction.  The 
effect applies  a fixed pitch  onto a  sound. Moreover, as  it forces the  sound to be 
periodic,  many erratic  and  random  variations  are converted into  robotic  sounds. 
The sliding FFT of pulses where the analysis is taken at the  time of these pulses 
will  give a zero phase value for the  phase of the FFT. This is a clear indication that 
putting a zero phase before an  IFFT resynthesis will give a fixed pitch  sound.  This 
is reminiscent of the PSOLA  technique, but  here we do  not  make  any  assumption 
on  the frequency of the analyzed  sound and no marker has  to be  found. So zeroing 
the  phase can be viewed from two  points of view: 
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1. The  result of an IFFT is a pulse-like sound  and  summing such grains  at  regular 
intervals gives a fixed pitch. 

2. This  can  also  be viewed as  an effect of the reproducing  kernel  on  the  time- 
frequency representation:  due to  fact that  the time-frequency  representation 
now shows  a  succession of vertical lines with  zero  values in between,  this will 
lead to  a comb filter effect during  resynthesis. 

The following M-file 8.14 demonstrates  the robotization effect. 

M-file 8.14 (VXrobot .m) 
% VX-rob0t.m 
%===== this  program  performs  a  robotization  of  a  sound,  using: 

%===== WLen  is  the  length of the  windows 
X===== wl and  w2  windows  (analysis  and  synthesis) 

X===== nl and n2:  steps  (in  samples)  for  the  analysis  and  synthesis 

clear;  clf 

y----- user  data ----- 
nl = 441; 
n2 = nl; 
WLen = 1024; 
W1 = hanningz(WLen); 
W2 = wl; 
[DAFx-in,  FS] = wavread(’redwheel.wav’); 
L = length(DAFx-in); 
DAFx-in = [zeros(WLen, l) ; DAFx-in; . . . 

zeros(WLen-mod(L,nl) ,111 / max(abs(DAFx-in)); 

y----- initializations ----- 
DAFx-out = zeros  (length(DAFx-in) , l) ; 

tic 
% w w m n r v v v w v w w v r r v v v w w l n r w u w w r n r r n r  

pout = 0 ;  
pin = 0; 

pend = length(DAFx-in)-WLen; 
while  pincpend 

grain = DAFx-in(pin+l:pin+WLen).* wl; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

f = f  f  t  (grain) ; 
r = abs(f); 
grain = fftshift(real(ifft(r))) .*w2; 

DAFx-out(pout+l:pout+WLen) = . . .  
7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DAFx-out(pout+l:pout+WLen) + grain; 
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pin = pin + nl; 
pout = pout + n2; 

end 
%X 
toc 

y----- 1 istening and saving  the output ----- 
XDAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx-out (WLen+l : WLen+L) / max(abs (DAFx-out) ; 
soundsc (DAFx-out , FS) ; 
uavurite(DAFx-out, FS, 'redwheel-robot.wav'); 

This is one of the  shortest  programs we can  have,  however,  its effect  is very  strong. 
The only  drawback is that  the nl value  in this  program  has to be an integer. The 
frequency of the  robot is Fs/nl, where Fs is the sampling  frequency. If the hop 
size is not  an  integer  value, it is possible to use an interpolation  scheme in order 
to dispatch the grain of two  samples.  This  may  happen if the  hop size is calculated 
directly  from a fundamental  frequency  value. An example is shown in  Fig. 8.29. 

Spectrogram  Robotization - Spectrogram 

T 
Y 

Phasogram Robotization - Phasogram 

n +  n +  

Figure 8.29 Example of robotization with a flute  signal. 
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8.4.8 Whisperization 

If  we deliberately  impose a random  phase  on a  time-frequency  representation, we 
can have a different behavior  depending  on  the  length of the window: if the window 
is quite  large (for  example, 2048 for a sampling rate of 44100 Hz), the  magnitude will 
represent the behavior of the  partials  quite well and changes in phase will produce 
an  uncertainty over the frequency. But if the window is small  (e.g. 64 points),  the 
spectral envelope will be  enhanced  and  this will lead to a whispering effect. The 
M-file 8.15  implements the whisperization effect. 

M-file 8.15 (VX-uhisper.m) 
% VX-whisper.m 
x===== this  program  makes  the  whisperization  of  a  sound, 
x===== by randomizing  the  phase,  using: 
x===== wl  and w2 windows  (analysis  and  synthesis) 
X===== WLen  is  the  length of the  windows 
x===== nl  and  n2:  steps  (in  samples)  for  the  analysis  and  synthesis 
clear;  clf 
y----- user  data ----- 
WLen = 512; 
W1 = hanningz(WLen); 
W2 = wl; 
nl = WLen/8; % 64; 
n2 = nl; 
[DAFx-in, SRI = wavread(’redwheel.wav’); 

DAFx-in = [zeros(WLen, l ) ;  DAFx-in; . . . 
L = length(DAFx-in); 

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-in)) ; 

y----- initializations ----- 
DAFx-out = zeros(length(DAFx-in) , l )  ; 
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DAFx-out(pout+l:pout+WLen) = . . .  

pin = pin + nl; 
pout = pout + n2; 

DAFx-out(pout+l:pOUt+WLen) + grain; 

end 
% w v w w v v w m r w w r r v w v w w u w r n r w w u w u  
toc 

y----- 1 istening and saving the output ----- 
%DAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx-out(WLen+l:WLen+L) / max(abs(DAFx-out)); 
soundsc(DAFx-out , SR) ; 
wavwrite(DAFx-out, SR, 'whisper2.wav'); 

It is also possible to make  a  random  variation of the  magnitude  and keep the 
phase. An example is shown in Fig. 8.30. This gives another way to implement 
whisperization, which can be achieved by the following MATLAB kernel: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
f = fft(fftshift(grain)); 
r = abs(f).*randn(lfen,l); 
phi = angle(f) ; 
ft = (r.*  exp(i*phi)); 
grain = fftshift(real(ifft(ft))).*w2; 

y ___---____--____--___----_-----_-----__---- 
~ __----__----___---__-----_-----_-----_----- 

8.4.9 Denoising 

A musician may  want to emphasize some specific areas of a spectrum  and lower 
the noise within a sound.  Though this is achieved more  perfectly by the use of 
a  sinusoidal  model (see Chapter 10) but  another  approach is the use of denois- 
ing algorithms. The algorithm we describe uses a  nonlinear  spectral subtraction 
technique [Vas96]. Further techniques can be  found in [Cap94]. A time-frequency 
analysis and resynthesis are performed,  with an  extraction of the  magnitude  and 
phase  information. The phase is kept as  it is, while the  magnitude is processed in 
such a way that  it keeps the high-level values while attenuating  the lower ones, in 
such  a way as  to  attenuate  the noise. This  can also be seen as a bank of noise gates 
on different channels,  because  on each bin we perform a nonlinear  operation.  The 
denoised magnitude  vector Xd(n,  k )  = f(X(n, k ) )  of the denoised signal is then  the 
output of a noise gate  with a  nonlinear  function f(x). A  basic  example of such  a 
function is f(z) = x 2 / ( x + c ) ,  which is shown in Fig. 8.31. It can  also  be seen as  the 
multiplication of the  magnitude vector by a correction  factor x/(. + c). The result 
of such  a waveshaping function  on the  magnitude  spectrum keeps the high values 
of the magnitude  and lowers the small  ones. Then  the  phase of the initial  signal is 
reintroduced  and  the  sound is reconstructed by overlapping  grains  with the help of 
an  IFFT.  The following M-file 8.16 follows this guideline. 
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Figure 8.30 Example of whisperization  with a flute  signal. 
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Figure 8.31 Nonlinear  function for a  noise  gate. 

M-file 8.16 (VX-den0ise.m) 

x VX-den0ise.m 
x===== this program makes  a  denoising of a sound, using: 
x===== wl and w2 windows (analysis and synthesis) 
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l===== WLen  is  the  length of the  windows 
x===== nl  and  n2:  steps  (in  samples)  for  the  analysis  and  synthesis 
clear;  clf 
%----- user  data ----- 
nl = 512; 
n2 = nl; 
WLen = 2048; 
W1 = hanningz  (WLen) ; 
W2 = wl; 
[DAFx-in,  FS] = wavread(’xl.wav’) ; 
y----- initializations 
L = length(DAFx-in) ; 
DAFx-in = [zeros(WLen, 1) ; DAFx-in; . . . 

WLen2 = WLen/2; 
coef = 0.01; 
f  req = (0:1:299)/WLen*44100; 
DAFx-out = zeros(length(DAFx-in),l); 

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-in)); 

tic 
x w v w m r w w w v v w w v v w m n n n r w r n r w u w u u  
pin = 0; 
pout = 0; 
pend = length(DAFx-in) - WLen; 

while  pincpend 
grain = DAFx-in(pin+l : pin+WLen) . * wl ; 

y-==---------------------------------------- ~- ______--__------------------------------ 
f = f f t  (grain) ; 
r = abs (f ) /WLen2 ; 
ft = f .*r./(r+coef); 
grain = (real(ifft(ft))) .*w2; 

DAFx-out(pout+l:pout+WLen) = . . .  

pin = pin + nl; 
pout = pout + n2; 

y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DAFx-out  (pout+l  :pout+WLen) f grain; 

end 
xwwmrwmrwwwmnnnruwwuwwwln rwrn r  
y----- listening  and  saving  the  output ----- 
toc 

XDAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx-out  (WLen+l : WLen+L) ; 
soundsc  (DAFx-out , FS) ; 
wavwrite(DAFx-out, FS, ’x1-denoise.wav’); 
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An example is shown  in  Fig. 8.32. It is of course possible to introduce different noise 
gate functions  instead of the simple ones we have chosen. 
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Figure 8.32 The left  plot  shows the windowed FFT of a flute  sound. The right  plot 
shows the same FFT after noise gating each  bin  using the  r/(r+coef) gating  function  with 
c = 0.01. 

Denoising in itself has  many variations  depending on the application: 

1. Denoising  from a tape recorder  usually starts from the analysis of a noisy 
sound  coming  from  a  recording of silence. This gives a  gaboret for the noise 
shape, so that  the nonlinear  function will be different for each  bin, and  can 
be zero  under  this  threshold. 

2. The noise level can  be  estimated in a varying  manner. For example,  one  can 
estimate a noise threshold which can  be  spectrum  dependent. This usually 
involves spectral  estimation techniques (with  the help of LPC or cepstrum), 
which will be seen later. 

3. One  can  also try  to evaluate a level of noise on successive time  instances in 
order to decrease  pumping effects. 

4. In any  case,  these  algorithms involve nonlinear  operations  and  as  such  can 
produce  artifacts. One of them is the existence of small  grains that remain 
outside the silence unlike the previous noise (spurious  components). The other 
artifact is that noise can  sometimes  be a useful component of a sound and will 
be  suppressed as undesirable noise. 

8.5 Conclusion 

The  starting point of this  chapter was the  computation of a time-frequency rep- 
resentation of a sound,  to  manipulate  this  representation  and  reproduce a sound. 
At  first  sight this  may  appear  as  an easy task,  but we have seen that  the basis 
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for this time-frequency  processing  needs a careful description of the  fundamentals, 
because  the  term vocoder can cover different implementations. We also  explained 
that  the  arbitrary manipulation of time-frequency  representations  renders  images 
in a way that  they  are  no longer  time-frequency  representations of “real” sounds. 
This phenomenon leads to  artifacts, which cannot  be avoided. 

Digital  audio effects described in this  chapter only  perform  manipulations of 
these  time-frequency  representations.  These effects exclude the  extraction of res- 
onances, which  will be  the  subject of the  next  chapter,  and high-level processing 
such  as  the  extraction of sinusoids and noise. For example,  the mentioned bank 
of filters does not  assume  any  parametric  model of the  sound. Nevertheless  such 
effects are  numerous  and diverse. Some of them have  brought new solutions to well- 
known  techniques  such as  filtering.  Pitch  shifting  and  time  stretching have  shown 
their  central place in the  phase vocoder approach, which is another  implementation 
possibility independent of the  time processing approach shown in Chapter 7. Their 
was a clear need for a clarification of the  phase vocoder approach  in  this  domain. 
Though  it  has been  known for years, we have  provided  a  general  framework and 
simple  implementations  upon which more  complex effects may  be  built.  Some of 
them  can reduce the phasinelss of the process or perform special high level process- 
ing  on  transients.  Other  digital  audio effects have  been  described that fit well under 
the  name  “mutations”.  They  are  based  on modifying the  magnitude  and  phase of 
one or two  time-frequency  representations. They  put a special flavor on  sounds, 
which musicians  characterize  as  granulation,  robotization,  homogenization, purifi- 
cation,  metallization  and so on. Once again,  the goal of this  chapter is to give a 
general  framework and unveil some of the basic implementations of these  alterations 
of sound, which can  be  extended to more  complex  modifications at will. 

This  chapter is a good starting  point for the  computer-human  interface  and  the 
digital  control of effects, but, this is beyond the scope of this  chapter. Nevertheless 
it  must  be  said  that  this  part is crucial in  the design of a digital  audio effect. We 
refer here to  Chapter 12 to see the  prospective view it  requires. 

As final remark, one can  say that no  digital  audio effect and time-frequency 
processing in particular would exist without a sound.  Only  a  good  adaptation of 
the  sound  with  the effect can give rise to musical  creativity.  This is the reason why 
some of the basic algorithms  presented  put in the  hands of creative  musicians and 
artists  can give better  resuhs  than much  more  complex  algorithms in the  hands of 
conventional  persons. 
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Chapter 9 

Source-Filter Processing 

D. Arfib, F. Keiler, U. Zolzer 

9.1 Introduction 

Time-frequency  representations  give the evolution  over time of a spectrum calcu- 
lated from temporal  frames.  The  notion of the  spectral envelope extracted from 
such  representations  mostly  comes  from  the voice production  and recognition sys- 
tem:  the voice production uses  vocal  chords as  an  excitation  and  the  mouth  and 
nose as  resonator  system  or  anti-resonator. Voiced signals (vowels) produce a har- 
monic spectrum on which a spectral envelope is superimposed.  This  fact  about voice 
strongly influences our way of recognizing other  sounds,  whether because of the  ear 
or the  brain: we are looking for such a spectral envelope as a cue to  the identi- 
fication or classification of sounds.  This  excitation-resonance  model is also called 
source-filter model in the  literature.  Thus we can  understand why the vocoding ef- 
fect,  which is the cross-synthesis of a  musical instrument  with voice, is so attractive 
for the  ear  and so resistant  to  approximations. We  will make use of a source-filter 
model for an  audio  signal  and modify this model in order to achieve different digital 
audio effects. 

However, the signal  processing  problem of extracting  a  spectral envelope  from  a 
spectrum is generally  badly  conditioned. If the sound is purely  harmonic we could 
say that  the  spectral envelope is the  curve  that passes through  the  points  related  to 
these  harmonics.  This leaves two  open questions: how to  retrieve  these  exact values 
of these  harmonics,  and  what  kind of interpolation scheme  should we use for the 
completion of the curve in between  these  points? But, more generally, if the  sound 
contains  inharmonic  partials or a noisy part,  this definition no  longer  holds and  the 
notion of a spectral envelope is then completely  dependent  on the definition of what 
belongs to  the excitation  and  what belongs to  the resonance. In a way it is more  a 
“envelope  recognition”  problem  than a “signal processing” one. 

With  this in mind we will state  that a  spectral envelope is a smoothing of a 
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I Transformation I 
4 

Synthesis 

Figure 9.1 Spectral processing  based  on  time-varying spectral envelopes and source  sig- 
nals. The analysis  performs a source and filter separation. 

spectrum, which tends  to leave aside the  spectral lines structure while preserving 
the general  form of the  spectrum.  Three techniques  with  many  variants  can be used 
for the  estimation of the  spectral envelope: 

The channel vocoder uses frequency bands  and performs  estimations of the 
amplitude of the signal  inside  these bands  and  thus  the  spectral envelope. 

Linear prediction estimates  an all-pole filter that matches  the  spectral con- 
tent of a sound.  When  the  order of this filter is low, only the formants  are 
taken, hence the  spectral envelope. 

Cepstrum techniques  perform  smoothing of the logarithm of the FFT spec- 
trum (in  decibels)  in  order to  separate  this curve into  its slow varying part 
(the  spectral envelope) and  its quickly varying part  (the source  signal). 

For each of these  techniques, we  will describe the  fundamental  algorithms in 
section 9.2 which allow the calculation of the spectral envelope and  the source 
signal in a frame  oriented  approach,  as shown in Fig. 9.1. Then  transformations  are 
applied to  the  spectral envelope and/or  the source  signal and a  synthesis  procedure 
reconstructs the  output sound. Some basic  transformations  are  introduced in section 
9.3. The  separation of a  source and a filter is only one of the features we can  extract 
from a sound,  or  more precisely from a time-frequency  representation. The final 
section 9.4 describes the  extraction of other very important  features such as  the 
pitch, the centroid,  and  the  harmonic/noise  balance, which can  be used to modify 
control  parameters for digital  audio effects. 

9.2 Source-Filter  Separation 

Digital audio  effects based  on source-filter processing extract  the  spectral envelope 
and  the  source  (excitation) signal  from an  input signal, as shown in Fig. 9.2. The 
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input signal is whitened by the filter l / H ~ ( z ) ,  which is derived from the  spectral 
envelope of the  input signal.  In  signal  processing terms,  the  spectral envelope is given 
by the  magnitude response IHl(f)l or its  logarithm log IHl(f)l in dB.  This leads to 
extraction of the source  signal e l (n )  which can  be further processed, for example, 
by time  stretching or  pitch  shifting  algorithms. The processed source  signal is then 
finally filtered by H~(z). This filter is derived  from the modified spectral envelope 
of the  input signal or  another source  signal. 

Source  Signal 

q y H  Spectral  Envelope 
Chan.  VOC. 

Cepstrum  Estimation 

L Spectral  Envelope 
Transformation 

Figure 9.2 Spectrum  estimation  (Channel  vocoder,  Linear Predictive Coding  or  Cep- 
strum)  and source  signal extraction for  individual  processing. 

9.2.1 Channel Vocoder 

If  we filter a sound  with a bank of bandpass  filters  and  calculate  the RMS value 
for each bandpass  signal, we can obtain  an  estimation of the  spectral envelope (see 
Fig. 9.3).  The  parameters of the filters for each  channel will of course affect the 
precision of the  measurement,  as well as  the delay between the sound input  and 
the  spectral calculation. The RMS calculation  parameters are also a compromise 
between a good definition and  an  acceptable delay and  trail effect. The spectral 
estimation is valid around the center  frequency of the filters. Thus  the more  channels 
there  are,  the more  frequency  points of the  spectral envelope are  estimated.  The 
filter bank  can  be defined on a linear  scale, in which case every filter of the filter bank 
can  be  equivalent in terms of bandwidth. It can  also be defined on  a  logarithmic 
scale. In  this case, this  approach is more like an “equalizer system” and  the filters, 
if given in the time  domain,  are scaled versions of a mother filter. 

The channel vocoder algorithm shown in Fig.  9.3 works in  the  time  domain. 
There is, however, a possible derivation where it is possible to calculate  the  spectral 
envelope from the FFT spectrum,  thus directly  from the time-frequency represcn- 
tations. A channel  can  be  represented in the frequency  domain, and  the energy of 
an effective channel  filter  can be seen as  the  sum of the elementary energies of each 
bin weighted by this channel filter envelope. The amplitude coming out of this filter 
is then  the  square  root of these energies. 

In  the case of filters  with  equally-spaced  channel  stacking (see Fig.  9.3b),  it is 
even possible to use a short-cut for the calculation of this  spectral envelope: the spec- 
tral envelope is the  square  root of the filtered version of the  squared  amplitudes.  This 
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Figure 9.3 (a) Channel  vocoder and (b) frequency  stacking. 

computation  can  be  performed by a  circular  convolution Y ( k )  = J I X ( k )  l 2  * w ( k )  
in the frequency  domain,  where w ( k )  may be  a  Hanning  window  function.  The cir- 
cular  convolution is accomplished by another  FFT/IFFT filtering  algorithm.  The 
result is a spectral envelope]  which is a smoothing of the FFT values. An example 
is shown in Fig. 9.4. 

Short-time  spectrum and spectral envelope 
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Figure 9.4 Spectral envelope computation with a channel  vocoder. 

The following M-file 9.1 defines channels in the frequency  domain and  calculates 
the energy  in dB inside  successive  channels of that envelope. 

M-file 9.1 (specenvcv.m) 
WLen=2048; w=hanningz(WLen); 
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buf=y(offset:offset+WLen-l).*w; 
f=f f t (buf) / (WLen/2) ; 
freq=(O:l:WLen-I)/WLen*44100; 
f  log=2O*loglO (0 . OOOOl+abs (f) ) ; 
% Frequency  window 
nob=input(’number of bins must  be even = ’ ) ;  
wl=hanningz(nob);wl=wl./sum(wl); 
f -channel= [zeros ( (WLen-nob) /2,1) ; wl ;zeros ( (WLen-nob) /2,1)1 ; 
% FFT of frequency  window 
fft-channel=fft(fftshift(f-channel)); 
f2=f.*conj(f); % Squared  FFT  values 
% Circ.  Convolution by FFT-Multiplication-IFFT 
energy=real (if f t (f f t (f 2) . *f f t-channel) ) ; 
f log-rms=lO*loglO(abs (energy)) ; 
%IO indicates a combination  with sqrt operation 
subplot(2,l,l);plot(freq,flog,freq,flog-ms); 
ylabel(’X(f)/dB’); 
xlabel(’f/Hz \rightarrow’);axis([O 8000 -110 01); 
title(’Short-time  spectrum and spectral envelope’); 

The program starts with  the calculation of the FFT of a windowed frame, where 
W is a Hanning window in this case. The vector y contains the sound  and a buffer 
buf contains a windowed segment.  In the second part of this  program f  channel 
represents the envelope of the channel  with a FFT representation. Here it is a Han- 
ning window of width nob, which is the number of frequency  bins. The calculation 
of the weighted sum of the energies inside a  channel is performed by a convolu- 
tion calculation of the energy pattern  and  the channel envelope. Here, we use a 
circular  convolution  with an  FFT-IFFT algorithm to easily retrieve the result for 
all  channels. In a way it  can be seen as a  smoothing of the energy pattern.  The 
only parameter is the envelope of the channel  filter, hence the value of nob in this 
program. The fact that  it is given in bins and  that  it should  be even is only for t,he 
simplification of the code. The bandwidth is given by nob.% ( N  is the  length of 
the  FFT). 

9.2.2 Linear Predictive  Coding  (LPC) 

One way to  estimate  the  spectral envelope of a  sound is directly  based  on a simple 
sound  production  model.  In  this  model,  the  sound is produced by passing an exci- 
tation source  (source  signal) through a synthesis  filter,  as shown in Fig. 9.5. The 
filter models the resonances and  has therefore only poles. Thus,  this all-pole filter 
represents the  spectral envelope of the  sound.  This model works well for speech, 
where the synthesis  filter models the  human vocal tract, while the  excitation source 
consists of pulses plus noise [Mak75]. For voiced sounds  the periodicity of the pulses 
determines the pitch of the sound while for unvoiced sounds the excitation is noise- 
like. 
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Excitation  source  Synthesis  filter  Sound - (spectral envelope 
model) 

Figure 9.5 Sound production model: the synthesis filter represents the spectral envelope. 

The  retrieval of the  spectral envelope  from a given  sound at a given time is 
based  on the  estimation of the all-pole synthesis filter mentioned previously. This 
approach is widely  used for speech  coding and is called linear predictive  coding 
(LPC) [Mak75, MG761. 

Analysis/Synthesis Structure 

In LPC the  current  input  sample z(n)  is approximated by a linear  combination of 
past  samples of the  input  signal.  The  prediction of z(n) is computed using an  FIR 
filter by 

k = l  

where p is the  prediction  order  and ak are  the  prediction coefficients. The difference 
between the original  input  signal z(n) and  its  prediction i ( n )  is evaluated by 

The difference signal e(.) is called residual  or  prediction  error  and  its  calculation 
is depicted  in  Fig. 9.6 where the  transversal  (direct)  FIR filter structure is used. 

Figure 9.6 Transversal FIR filter structure for the prediction error calculation. 

With  the  z-transform of the prediction  filter 

P 

k = l  

Equation (9.2) can  be  written  in  the  z-domain  as 

E(.) = X(.) - X ( . )  = X(z)[ l  - P(.)]. (9.4) 
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Figure 9.7 LPC structure with  feed  forward  prediction. (a) Analysis, (b) Synthesis. 

Figure  9.7(a)  illustrates  the  last  equation.  The  illustrated  structure is called feed 
forward  prediction where the prediction is calculated in the forward  direction from 
the  input signal. 

Defining the prediction  error  filter  or  inverse  filter 
P 

A(z)  = 1 - P ( z )  = 1 - C a k ~ - ~ ,  (9.5) 
k = l  

the prediction  error is obtained as 

E ( z )  = X ( z ) A ( z ) .  (9.6) 

The  sound signal is recovered by using the  excitation  signal E(n) as  input  to  the 
all-pole filter 

1 1 
H ( z )  = - - - 

A(z)  1 - P(,)' (9.7) 

This yields the  output signal 

Y ( z )  = B ( Z ) .  H ( z )  (9.8) 

where H ( z )  can  be realized with the FIR filter P(,) in a feedback loop as shown 
in Fig.  9.7(b). If the residual e (n ) ,  which is calculated in the analysis  stage, is fed 
directly  into  the  synthesis filter, the  input signal x(.) will be  ideally recovered. 

The  IIR filter H ( z )  is termed  synthesis  filter  or LPC filter  and represents the 
spectral  model ~ except for a gain  factor - of the  input signal ~ ( n ) .  As mentioned 
previously, this filter models the time-varying vocal tract in the case of speech 
signals. 

With  optimal filter coefficients, the residual  energy is minimized. This  can  be 
exploited for efficient coding of the  input signal where the  quantized residual E(n) = 
&{e(.)} is used as  excitation to  the  LPC filter. 

Figure 9.8 shows an example  where for a short block of a speech signal an  LPC 
filter of order p = 50 is computed.  In the left plot the  time signal is shown while 
the  right plot shows both  the  spectra of the  input signal and of the  LPC filter 
H ( z ) .  In this example the  autocorrelation  method is used to calculate  the  LPC 
coefficients. The MATLAB code for this example is given by M-file 9.2 (the used 
function calc-lpc will be explained later). 
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Figure 9.8 LPC example  for the female utterance “la” with  prediction  order p = 50, 
original  signal and LPC  filter. 

M-file 9.2 (f igure9-08 .m) 
fname=’la.wav’; 
n0=5000;  %start  index 
N=1024;  %block  length 
Nfft=1024; % FFT length 
p=50 ; %prediction  order 
ni=nO+N-i;  %end  index 

[xin , Fs]  =wavread  (f name, [no nil ) ; 
x=xin(:,l)’; % row  vecor  of  left  channel 
win=hamming(N) ’ ; % window  for  input  block 

a=calc-lpc(x.*win,p); % calculate LPC coeffs 
% a=Ci,  -a-i,  -a-2,. . . , -a-pl 
Omega=(O:Nfft-1)/Nfft*Fs/iOOO; % frequencies  in kHz 
offset=20*logi0(2/Nfft); % offset  of  spectrum  in  dB 
A=20*logiO(abs(fft(a,Nfft))); 
H=-A+offset; 
X=20*log10(abs(fft(x.*win,Nfft))); 
X=X+offset; 

Calculation of the Filter Coefficients 

To find an all-pole filter which  models  a  considered  sound well, different approaches 
may  be  taken. Some  common methods  compute  the filter coefficients from  a  block 
of the  input  signal x(n). These  methods  are namely the  autocorrelation  method 
[Mak75, Orf901, the covariance method [Mak75,  MG76], and  the  Burg  algorithm 
[Mak77, Orf901. Since both  the  autocorrelation  method  and  the  Burg  algorithm 
compute  the  lattice coefficients, they  are  guaranteed  to  produce  stable  synthesis 
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filters while the covariance method  may yield unstable filters. 
Now  we briefly describe  the  autocorrelation  method which minimizes the energy 

of the  prediction  error e(n).  With  the  prediction  error e(n)  defined in (9.2),  the 
prediction  error  energy is' 

Ep = E { e 2 ( n ) } .  

Setting  the  partial derivatives of Ep with  respect to  the filter coefficients ai (i = 
1 , .  . . , p )  to zero  leads to  

(9.10) 

= -2E {e(n)x(n - i ) }  (9.11) 

P c akE {x(. - k)z(n - i ) }  = E {$(.)X(. - i)} . (9.13) 
k = l  

Equation (9.13) is a  formulation of the so-called normal  equations [Mak75]. The 
autocorrelation sequence for a block of length N is defined by 

N-l 

r z z ( i )  = c u(n)u(n - i )  (9.14) 
n=i 

where u(n) = x(.) . w ( n )  is a windowed version of the considered  block x(n), 
n = 0, .  . . , N - 1. Normally  a  Hamming window  is used [O'SOO]. The  expectation 
values in (9.13) can  be replaced by their  approximations  using the  autocorrelation 
sequence, which  gives the  normal equations' 

(9.15) 

The filter coefficients ak (k: = 1, .  . . , p )  which model the  spectral envelope of the 
used  segment of z (n)  are  obtained by solving the  normal  equations. An  efficient 
solution of the  normal  equations is performed by the Levinson-Durbin  recursion 
[Mak75]. 

As explained in [Mak75],  minimizing the  residual energy is equivalent to finding 
a  best  spectral fit in the frequency  domain, if the gain  factor is ignored. Thus  the 
input signal x(.) is modeled by the filter 

(9.16) 

'With  the  expectation value E {.}. 
'The  multiplication of the  expectation values by the block length N does  not have any effect 

on the  normal  equations. 
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where G denotes  the  gain  factor.  With  this modified synthesis filter the original 
signal is modeled  using a white noise excitation  with  unit  variance. For the  auto- 
correlation  method  the  gain  factor is defined by [Mak75] 

P 

G2 = ~ z z ( 0 )  - C ~ ~ z z ( k )  (9.17) 
k = l  

with the  autocorrelation sequence given in (9.14). Hence the gain  factor  depends 
on the energy of the prediction  error. If IH,(ej"))2 models the power spectrum 
IX(ejn))2, the prediction  error power spectrum is a  flat spectrum  with lE(ejn)12 = 
G2. The inverse  filter A ( z )  to calculate  the  prediction  error is therefore  also called 
the "whitening filter" [Mak75]. The MATLAB code of the  function calc-lpc for 
the calculation of the prediction coefficients and  the gain  factor  using the autocor- 
relation  method is given by  M-file 9.3. 

M-file 9.3 (calc-1pc.m) 
function [a,gl=calc-lpc(x,p) 
% calculate LPC coeffs  via  autocorrelation  method 
% x:  input signal, p: prediction  order 

R=xcorr (x ,p) ; % autocorrelation  sequence R(k) with k=-p,..,p 
R(I:p)=Cl; % delete  entries for k=-p,..,-1 
if  norm(R)"=O 

% a=Ci, -a-i,  -a-2,. . . , -a-pl 
else 

a=levinson(R,p); % Levinson-Durbin  recursion 

a=C1, zeros(i,p)l; 
end 
R=R(:)';  a=a(:)'; % row  vectors 
g=sqrt(sum(a.*R)); % gain  factor 

Notice that normally the MATLAB function 1pc can  be  used,  but  with MATLAB 
release 12 (version 6) this  function  has been  changed. 

Figure  9.9 shows the prediction  error  and the  estimated  spectral envelope for the 
input signal  shown in Figure  9.8.  It  can clearly be  noticed that  the prediction  error 
has  strong  peaks  occurring  with  the  period of the fundamental  frequency of the  input 
signal. We can  make use of this  property of the prediction  error  signal for computing 
the  fundamental frequency. The fundfrequency and  its  pitch period  can 
deliver pitch  marks for PSOLA time  stretching or  pitch  shifting  algorithms  or  other 
applications. The corresponding MATLAB code is given by M-file 9.4. 

M-file 9.4 (figure9-O9.m) 
fname='la.wav'; 
n0=5000; %start index 
N=1024;  %block  length 
Nfft=1024; % FFT length 
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Figure 9.9 LPC example  for the female  utterance  “la” with prediction  order p = 50, 
prediction error and spectral envelope. 

p=50 ; %prediction  order 
nl=nO+N-l;  %end  index 
pre=p;  %filter  order=  no. of samples  required  before  nO 

[a,g]=calc-lpc(x.*win,p); % calculate LPC coeffs  and  gain 
% a=[i ,  -a-i,  -a-2, . . . , -a-pl 
g_db=20*logIO(g) % gain  in  dB 

ein=filter(a,l,xin); % pred.  error 
e=ein((l:N)+pre); % without  pre-samples 
Gp=lO*loglO(sum(x.~2)/sum(e.~2)) % prediction  gain 

Omega=(O:Nfft-l)/Nfft*Fs/lOOO; % frequencies  in kHz 
off  set=20*log10  (2/Nf  f t) ; % offset  of  spectrum  in  dB 
A=2O*loglO(abs(fft(a,Nfft))); 
H-g=-A+offset+g-db; % spectral  envelope 
X=2O*logiO(abs(fft(x.*win,Nfft))); 
X=X+offset; 

Thus for the  computation of the  prediction  error over the complete  block  length 
additional  samples of the  input signal are  required.  The  calculated  prediction  error 
signal e ( n )  is equal to  the source or excitation which has  to  be used as  input  to 
the synthesis filter H ( z )  to recover the original signal z(n). For this  example  the 
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prediction  gain,  defined  as 
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N-l c X"4 
c e 2 ( n )  

G - n=O 
p - N-l 7 

n=O 

has  the value 38 dB,  and  the gain  factor is G = -23 dB. 

(9.18) 

Figure  9.10 shows spectra of LPC filters at different filter orders for the sa.me 
signal  block as in Fig. 9.8. The  bottom line shows the  spectrum of the  signal segment 
where  only  frequencies below 8 kHz are  depicted.  The  other  spectra in this plot show 
the  results using the  autocorrelation  method  with different prediction  orders. For 
clarity  reasons  these  spectra  are  plotted  with different offsets. It is obvious that for 
an  increasing  prediction  order  the  spectral model gets  better  although  the  prediction 
gain  only  increases  from 36.6 dB ( p  = 10)  to 38.9 dB ( p  = 120). 
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Figure 9.10 LPC filter spectra for  different  prediction  orders for the female utterance 
llla" . 

In  summary,  the LPC method delivers a source-filter model and allows the de- 
termination of pitch marks or the  fundamental frequency of the  input  signal. 

9.2.3 Cepstrum 

The  cepstrum  (backward spelling of "spec") method allows the  estimation of a 
spectral envelope starting from the FFT values X ( k )  of a windowed  frame ~ ( n ) .  
Zero padding  and  Hanning,  Hamming  or  Gaussian windows can  be used  depending 
on the number of points used for the  spectral envelope estimation. An introduction 
to  the basics of cepstrum  based  signal processing can  be  found in [OS75]. The 
cepstrum is calculated  from the discrete  Fourier  transform 

N-l 

X ( k )  = c x(n)W? = I X ( k ) l e ~ ~ = ( ?  IC = 0, l , .  . . , N  - 1 (9.19) 
n=O 
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by taking  the  logarithm 

X ( k )  = logX(k) = log I X ( k ) (  + jp,(k) (9.20) 

and performing an  IFFT of X ( k ) ,  which yields the complex cepstrum 

(9.21) 

The  real  cepstrum is derived  from the real part of (9.20) given by 

and performing an IFFT of X R ( ~ ) ,  which leads to  the  real cepstrum 

- N-l 

(9.23) 
k=O 

Since X, ( lc )  is an even function, the inverse discrete Fourier transform of X,(k) 
gives an even function c(n), which  is related to  the complex cepstrum 2(n) by 

Real Cepstrum  Spectral  Envelope 

Figure 9.11 Spectxal  envelope computation by cepstrum analysis. 

Figure 9.11 illustrates  the  computational  steps for the computation of the spec- 
tral envelope from the real  cepstrum.  The  real  cepstrum c(n)  is the IFFT of the 
logarithm of the magnitude of FFT of the windowed sequence x ( n ) .  The lowpass 
window for weighting the cepstrum c(n)  is derived in [OS751 and is given by 

1 n = 0,Nl 

0 N l < n < N - l .  
wLp(n)  = { 2 1 < n < N 1  (9.24) 

with NI 5 N/2. 

The FFT of the windowed cepstrum cLp(n) yields the  spectral envelope 

C L P ( ~ )  = FFT [ c L P ( ~ ) ] ,  (9.25) 

which is a smoothed version of the  spectrum X ( k )  in dB. An illustrative  example 
is shown in  Fig. 9.12. Notice that  the first part of the cepstrum C(.) (0 < n 5 
150) is weighted by the "lowpass window" yielding cLp(n). The  IFFT of cLp(n) 
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Figure 9.12 Windowed  signal segment, spectrum (FFT length N = 2048), cepstrum, 
windowed cepstrum ( N I  = 150) and spectral envelope. 

results in the  spectral envelope C(f) in dB,  as shown in the lower right  plot.  The 
“highpass part” of the  cepstrum C(.) (150 < n 5 1024) represents  the source  signal, 
where the first  peak at n = 160 represents the pitch  period To (in  samples) of the 
fundamental frequency fo = 44100 Hz/160 = 275,625 Hz. Notice also,  although 
the  third  harmonic is higher than  the fundamental  frequency, as can  be seen in the 
spectrum of the  segment,  the  cepstrum  method allows the estimation of the  pitch 
period of the  fundamental frequency by searching for the  time index of the first 
highly significant  peak value in the cepstrum c(n)  after the “lowpass” part can  be 
considered to have  vanished. The following M-file 9.5 demonstrates briefly the way 
a spectral envelope  can  be  calculated  via the real cepstrum. 

M-file 9.5 ( s p e c e n v c e p s  .m) 
% NI: cut quefrency 
WLen=2048;  w=hanningz (WLen) ; 
buf=y(offset:offset+WLen-l).*w; 
f =f f t (buf) / (WLen/2) ; 
flog=20*log10(0.0000l+abs(f)); 
subplot(2,l,l);plot(flog(l:WLen/2)); 
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In  this  program cep represents  the  cepstrum (hence the  IFFT of the log magnitude 
of the FFT). The vector cep-cut is the version of the  cepstrum  with all values over 
the  cut index  set to zero.  Here, we use a programming  short-cut: we also remove 
the negative time values (hence the second part of the  FFT)  and use only the real 
part of the inverse FFT.  The  time indices n of the  cepstrum c(.) are also  denoted 
as "quefrencies" . The vector f log-cut is a  smoothed version of flog and  represents 
the  spectral envelope derived by the  cepstrum  method.  The only input value for the 
spectral envelope computation is the cut variable. This variable cut is homogeneous 
to a time in samples, and should  be less than  the period of the analyzed  sound. 

Source-filter  Separation 

The  cepstrum  method allows the separation of a signal y(n) = x(.) * h(n) ,  which 
is based on a  source and filter model, into  its source  signal x(.) and  its impulse 
response h(n). The discrete-time  Fourier  transform Y ( e j " )  = X(&")  .H(&) is the 
product of two  spectra:  one  representing the filter frequency response H(ej")  and 
the  other  one  the source spectrum X ( e j " ) .  Decomposing the complex values in terms 
of the  magnitude  and phase  representation,  one  can  make the  strong  assumption 
that  the filter  frequency  response will be  real valued and  the  phase will be assigned 
to  the source  signal. 

The key point  here is to use the  mathematical  property of the  logarithm  log(a. 
b) = log(a) + log(b). The real  cepstrum  method will perform a spectral envelope 
estimation  based on the  magnitude according to 

I Y ( ~ ~ ! ' ) I  = I X ( ~ ~ " ) I .  IH(ej")l 
log l y (P ) l  = log IX(ej")l+ log IH(ej")J. 

In musical terms  separating log IX(ej")l from log IH(ej")l is to  keep the slow vari- 
ation of log)Y(ej")J as a filter and  the  rapid ones as a source. In  terms of signal 
processing we would like to  separate  the low frequencies of the signal log IY(ej")l 
from its high frequencies (see Fig. 9.13). 

The  separation of source and filter  can  be achieved by weighting the  cepstrum 
c(n) = c,(n) + ch(n) with  two window functions,  namely  the "lowpass window" 
w ~ p ( n )  and  the complementary  "highpass window" w ~ p ( n ) .  This weighting yields 
c,(n) = c(n)  . w ~ p ( n )  and ch(n) = c(n)  . w ~ p ( n ) .  The low time values (low "que- 
frencies") for lowpass filtering log IY(ej")l give log IH(ej")l (spectral envelope in 
dB)  and  the high  time values (higher "quefrencies") for highpass  filtering yield 
log IX(ej")l (source estimation).  The calculation of exp(1og IH(ej")l) gives the mag- 
nitude response IH(ej")l. From this  magnitude  transfer function we can  compute  a 
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Figure 9.13 Separating source and filter. 

zero-phase filter impulse  response  according to 

h(n) = IFFT [IH(lc)I]. (9.26) 

The  cepstrum  method  has a very  good by-product.  The  combination of the highpass 
filtered  version of the  cepstrum  and  the  initial  phases from the FFT gives a  spectrum 
that  can  be considered as  the source spectrum in a source-filter model. This helps in 
designing audio effects based  on  such  a source-filter model. The  source  signal x(.) 
can  be  derived  from  the  calculation of exp(C,(k)) = JX(k)J and  the  initial  phase 
taken from Y ( k )  = l Y ( l c ) I e j ~ ~ ( ~ )  by performing  the  IFFT of IX(k)lej‘Py(k)  according 
to 

x(n)  = IFFT [ ~ ( k ) e j ‘ ~ y ( k ) ]  . (9.27) 

For finding a good threshold between low and high quefrencies, one  can  make use 
of the  fact  that quefrencies are  time  variables,  and whenever the sound is periodic, 
the  cepstrum shows  a  periodicity  corresponding to  the  pitch. Hence this value is 
the  upper  quefrency  or  upper  time  limit for the  spectral envelope. A low value 
will smoothen  the  spectral envelope, while a  higher  value will include  some of the 
harmonic  or  partial  peaks  in  the  spectral envelope. 

Hints and Drawbacks 

0 “Lowpass  filtering” is performed by windowing  (zeroing  values  over  a “cut 
quefrency”).  This  operation  corresponds  to  filtering  in  the frequency  domain 
with a sln(f) behavior.  An  alternative  version is to use a smooth  transition 
instead ofan  abrupt  cut in the  cepstrum  domain. 

0 The  cepstrum  method will  give a  spectral  estimation  that  smoothes  the  in- 
stantaneous  spectrum. However, log values  can go to  -cm for a zero  value in 
the  FFT.  Though  this rarely  happens  with  sounds coming  from the real  world, 
where the noise level prevents  such values, a good  prevention is the  limitation 
of the log value.  In  our  implementation  the  addition of a  small  value 0.00001 
to  the FFT values  limits the lower log limit to -100 dB. 



9.3 Source-Falter Transformations 315 

0 In  order  to  enhance  the  computation of the  spectral envelope, it is possible to  
use an  iterative  algorithm which calculates  only the positive difference between 
the  instantaneous  spectrum  and  the  estimated  spectral envelope in each step. 

Though  the r e d  cepstrum is widely used, it is also possible to use the complex 
cepstrum  to perform an  estimation of the  spectral envelope. In  this case the 
spectral envelope will be  defined by a  complex FFT. 

In conclusion, the  cepstrum  method allows both  the  separation of the  audio 
signal  into a source  signal  and  a filter and,  as  a  by-product,  the  estimation of t,he 
fundamental frequency,  which was already  published in [No1641 and  later  reported 
in [Sch99]. 

9.3 Source-Filter  Transformations 

9.3.1 Vocoding or Cross-synthesis 

The  term vocoder has different meanings. One is %oice-coding” and refers directly 
to speech  synthesis.  Another  meaning for this  term is the  phase vocoder, which refers 
to  the  short-time Fourier transform  as discussed in 8.2. The  last  meaning is the  one 
of the musical instrument  named  the Vocoder and  this is what  this  paragraph is 
about: vocoding or cross-synthesis. 

This effect takes  two  sound  inputs  and  generates  a  third one  which is a com- 
bination of the two input  sounds.  The general  idea is to combine  two  sounds by 
“spectrally  shaping”  the first sound by the second  one and preserving the  pitch of 
the first sound. A variant  and improvement are  the removal of the  spectral envelope 
of the  initial  sound  (also called whitening)  before  filtering  with the  spectral envelope 
of the second one. This implies the  ability  to  extract a spectral envelope  evolving 
with  time  and  to  apply  it  to a signal. 

Although  spectral  estimation is well represented by its  amplitude versus fre- 
quency representation,  most often it is the filter representation  that  can be  a  help 
in the  application of this  spectral envelope: the channel  vocoder uses the weighted 
sum of filtered bandpass  signals, the LPC calculates  an IIR filter,  and even the 
cepstrum  method  can  be seen as a circular  convolution  with an FIR filter. As this 
vocoding effect is very important  and  can give different results  depending  on  the 
technique used, we will introduce  these  three techniques  applied to  the vocoding 
effect. 

Channel Vocoder 

This  technique  uses  two  banks of filters provided by the  channel vocoder (see 
Fig. 9.14), as well as the RMS (root mean square) values  associated to  these  chan- 
nels. For each  channel  the  bandpass  signal is divided by the RMS value of this 
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channel,  and  then  multiplied by the RMS value of the  other  sound.  The  mathemat- 
ical  operation  is given by 

(9.28) 

where X R M S ~ ~  (n) and X R M S ~ ~  (n) represent the RMS values in  channel i for the two 
sounds.  One  should  be careful with  the division. Of course divisions by zero  should 
be  avoided,  but  there  should  also  be a threshold for avoiding the amplification of 
noise. This works well when  sound 2 has  a  strong  spectral  envelope, for example, a 
voice. The division by X R M S ~ ~  (n)  can  be  omitted  or  replaced by just modifying the 
amplitude of each  band.  Sound 1 can  also  be a synthetic  sound  (pulse,  sawtooth, 
square). 

S o u n d  2 BP 1 
X R M S I ~ ( ~ )  

a- BP2 

4- B P 3  

Figure 9.14 Basic  principle of spectral mutations. 

The following M-file 9.6 demonstrates  a cross-synthesis between  two  sounds 
based on the channel  vocoder  implemented by IIR filters. 

M-file 9.6 (CVCrossSynthesis.m) 
%----- USER DATA ----- 
[yI,FS] = wavread( ’guitar’) ; % reading the  two sound  files 
Y2 = wavread(’xvega’); 
1Y = min(length(yi),  length(y2)) ;% length of the signals 
res = zeros(ly, 1) ; % result  signal 
fen = C0.005 0.00631 ; % boundings of frequency band 
r = 0.99; 

epsi = 0.00001; 
X----- performing the vocoding o r  cross  synthesis  effect ----- 
for  k=1:21 

[b,  a] = chebyl(2, 3, fen) ; % chebyshev-type l filter 

1P = [l, -2*r, +r*rl % filter  used 
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zl = filter(b, a, yl); % filtering  the  two  signals 
22 = filter(b, a, y2); 
rms2 = norm(f ilter (1, lp,  22. *22)  ,2) ;% RMS value of sound  2 

% rmsl = epsi + norm(filter(1, lp, zl.*zl), 2);% with  whitening 
rmsl = l.; % without  whitening 
res = res + zl.*rms2/rmsl; % add result to  the output  buffer 
fen = fen*1.26; % width of the bandpass  filter: 

% 1/3 of an octave = 2^(1/3)”1.26 
end 
soundsc(res,FS) 

This  program  performs  bandpass filtering inside a loop. Precisely, Chebychev type 
1 filters  are  used, which are  IIR  filters  with a ripple of 3 dB  in  the passband.  The 
bandwidth is chosen as  one-third of an  octave, hence the 0.005 to 0.0063 window 
relative to half of the  sampling  rate in Matlab’s definition. Then  sound 1 and  sound 
2 are  filtered,  and  the RMS  value of the filtered sound  2 is extracted: 22 is squared, 
filtered by a two  pole filter on the x  axis,  and  its  square  root is taken.  This RIVE2 
value serves as a magnitude amplifier for the zl signal, which  is the filtered version 
of sound 1. This  operation is repeated every  one-third of an  octave by multiplying 
the frequency  window,  which is used for the definition of the  filter, by 1.26  (3rd 
root of 2). A whitening proc:ess can  be  introduced by replacing line rmsl = 1. ; with 
rmsl = epsi + norm(filter(1, Ip,  zl. *zl),  2) ;. A small  value epsi (0.01) is 
added  to  RMSl  to avoid division by zero. If epsi is greater,  the  whitening process 
is attenuated.  Thus  this value can be  used as  a  control for the  whitening. 

Linear Prediction 

Cross-synthesis  between  two  sounds can also be  performed  using  the  LPC  method 
[Moo79, KAZOO]. One filter removes the  spectral envelope of the first sound  and 
the  spectral envelope of the second  sound is  used to filter the  excitation signal of 
the first sound, as shown in Fig. 9.15. 

The following  M-file  9.7 performs cross-synthesis based  on the  LPC  method.  The 
prediction coefficients of sound 1 are used for an FIR filter to whiten the  original 
sound.  The  prediction coefficients of sound 2 are used in the feedback path of a 
synthesis  filter, which performs filtering of the excitation  signal of sound 1 with the 
spectral envelope  derived  from  sound 2. 

M-file 9.7 (LPCCrossSynthesis.m) 
X===== LPCCrossSynhesis.m ===== 
clear;  clf; 

X----- USER DATA ----- 
[DAFx-inl,FS] = wavread(’didge-court.wav’); X sound l: spectral  env. 
DAFx-in2 = wavread()song.wav’); % sound  2:  excitation 
long = 400; block  length  for  calculation  of  coefficients 
hopsize = 160;  hop  size (is 160) 
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Figure 9.15 Cross-synthesis with LPC. 

order = 20 % order  of  the LPC 
orderl = 6 order  for  the  excitation 

y----- initializations ----- 
1Y = min(length(DAFx-inl) , length(DAFx-in2)) ; 
DAFx-in1 = [zeros(order, l ) ;  DAFx-inl; . . .  

zeros(order-mod(ly,hopsize),l)] / max(abs(DAFx-inl)); 
DAFx-in2 = [zeros(order, 1); DAFx-in2; . . . 

zeros(order-mod(ly,hopsize),l)] / max(abs(DAFx-in2)); 
DAFx-out = zeros (ly ,l) ; % result  sound 
exc = zeros(ly, 1) ; % excitation  sound 

N-frames = floor((1y-order-long)/hopsize); % number  of  frames 
W = hanningz  (long) ; % window 

y----- c ross-synthesis ----- 
tic 
for  j=l:N-frames 

k = order + hopsize* 
[A, g] = lpc(DAFx-in2  (k+l 
[Al,  gl] = lpc(DAFx-inl(k+l 

gain(j) = g; 
ae = - A(2 : order+l) ; 
for  n=l:hopsize 

(j-1); % offset  of  the  buffer 
:k+long).*w,  order); 
:k+long).*w,  orderl); 

% 
% LPC coeff. of excitation 

excitationl = (Al/gl) * DAFx-inl(k+n:-l:k+n-orderl); 
exc  (k+n) = excitationl; 
DAFx-out(k+n) = ae*DAFx-out(k+n-1:-l:k+n-order)+g*excitationl; 

end 
end 
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toc 
y----- output ----- 
DAFx-out = DAFx-out(order+i:length(DAFx-out)) / max(abs(DAFx-out)); 
soundsc(DAFx-out , FS) 
wavwrite(DAFx-out, FS, 'CrossLPC') 

Cepstrum 

Signal  processing  based on cepstrum  analysis is also called homomorphic  signal 
processing [OS75, PM96]. We have seen that we can  derive the  spectral envelope 
(in  dB)  with  the  cepstrum technique.  Reshaping a sound is achieved by whitening 
(filtering)  a  sound  with the inverse spectral envelope 1/IH1( f ) l  and  then filtering 
with  the  spectral envelope (Hz(f)( of the second sound (see Fig. 9.16). The series 
connection of both filters  leads to a  transfer  function H ~ ( f ) / H l ( f ) .  By taking  the 
logarithm  according to  logIHz(f)l/lHl(f)l = log I H 2 ( f ) l -  log(Hl(f)l ,   the filtering 
operation is based  on the difference of the two  spectral envelopes. The first  spec- 
tral envelope performs the whitening by inverse filtering and  the second spectral 
envelope introduces the formants. The inverse filtering of the  input  sound 1 and 
subsequent  filtering  with  spectral envelope of sound 2 can  be performed in one  step 
by the fast  convolution  technique. 

l W: Filter 

Figure 9.16 Basic  principle of homomorphic  cross-synthesis.  The spectral envelopes of 
both sounds are  derived by the cepstrum method. 

Here we present the core of a program given by  M-file 9.8 that uses the spectral 
envelope of a sound  (number 2) to  be superimposed  on a sound  (number 1). Though 
musically very effective, this first  program  does  not  do  any  whitening of sound 1. 

M-file 9.8 (CepstrumCrossSynthesis.m) 
% CepstrumCrossSynthesis.m 
clear all;  close  all 
x-- - - -  USER DATA ----- 
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CDAFx-inl, FS] = wavreadodidge-court.wav’); sound  1:  excitation 
DAFx-in2 = wavread(’la.wav’); % sound  2:  spectral  envelope 
WLen = 1024; % window  size 
nl = 256; % hop  size 
order1 = 30; % cut  quefrency  for  sound  1 
order2 = 30; % cut  quefrency  for  sound  2 

y----- initializations ----- 
W1 = hanningz(WLen); % analysis  window 
W2 = wl; % synthesis  window 
WLen2 = WLen/2 
grainl = zeros(WLen,l); 
grain2 = zeros(WLen,l) ; 
pin = 0; % start  index 

pend = L - WLen; % end  index 
DAFx-in1 = [zeros(WLen, l) ; DAFx-inl; . . . 

DAFx-in2 = [zeros(WLen,  1) ; DAFx-in2; . . . 

DAFx-out = zeros(L,l); 

L = min(length(DAFx-inl)  ,length(DAFx_in2)) ; 

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-inl)); 

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-in2)); 

y----- cross-synthesis ----- 
while  pincpend 

grainl = DAFx-inl(pin+i:pin+WLen).* wl; 
grain2 = DAFx_in2(pin+i:pin+WLen) .* wi; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
f i  = f  f  t  (grainl) ; 

f = fft(grain2)/WLen2; 
flog = log(O.OOOOI+abs(f)); 
CeP = ifft(f1og); % cepstrum  of  sound 2 
cep-coupe = [cep(i)/2;  cep(2:orderl);  zeros(WLen-orderl,l)]; 
flog-coupe = 2*real(fft(cep_coupe)); 
f2 = exp (f log-coupe) ; % spectral  env.  of  sound  2 

grain = (real(ifft(fI.*f2))).*~2;% resynthesis  grain 

DAFx-out(pin+i:pin+WLen) = DAFx-out(pin+i:pin+WLen)+grain; 
pin = pin + nl; 

y ........................................... 
D ----------- 

end 

%----- listening  and  saving  the  output ----- 
%DAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx-out(WLen+l:length(DAFx-out))/max(abs(DAFx-out)); 
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soundsc (DAFx-out ,W) ; 
wavwrite(DAFx-out,FS,’CrossCepstrum” 

In this  program nl repesents a hop size, and grainl and grain2 windowed buffers 
of soundl and sound2. f 1 is the FFT of grainl and f2 is the  spectral envelope 
derived  from the FFT of grain2 Although  this  algorithm  performs a circular  con- 
volution, which theoretically  introduces  time  aliasing,  the  resulting  sound  does  not 
have artifacts. 

Whitening soundl before  processing it  with the  spectral envelope of sound2 
can  be  done in a combined step: we calculate the  spectral envelope of soundl and 
subtract  it  (in  dB) from the  spectral envelope of sound2. The following code lines 
given by  M-file 9.9 perform a whitening of soundl and  a cross-synthesis with sound2. 

M-file 9.9 (CepstrumWhiteningCS .m) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

fl = fft(graini)/WLen2; 
flog = log(O.OOOOl+abs (f l)) ; 

CeP = fft(fl0g); % cepstrum of sound I 
cep-coupe = [cep(l)/2;  cep(2:orderl);  zeros(WLen-order1,l)l ; 
flog-coupe1 = 2*real(ifft(cep_coupe)); spectral env. of sound 2 

f2 = fft(grain2)/WLen2; 
flog = log(0.0000l+abs(f2)); 
CeP = ifft(f1og); % cepstrum of sound 2 
cep-coupe = [cep(l)/2; cep(2:order2);  zeros(WLen-order2,1)] ; 
flog-coupe2 = 2*real(fft(cep_coupe)); % spectral env. of sound 2 

In  this  program flogcoupel and f  logcoupe2 represent  (in  dB)  the  spectral  en- 
velopes  derived  from grainl and grain2 for a predefined cut quefrency. Recall that 
this value is given in samples. It should  normally  be below the  pitch  period of the 
sound,  and  the lower it  is,  the more  smoothed  the  spectral envelope will be. 

9.3.2 Formant  Changing 

This effect produces  a  “Donald  Duck” voice without  any  alteration of the  funda- 
mental frequency. It  can  be used for performing an  alteration of a sound  whenever 
there is a  formant  structure. However, it  can also be  used in conjunction  with  pitch 
shifted  sounds for recovering a natural  formant  structure (see section 9.3.4). 

The musical  goal is to remove the  spectral envelope  from  one  sound and  to im- 
pose another  one, which is a warped  version of the first one,  as  shown  in  Fig. 9.17, 
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f f 

Whitened  signal 
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Removal of spectral  envelope  Applying  scaled  spectral  envelope 

Figure 9.17 Formant changing by frequency  scaling the spectral envelope and time- 
domain  processing. 

where the signal  processing is also  illustrated.  This  means that we have to use a 
spectral  correction  that is a ratio of the two  spectral envelopes. In this way the 
formants, if there  are any, are changed  according to  this warping  function. For ex- 
ample,  a  transposition of the  spectral envelope by a factor of two will  give a  “Donald 
Duck” effect without  time  stretching.  This effect can  also  be seen as a  particular 
case of cross-synthesis,  where the modifier comes from an interpolated version of 
the original sound.  Though  transposition of the  spectral envelope is classical,  other 
warping  functions  can  be  used. 

From  a  signal  processing  point of view the  spectral correction for formant  chang- 
ing  can  be seen in the frequency  domain as H2(f)/H1 ( f ) .  First divide by the spec- 
tral envelope Hl(f) of the  input  sound  and  then multiply by the frequency  scaled 
spectral envelope H2(f). In  the  cepstrum  domain  the  operation Hz(f)/Hl(f) leads 
to  the  subtraction C,( f )  - Cl(f), where C ( f )  = logIH(f)l. When using filters for 
time-domain  processing, the transfer  function is Hz(f)/Hl(f) (see Fig. 9.17). We 
will shortly  describe  three different methods for the  estimation of the two  spectral 
envelopes. 

Interpolation of the Input  Signal 

The  spectral envelopes Cl ( f )  and Cz(f), or filters H1 ( f )  and H2(f) can  be  obtained 
by different techniques. If C2(f) is a  frequency  scaled version of C1 (f) ,  one  can 
calculate the  spectral envelope C2(f) from the analysis of a  transposed version 
of the  initial  signal, as shown in  Fig. 9.18. The  transposed version is obtained 
by time-domain  interpolation of the  input signal. The channel  vocoder, LPC and 
the  cepstrum  method allow the estimation of either the  spectral envelope or the 
corresponding  filter.  One  must  take  care to keep synchronicity between the two 
signals. This  can  be achieved by changing the hop size according to  this ratio. The 
algorithm works as follows: 

Whitening:  filter the  input signal  with  frequency  response 1 or  subtract 
H1 (f 1 
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the  input  spectral envelope C,( f )  = log JH1 ( f ) l  from the log of input magni- 
tude  spectrum. 

0 The filter H I (  f )  or the spectral envelope C1 ( f )  is estimated  from the  input 
signal. 

0 Formant  changing:  apply the filter  with  frequency  response Hz( f )  to the 
whitened  signal  or add  the  spectral envelope Cz(f) = log IHz(f)l to  the 
whitened log of the  input  magnitude  spectrum. 

0 The filter Hz(f) or the  spectral envelope Cz(f) is estimated from the inter- 
polated  input signal. 

H$) 

Cham Voc. 

Cepstrum 
LPC - - - I  

Tlmedomain 
Interpolation 

Chan. VOC. 
Lpc __....--__. I 

Cepstrum 

Figure 9.18 Formant  changing  by  time-domain  processing. 

Formant  changing  based  on the  cepstrum analysis is shown in Fig. 9.19. The  spectral 
correction is calculated from the difference of the log values of the  FFTs, of both  the 
input signal and  the  interpolated  input signal. This log difference is transformed to 
the  cepstrum  domain, lowpass weighted and  transformed back by the exponential 
to  the frequency  domain. Then,  the filtering of the  input signal  with the  spectral 
correction  filter Hz(z)/HI(z) is performed in the frequency  domain. This  fast con- 
volution is achieved by multiplication of the corresponding  Fourier  transforms of 
the  input signal and  the  spectral correction  filter. The result is transformed  back 
to  the time  domain by an IFFT yielding the  output signal. An illustrative  example 
is shown in  Fig.  9.20. The M-file 9.10  demonstrates  this  technique. 

e w  

wLp(n) Spectral  Envelope 

Figure 9.19 Formant  changing by frequency-domain  processing:  cepstrum  analysis,  spec- 
tral correction  filter  computation and fast  convolution. 
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Figure 9.20 Example of formant changing: the upper plot shows the  input spectrum and 
the middle plot the spectrum of the interpolated signal.  The lower plot shows the result of 
the formant changing operation, where the spectral envelope of the interpolated spectrum 
can be noticed. 

M-file 9.10 (UXfmove-cepstrum.m) 
% UX-fmove-cepstrum.m 
c l e a r ;   c l f ;  

X----- USER DATA ----- 
[DAFx-in,  FS] = wavread(’la.wav’) ; % sound f i l e  
warping-coef = 2.0 ;  
n l  = 512; % ana lys i s  hop s i z e  
n2 = n l ;   s y n t h e s i s  hop size 
WLen = 2048; % window length  
W 1  = hanningz(WLen); % ana lys i s  window 
W2 = wl; % syhnthes is  window 
order  = 50; % cut quefrency 

”/---- i n i t i a l i z a t i o n s  ----- 
WLen2 = WLen/2; 
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L = length(DAFx-in) ; 
DAFx-in = [zeros(WLen, l) ; DAFx-in; . . . 
DAFx-out = zeros  (L, 1) ; 

lmax = max W e n ,  t ( WLen) ) 

zeros(WLen-mod(L,nl)  ,111 / max(abs(DAFx-in)); 

t = I + floor(  (O:WLen-l)*warping-coef 1 ; % warping 

grain1 = DAFx-in(pin+t).* wl; % linear  interpolation  of  grain 

flogs1 = 20*10g10(0.00001 + abs(fl));%  loglXl(k) I 
flog = log(O.OOOOl+abs(fl)) - log(O.OOOOl+abs(f)); 
cep = ifft(f1og); % cepstrum 
cep-coupe = [cep(l)/2;  cep(2:order) ; zeros(WLen-order,l)] ; 

f l  = fft(graini)/WLen2; % spectrum  of  interp.  grain 

corr = exp(2*real(fft(cep_coupe)));% spectral  envelope 
grain = (real  (iff  t  (f . *corr) ) ) . *w2; 

fout = fft(grain); 
f logs2 = 20*log10 (0 . OOOOl+abs (f  out) ) ; 

X----- figures  for  real-time  spectral  envelope  up  to  FS/2 ----- 
subplot  (3, l ,  l) ; plot ( (l : WLen2/2)  *44100/WLen,  f  logs (l : WLen2/2) ) ; 
title(’a)  original  spectrum’);  drawnow; 
subplot(3,1,2);plot((l:WLen2/2)*44lOO/WLen,flogsl(l:WLen2/2)); 
title(’b)  spectrum  of  time-scaled  signal’); 
subplot  (3,1,3)  ;plot ( (1 : WLen2/2)  *44100/WLen,f  logs2 (l : WLen2/2) ) ; 
title( c) formant  changed  spectrum’) ; 
xlabel(’f  in Hz \rightarrow’); 
drawnow 

yo =------------------------------------------ .......................................... 
DAFx_out(pout+l:pout+WLen)=DAFx-out(pout+l:pout+WLen)+grain; 
pin = pin + nl; 
pout = pout + n2; 
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end 
% v v w v w v v w v w w m n n r v v v w u w u w w w r n n r u  
toc 

”/---- 1  istening  and  saving the output ----- 
XDAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx-out(WLen+l:WLen+L) / max(abs(DAFx-out)); 
XDAFx-out = DAFx-out / max(abs(DAFx-out)); 
soundsc  (DAFx-out , FS) ; 
wavwrite(DAFx-out, FS, ’1a-rnove.wav’); 

Interpolation or Scaling of the Spectral Envelope 

The direct  warping is also  possible, for example, by using the  interpolation of the 
spectral envelope  derived  from a cepstrum  technique: Cz(f) = C1 ( k . f )  or Cz(f/k) = 
C1 (f). There  are, however, numerical  limits: the  cepstrum  method uses an FFT and 
frequencies  should be below half of the sampling frequency. Thus, if the  transposition 
factor is greater  than  one, we will get only a part of the initial envelope. If the 
transposition  factor is less than one, we will have to zero-pad the rest of the  spectral 
envelope to go up to half of the sampling frequency. The block diagram for the 
algorithm  using the  cepstrum analysis method is shown in Fig. 9.21. The following 
M-file 9.11 demonstrates  this  method. 

x(n) 1 H2(z) I Y@) 
0- T 

C1 input  spectral  envelope 
CZ scaled  input  spectral  envelope 

Figure 9.21 Formant  changing by scaling the spectral envelope. 

M-file 9.11 (UX-fomove-cepstrum.m) 
% UX-fomove-cepstrum.m 
clear; clf ; 

%v---- USER  DATA ----- 
[DAFx-in, FS] = wavread(’la.wav’); % sound file 
warping-coef = 2.; 
nl = 512; % analysis  hop  size 
n2 = nl; % synthesis  hop  size 
WLen = 2048; % window  length 
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W1 = hanningz(WLen); % analysis  window 
W2 = wl; % syhnthesis  window 
order = 50; % cut  quefrency 

y----- initializations ----- 
WLen2 = WLen / 2; 
L = length(DAFx-in) ; 
DAFx-in = [zeros(WLen,  1) ; DAFx-in; . . . 

DAFx-out = zeros  (L, 1) ; 
zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-in)); 

x0 = floor(min((i+(O:WLen2)/warping-~oef), I+WLen2)); 

X = [x0 , x0  (WLen2 : -1 : 2) 3 ; % symmetric  extension 
% apply  the  warping 

tic 
%P 
pin = 0; 
pout = 0; 
pend = L - WLen; 

-order, I) 1 ; 

DAFx-out  (pout+l  :pout+WLen) = DAFx-out  (pout+l  :pout+WLen) + grain; 
pin = pin + nl; 
pout = pout + n2; 

end 
% w w m n n n n n n n r v w w m r w w u w w w w r r u w r n r  
toc 

y----- 1 istening and saving  the  output ----- 
IDAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx-out(WLen+l:WLen+L) / max(abs(DAFx-out)); 
soundsc(DAFx-out , FS) ; 
wavwrite(DAFx-out, FS, '1a-rnove.wav'); 
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Direct Warping of Filters 

A direct  warping of the  spectral envelope filter H l ( z )  to Hz(z )  is also possible. 
The warping of a filter  transfer  function  can  be  performed by the allpass  function 
*-l + z --cy 

the warped  transfer  function H z ( z ) .  Further  details  on warping  can  be  found in 
Chapter 11 and in [Str80, LS81, HKS+00]. 

-1 

1-CYt-1. Substituting 2-l in the transfer  function H l ( z )  by - yields 

Figure 9.22 A possible implementation of spectral interpolation between  two sounds. 

9.3.3 Spectral Interpolation 

Spectral  interpolation  means  that  instead of mixing  two  sounds, we mix their ex- 
citation signals  independently of their  spectral envelopes, as shown in Fig. 9.22. If 
we have the decomposition of sound  grains in the frequency  domain  according to 
E ( f ) . H ( f ) ,  where E(f) represents the Fourier  transform of the  excitation  and H ( f )  
is the  spectral envelope ( H ( f )  = exp[C(f)]), we can  perform spectral  interpolation 
between two  sounds by mixing  according to 

y(f) = [ e l & ( f )  + ez&( f ) ]  . [ ~ H l ( f )  + czffz(f)l. (9.29) 

The excitation  grains  and  the  spectral envelopes are  added.  This  transformed rep- 
resentation is then used for the resynthesis  operation. We introduce  cross-terms by 
this  method, which musically means that  the excitation  source of one  sound  also 
influences the  spectral envelope of the second and conversely. For regular mixing 
of two  sounds  the  result would be k lEl  ( f )  . Hl(f) + k z & ( f )  . Hz(!).  The M-file 
9.12 performs  time-varying  spectral  interpolation between two  sounds. We go from 
a  first  sound to  another  one by independently  mixing  the  sources  and  resonances of 
these  two  sounds. 

M-file 9.12 (UX-spectral-interp.m) 
% UX-spectral-interp .m 



9.3 Source-Filter  Transformations 329 

% k  (spectral  mix) 
% =O ->x1  =1->x2  in  between  spectral  interpolation 
% in  this  example k is  calculated  at  every  step 

so we  move  from  sound l to  sound 2; 

clear;  clf 

x-- - - -  USER DATA ----- 
[DAFx-inl,FS] = wavread(’c1aire-oubli-voix.WAV’); x sound l 
DAFx-  in2 = wavread(’c1aire-oubli-flute.WAV’); % sound 2 
nl = 512; % analysis  hop  size 
n2 = nl; % synthesis  hop  size 
WLen = 2048; % window  length 
W1 = hanningz(WLen); % analysis  window 
W2 = wl; % synthesis  window 
cut = 50 % cut  quefrency 

y----- lnitializations . ----- 
L = min(length(DAFx-inl)  length(DAFx-in2)) ; 
DAFx-in1 = [zeros(WLen, I); DAFx-inl; . . .  

DAFx-in2 = [zeros(WLen, I) ; DAFx-in2; . . . 

DAFx-out = zeros  (length(DAFx-inl) ,l) ; 

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-inl)); 

zeros(WLen-mod(L,nl)  ,113 / max(abs(DAFx-in2)); 

tic 
% w v v w w m n n n r v w w v v w w v u w r n n r w u w w u  
pin = 0; 
pout = 0; 
pend = L - WLen; 
while  pincpend 

x-- - - -  here  is  the k factor  varies  between 0 and l 
k = pin/pend;  spectral  mix 
kP = l-k; 

grain1 = DAFx-inl(pin+i  :pin+WLen). * wl; 
grain2 = DAFx_in2(pin+I:pin+WLen).* wi; 

fl = fft(fftshift(grain1)); 
flog = log(O.O0001+abs(fl)); 
cep = fft(f1og) ; 
cep-cut = [cep(1)/2;  cep(2:cut) ; zeros(WLen-cut,l)l; 
flog-cut1 = 2*real(ifft(cep_cut)); 
spec1 = exp(flog-cut1) ; spectral  shape  of  sound 1 

y------------------------------============= 
0 
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f2 = fft(fftshift(grain2)); 
flog = log(O.O00Oi+abs(f2)); 
cep = fft(f1og); 
cep-cut = [cep(I)/2;  cep(2:cut); zeros(WLen-cut,~)l; 
flog-cut2 = 2*real  (iff  t  (cep-cut) ) ; 
spec2 = exp(f  log-cut2) ; % spectral  shape  of  sound 2 

y----- h  ere  we  interpolate  the  spectral  envelopes  in  dB 
spec = exp(kp*flog~cutl+k*flog~cut2); 

y----- 1 istening  and  saving  the  output ----- 
%DAFx-in = DAFx-inl(WLen+l:WLen+L); 
DAFx-out = DAFx-out(WLen+i:WLen+L) / max(abs(DAFx-out)); 
soundsc  (DAFx-out , FS) ; 
wavwrite(DAFx-out, FS, ’spec-interp.wav’); 

Spectral  interpolation is the first step  towards  morphing,  a  term borrowed  from 
the visual  domain  but  with  a  much  more  ambiguous  meaning  in the  audio  domain. 
Time  synchronization  between  the  two  sounds  has to be  taken  into  account.  The 
matter of pitch  interpolation  should  be different from the mixing of excitation signals 
as  it is presented  here.  Morphing  usually relies on  high level attributes  and  spectral 
interpolation  and follows more  complicated  schemes,  such  as  shown in Fig. 9.22. 
Advanced methods will be  discussed in Chapter 10. 

9.3.4 Pitch Shifting with Formant Preservation 

In  Chapter 7, we saw  some  pitch  shifting algorithms which transpose  the  entire 
spectrum,  and  consequently  the  spectral envelope. This typically alters  the voice 
giving  a  “Donald  Duck” or “barrel” feeling. For  pitch  shifting a sound  without 
changing its  articulation, i.e. its  formant  structure,  one  has to keep the  spectral 
envelope of the original  sound. 

Inverse  Formant  Move plus Pitch Shifting 

A possible way to  remove the  artifacts is to  perform a formant move in the inverse 
direction of the pitch  shifting.  This  process  can  be  inserted  into  a FFT/IFFT based 
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Figure 9.23 Pitch shifting  with  formant  preservation: the pitch  shifting is performed in 
the frequency  domain. 

pitch  shifting  algorithm before the  reconstruction,  as shown in Fig. 9.23. For this 
purpose we have to calculate a correction  function for this  formant move. 

The following algorithm (see M-file 9.13) is based  on the  pitch shifting  algorithm 
described  in Chapter 8 (see section  8.4.4). The only  modification is a formant move 
calculation before the  reconstruction of every  individual  grain which  will be over- 
lapped  and  added. For the formant move calculation, a crude  interpolation of the 
analysis  grain is performed, in order to recover two  spectral envelopes: the one of the 
original  grain and  the  one of its  pitch-transposed version. From these  two  spectral 
envelopes the correction  factor is computed (see previous  section) and applied to 
the  magnitude  spectrum of the  input signal before the reconstruction of the  output 
grain (see Fig. 9.23). 

M-file 9.13 (UX-pitch-pvmove .m) 
% UX-pitch-pv-move.rn 
clear;  clf 

X----- USER DATA ----- 
CDAFx-in,  FS] = wavread(  ’1a.wav’); X sound  file 
nl = 512; % analysis  hop  size 

n2 256; % synthesis  hop  size 

WLen = 2048; % window  length 

% try  nl=400  (pitch  down)  or 150 (pitch  up) 

% keep it a  divisor  of  WLen  (256 is good) 

W1 = hanningz(WLen); % analysis  window 
W2 = wl; synthesis  window 
order = 50; % cut  quefrency 

y----- initializations ----- 
ral = n2/nl; 
WLen2 = WLen/2 ; 
% f o r  linear  interpolation of a  grain of length  WLen 



332 9 Source-Filter Processing 

lx = floor  (WLen*nl/n2) ; 
X = 1 + (O:lx-i)'*WLen/lx; 
ix = floor (x) ; 
ix l = ix + l; 
dx = x - ix; 
dx 1 = 1 - dx; 
warping-coef = ni/n2 

lmax = max  (WLen, t (WLen) 1 

DAFx-in = [zeros(WLen, 1) ; DAFx-in; . . . 

DAFx-out = zeros  (lx+length(DAFx-in) ,l) ; 
omega = 2*pi*nI*  [O:WLen-il  '/wLen; 
phiO = zeros(WLen,l); 
psi = zeros(WLen, 1) ; 

t = I + floor ( (0 : Wen-I) *warping-coef) ; 

L = length(DAFx-in); 

zeros(WLen-mod(L,ni)  ,l)] / max(abs(DAFx-in)) ; 

tic 
% w w v v w w r r w m n r w v w w w w u w u w u w w u  
pin = 0; 
pout = 0; 
pend = L - lmax; 

delta-phi = omega + princarg(phi-phi0-omega); % phase  unwrapping 
phiO = phi ; 
psi = princarg(psi+delta-phi*ral); 

X----- formant  move ----- 
grainl = DAFx-in(pin+t) . *  wl; 

flog = log(0.00001+abs(fl))-log(O.OOOOl+abs(f)); 
cep = ifft(f1og); 
cep-cut = [cep(l)/2;  cep(2:order);  zeros(WLen-order,l)] ; 
corr = exp(2*real(fft(cep_cut))); 

fl = f f t (grainl)  /WLen2; 

ft = (r.*  corr.*  exp(i*psi)); 
grain = fftshift(real(ifft(ft))).*w2; 

%----- interpolation ----- 
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grain2 = [grain; 01 ; 
grain3 = grain2(ix).*dxl+grain2(ixl).*dx; 
% plot (grain) ; drawnow; 

DAFx-out(pout+l:pout+lx) = DAFx-out(pout+l:pout+lx) + grain3; 
pin = p i n  + nl; 
pout = pout + nl; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

end 

toc 

y----- 1 istening and saving the output ----- 
DAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx-out(WLen+l:WLen+L) / max(abs(DAFx-out)); 
soundsc(DAFx-out, FS) ; 
wavwrite(DAFx-out, FS, 'xl-pitch-pv-move.wav'); 

An illustrative  example of pitch  shifting  with  formant  preservation is shown in 
Fig. 9.24. The  spectral envelope is preserved and  the pitch is increased by a  factor 
of two. 

0 
(a) original spectrum 

l l l l l l l l l 

-50 

-1 00 
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

(b) pitch shifting with formant presetvation 

f in Hz --f 

Figure 9.24 Example of pitch  shifting  with  formant  preservation. 

Resampling plus Formant  Move 

It is also possible to  combine an interpolation  scheme  with  a  formant move inside an 
analysis-synthesis  loop. The block diagram in Fig. 9.25 demonstrates  this  approach. 
The  input segments are  interpolated  from  length NI  to  length N Z .  This  interpolation 
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Figure 9.25 Pitch shifting  with  formant  preservation: the pitch  shifting is performed in 
the time domain. 

or resampling  also  changes the  time  duration  and  thus  performs  pitch  shifting in 
the  time  domain.  The  resampled segment is then  applied  to  an  FFT/IFFT-based 
analysis/synthesis  system, where the  correction  function for the  formant move is 
computed by the  cepstrum  method.  This  correction  function is based on the  input 
spectrum  and  the  spectrum of the  interpolated  signal  and is computed  with the 
help of the  cepstrum  technique.  Then  the  correction  function is applied to  the 
interpolated  input  spectrum by the  fast convolution  technique. The following M- 
file 9.14 performs  interpolation of successive  grains with a ratio given by the two 
numbers R, = nl and R, = n2 and  performs a formant move to recover the original 
spectral envelope. 

M-file 9.14 (UX-interpm0ve.m) 
% UX-interp-move.m 
clear;  clf 

%----- USER DATA ----- 
CDAFx-in,  FSI = wavread(  la.wav7) ; % sound  file 
nl = 400; % analysis  hop  size 

n2 = 256; % synthesis  hop  size 

WLen = 2048; % window  length 

% try nl=400 (pitch  down)  or 150 (pitch  up) 

% keep  it  a  divisor  of  WLen  (256  is  good) 

W1 = hanningz(WLen) ; % analysis  window 
W2 = wl; % synthesis  window 
order = 50; % cut  quefrency 

y----- initializations ----- 
r  a1 = n2/nl 
WLen2 = WLen/2; 

lx = floor (~~en*nl/n2) ; 
X = I + (~:WLen-l)'*lx/WLen; 

for linear  interpolation  of  a  grain of length  WLen 
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ix 
ixl 
dx 
dx  1 
warping-coef 
lmax 
L 
DAFx-in 
DAFx-out 

= floor (x) ; 
= ix + 1; 
= x - ix; 

= nl/n2; 
= max  (WLen,  1x1 
= length  (DAFx-in) ; 
= [zeros  (WLen, l) ; DAFx-in1 / max(abs  (DAFx-in)) ; 
= zeros(ceil(ral*length(DAFx-in)),l); 

= l - dx; 

tic 
% w m n n n n r r r m n n n r v v w r n n n n r r r w u w r n r w w u u u u  
pin = 0; 
pout = 0; 
pend = L - lmax; 

while  pincpend 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  a- 

y----- interpolated  grain 

fl = f  f  t  (grainl)  /WLen2; 
%----- reference  grain  for  formant  matching 

f2 = fft(grain2)/WLen2; 
%----- correcting  factor  for  spectral  envelope 

grainl = (DAFx-in(pin+ix).*dxl + DAFx-in(pin+ixl).*dx).* wl; 

grain2 = DAFx-in(pin+l:pin+WLen).* wl; 

flog = log(0.0000l+abs(f2))-log(O.OOOOl+abs(fl)); 
cep = ifft(f1og) ; 
cep-cut = [cep(l)/2;  cep(2:order);  zeros(WLen-order,l)]; 
corr = exp(2*real(fft(cep_cut))); 
%----- so now  make  the  formant  move 
grain = fftshift(real(ifft(fl.*corr))).*w2; 
% plot(grain);drawnow; 

DAFx-out(pout+l:pout+WLen) = DAFx-out(pout+l:pout+WLen) + grain; 
pin = pin + nl; 
pout = pout + n2; 

r------------------------------------------- ............................................ 

end 
% v w v v w v v u w w m n n r w u w v w w l n n n n r u w w u  
toc 

y----- 1' lstening  and  saving  the  output ----- 
DAFx-in = DAFx-in(WLen+l:WLen+L); 
DAFx-out = DAFx-out(WLen+l:length(DAFx-out)) / rnax(abs(DAFx-out)); 
soundsc  (DAFx-out , FS) ; 
wavwrite  (DAFx-out , FS, 'xl-interp-move.  wav' ) ; 
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Resampling of the Excitation Signal 

Instead of moving the formants, an  alternative technique is to calculate an excitation 
signal by removing the  spectral envelope, to process the excitation  signal by a  pitch 
shifting  algorithm  and to filter the  pitch shifted  excitation  signal  with the original 
spectral envelope. LPC algorithms  can  be used for this  approach.  Figure 9.26 shows 
a block diagram of pitch  shifting  with  formant  preservation using the  LPC  method. 
First, a predictor is computed  and  the  predictor is used for the inverse filtering 
of the  input  signal, which yields the excitation  signal.  Then  the  excitation signal 
is applied to a  pitch  shifting  algorithm and  the  output signal is filtered  with the 
synthesis  filter H l ( z ) .  The processing steps  can  be performed  completely  in the 
time  domain.  The  pitch shifting is achieved by first time  stretching  and subsequent 
resampling. 

.-. 

I t- t 

Figure 9.26 Pitch shifting  with  formant  preservation  with the LPC method. 

9.4 Feature  Extraction 

A musical  sound has some  perceptive  features that can  be  extracted from a time- 
frequency  representation. As an example,  pitch is a function of time  that is very 
important for musicians, but richness of timbre, inharmonicity,  balance between 
odd  and even  harmonics  and noise level are  other examples of such  time-varying 
parameters.  These  parameters  are global in the sense that they  are observations 
of the  sound  without  any  analytical  separation of these  components, which will 
be discussed in Chapter 10. They  are  related to perceptive cues and  are based on 
hearing  and psychoacoustics. These global parameters  can  be  extracted from time- 
frequency  or  source-filter  representations using classical tools of signal  processing, 
where  psychoacoustic  fundamentals  also have to be  taken  into  account. 

The use of these  parameters for digital  audio effects is twofold: one  can use them 
inside the effect algorithm  itself,  or  one  can use these  features  as  control variables for 
other effects. The  latter technique will be  described in Chapter 12. Pitch  tracking 
as a  source of control  is  a well-known application.  Examples of audio effects using 
feature  extraction inside the algorithm  are  the correction of tuning, which uses pitch 
extraction  (autotune),  or even the compression of a sound, which uses amplitude 
extraction. 
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9.4.1 Pitch Extraction 

The main task of pitch  extraction is to  estimate a  fundamental  frequency fo,  which 
in musical terms is the pitch of a sound  segment, and follow the  fundamental fre- 
quency over the time. We can use this pitch  information to control effects like time 
stretching  and pitch  shifting  based on the PSOLA method, which is described  in 
Chapter 5 but  it plays also a major role in sound  modeling  with spectral models, 
which is treated extensively in Chapter 10. Moreover, the fundamental  frequency 
can  be used as a  control  parameter for a  variety of audio effects based  either on 
time  domain  or  on  frequency  domain  processing. 

There is no definitive technique for pitch extraction  and  tracking,  and only the 
bases of existing  algorithms will be  described here. We  will consider pitch  extraction 
both in the frequency  domain and in the  time  domain. Most often an algorithm  first 
looks for candidates of a  pitch,  then selects  one and  tries to improve the precision 
of the choice. After the calculation of pitch  candidates a post-processing, for exam- 
ple, pitch  tracking  has to be  applied.  During  post-processing the  estimation of the 
fundamental  frequency  from  the  pitch  candidates  can be improved by taking the 
frequency  relationships between the  detected  candidates  into  account, which should 
ideally be  multiples of the  fundamental frequency. 

FFT-based Approach 

In  this subsection we describe the calculation of pitch  candidates from the  FFT of 
a  signal  segment where the phase  information is used. This  approach is similar to 
the technique used in the  phase vocoder, see section 8.3. The main  structure of the 
algorithm is depicted in Fig. 9.27, where a segment of length N is extracted every 
R samples and  then applied to  FFTs. 

Frequency  pitch  candidates 

Figure 9.27 FFT-based pitch estimation structure with  phase  evaluation. 

Considering the calculation of an  N-point  FFT,  the frequency  resolution of the 
FFT is 

(9.30) 
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with  the  sampling frequency f s  = l/Ts. From the  input  signal z(n) we use  a  block 

z 1 ( n ) = z ( n o + n )  , n = O , . . . , N - I  (9.31) 

of N samples.  After  applying  an  appropriate window, the FFT yields X,(k) with 
k = 0, .  . . , N - 1. At the FFT index ko a local maximum of the FFT magnitude 
1x1 (IC) I is detected. From this FFT maximum, the  initial  estimate of the  fundamen- 
tal  frequency is 

- 
f o  k o .  A f  = ko-. f s  

N 
(9.32) 

The  corresponding  normalized frequency is 

(9.33) 

To  improve the frequency  resolution, the phase  information  can  be  used, since for 
a harmonic  signal zh(n) = cos(R0n + (PO) = cos(4(n))  the  fundamental frequency 
can  be  computed by the derivative 

(9.34) 

The derivative  can  be  approximated by computing the phases of two FFTs  separated 
by a  hop size of R  samples  leading to 

A 4  h0 = -, 
R 

(9.35) 

where A 4  is the  phase difference between the two FFTs evaluated at the  FFT index 
ko. The second FFT of the signal  segment 

2 2 ( n ) = z ( n o + R + n )  , n = O ,  . . .  , N - l  (9.36) 

leads to  X,(k). For the two FFTs,  the  phases  at frequency $0 are given by 

(P1 = L(Xl(IC0)) 
(P2 = L{X2(ko)} .  

(9.37) 
(9.38) 

Both  phases (PI and ‘p2 are  obtained in the  range [-T,  7r] .  We  now calculate  an 
“unwrapped” cp2 value  corresponding to  the value of an  instantaneous  phase, see 
also  section 8.3.5 and  Fig. 8.17. Assuming that  the signal  contains a harmonic 
component  with a frequency fo = ko . A f ,  the expected  target  phase  after  a  hop 
size of R samples is 

(9.39) 

The  phase  error between the  unwrapped value cp2 and  the  target  phase  can  be 
computed by 

p a e r r  = princarg(cp2 - ( ~ 2 ) .  (9.40) 
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The function  “princarg”  computes  the  principal  phase  argument  in  the  range  [-n, n]. 
It is assumed that  the unwrapped  phase differs from the  target phase by a maximum 
of n.  The unwrapped  phase is obtained by 

%!U = %?t + (P2eTT.  (9.41) 

The final estimate of the  fundamental frequency is then  obtained by 

fo = f s  = - . 
1 -  1 ‘p2 U - ‘p1 

2n R . f s  (9.42) 

Normally we assume that  the first  pitch  estimation $0 differs from the fundamen- 
tal frequency by a  maximum of A f 12. Thus  the maximum amount for the  absolute 
value of the phase  error 9 Z e r r  is 

(9.43) 

We should  accept  phase  errors  with  slightly  higher values to have some  tolerance in 
the pitch  estimation. 

One simple example of an ideal  sine wave at  a  fundamental  frequency of 420 Hz 
at fs = 44.1 kHz analyzed  with the FFT length N = 1024 using a Hanning window 
and a  hop size R = 1 leads to  the following results: ko = 10, $0 = k o k  = 430.66 Hz, 

= -0.2474, qZt/n = -0.2278, ‘p2/n = -0.2283, fa = 419.9996 Hz. Thus  the 
original  sine  frequency is almost ideally recovered by the described  algorithm. 

Figure 9.28 shows an example of the described  algorithm  applied to a short 
signal of the female utterance  “la” analyzed at   an  FFT length N = 1024. The 
top plot shows the FFT magnitude, the middle  plot the  estimated  pitch,  and  the 
bottom plot the phase  error p2eTT for frequencies up  to 1500 Hz. For this example 
the frequency  evaluation is performed for all FFT bins and  not only for those  with 
detected  magnitude  maxima. The circles show the positions of detected  maxima in 
the FFT magnitude.  The  dashed lines in the  bottom plot show the used threshold for 
the  phase  error. In this example the first  maximum is detected at   FFT index ko = 6, 
the corresponding bin frequency is 258.40 Hz, and  the corrected  pitch  frequency is 
274.99 Hz. Please  notice that in this case the  magnitude of the  third  harmonic  (at 
appr. 820 Hz) has a greater value than  the magnitude of the fundamental frequency. 

M-file 9.15 presents  a Matlab  implementation to calculate  the  pitch  candidates 
from a block of the  input signal. 

M-file 9.15 (find-pitch-fft  .m) 
function [FFTidx, Fp-est, Fp-corr]= . . .  
find-pitch-fft(x, win,  Nfft,  Fs,  R,  fmin,  fmax,  thres) 

0 -____ /,----- find  pitch  candidates ===== 
% x:  input signal of length  Nfft+R 
% win: window  for  the FFT 
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Figure 9.28 Example of pitch  estimation of speech signal “la” 

% Nfft: FFT length 
% Fs:  sampling  frequency 
% R:  FFT  hop  size 
% fmin, fmax:  minumum/  maximum  pitch  freqs  to  be  detected 
% thres:  %omit  maxima  more  than  thres  dB  below  the  main  peak 

FFTidx = [l ; % FFT  indices 
Fp-est = [l ; % FFT bin  frequencies 
Fp-corr = c1 ; % corrected  frequencies 
dt = R/Fs; % time  diff  between  FFTs 
df = Fs/Nfft; % freq  resolution 
kp-min = round(fmin/df) ; 
kp-max = round(fmax/df) ; 
xi = x(1:Nfft); % 1st  block 
x2 = x( (l:Nfft)+R) ; % 2nd  block  with  hop  size R 
[XI, Phil] = fftdb(xl.*win,Nfft); 
CX2,  Phi21 = fftdb(x2.*win,Nfft); 

Phil = Phil(1:kp-max+l); 
XI = X 1  (l : kp-max+l) ; 

x2 = X2 (l : kp-max+i) ; 
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Phi2 = Phi2(I:kp_max+l); 
idx = f  ind-loc-max(X1) ; 
Max = max  (X1  (idx) 1 ; 
ii = find(Xl(idx)-Max>-thres); 

y----- omit  maxima  more  than  thres  dB  below  the  main  peak ----- 
idx = idx(ii); 
Nidx = length(idx); % number  of  detected  maxima 
maxerr = R/Nfft; % max  phase  diff  error/pi 

maxerr = maxerr*i.2; % some  tolerance 
for  ii=l:Nidx 

% (pitch  max. 0.5 bins  wrong) 

k = idx(ii) - l ;  % FFT  bin  with  maximum 
phi l = Phil (k+l) ; % phase  of  xi  in  [-pi,pil 
phi2-t = phil + 2*pi/Nfft*k*R;  expected  target  phase 

phi2 = Phi2(k+l) ; % phase  of x2 in  [-pi,pi] 
phi2-err = princarg(phi2-phi2-t); 
phi2-unwrap = phi2_t+phi2_err; 
dphi = phi2-unwrap - phil; % phase  diff 
if  (k>kp-min) & (abs(phi2_err)/pi<rnaxerr) 

Fp-corr = [Fp-corr;  dphi/(2*pi*dt)l ; 
FFTidx = [FFTidx;  kl ; 
Fp-est = CFp-est ; k*dfl ; 

% after  hop  size  R 

end 
end 

In  addition to  the algorithm  described, the  magnitude values of the  detected 
FFT maxima  are checked. In the given code  those  maxima  are  omitted whose FFT 
magnitudes  are  more  than thres dB below the global maximum.  Typical values 
for the  parameter thres lie in the  range from 30 to 50. The function princarg is 
given in Figure 8.17. The following function f  ftdb (see M-file 9.16) returns  the  FFT 
magnitude in a dB scale and  the  phase. 

M-file 9.16 (fftdb.m) 
function [H, phi] = fftdb(x,  Nfft) 

if  narginc2 

end 
Nfft = length(x); 

F = fft(x,Nfft) ; 
F = F(l:Nfft/2+1); % f=O,..,Fs/2 

F = abs(F)/Nfft*2; % normalize  to  FFT  length 
y----- return -100 db  for  F==O  to  avoid  "log of zero"  warnings ----- 

phi = angle(F) ; 1 phase  in  [-pi,pil 
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H = -lOO*ones  (size  (F) ) ; 
idx = f  ind(F”=O) ; 
H(idx) = 20*loglO(F(idx)); % non-zero  values  in  dB 

The following function f indlocmax (see M-file 9.17) searches for local maxima 
using the derivative. 

M-file 9.17 (find-1ocmax.m) 
function  [idx,  idx01 = find-loc-max(x) 

% === find  local  maxima  in  vector  x 
% idx : positions  of  local  max. 
% idx0:  positions  of  local  max.  with 2 identical  values 
% if  only 1 return  value:  positions  of  all  maxima 

N = length(x); 
dx = diff  (x) ; % derivation 

% to  find  sign  changes  from + to - 
dxl = dx(2:N-l); 
dx2 = dx(i:N-2); 
prod = dxl.*dx2; 
idxl = find(prodc0); % sign  change  in  dxi 
idx2 = find(dxl(idxi)<O); % only  change  from + t o  - 
idx = idxl(idx2)+i;  positions of single  maxima 
y----- zeros  in  dx? => maxima  with 2 identical  values ----- 
idx3 = find(dx==O); 
idx4 = find(x(idx3)>0); % only  maxima 
idxO = idx3  (idx4) ; 
X----- positions  of  double  maxima, same values  at  idx3(idx4)+i ----- 
if nargout==l % output 1 vector 

% with  positions  of  all  maxima 
idx = sort([idx,idxO]); % (for  double  max.  only  1st  position) 

end 

Now  we present an example  where  the  algorithm is applied to a  signal  segment of 
Suzanne Vega’s “Tom’s Diner”.  Figure 9.29 shows time-frequency  representations 
of the analysis  results. The  top plot shows the spectrogram of the signal. The 
middle  plot shows the FFT bin frequencies of detected  pitch  candidates while the 
bottom plot shows the corrected  frequency values. In  the  bottom plot the  text of 
the sung  words is also  shown.  In  all  plots  frequencies up  to 800 Hz are shown. 
For the spectrogram an FFT length of 4096 points is used. The pitch  estimation 
algorithm is performed  with an  FFT length of 1024 points.  This example shows 
that  the melody of the  sound  can  be recognized in  the  bottom plot of Figure 9.29. 
The applied  algorithm  improves the frequency  resolution of the FFT shown in the 
middle  plot. To choose the correct  pitch  among the  detected  candidates some  post- 
processing is required.  Other  methods to  improve the frequency  resolution of the 
FFT are described in [Can98, DMOO,  MarOO, Mar98, AKZ991 and in Chapter 10. 
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Figure 9.29 Time/frequency  planes  for  pitch  estimation  example of an excerpt  from 
Suzanne  Vega’s  “Tom’s  Diner”. Top: spectrogram,  middle: FFT bin  frequencies of pitch 
candidates, bottom:  corrected  frequency  values of pitch candidates. 

M-file 9.18 demonstrates  a  pitch  tracking  algorithm in a  block-based  implemen- 
tation. 

M-file 9.18 (Pitch-Tracker-FFTJ4ain.m) 
1 Pitch-Tracker-FFT-Main.m 
fname=’Torns-diner’; 
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n0=2000;  %start  index 
nl=210000; 

Nfft=1024; 
R=l ; % FFT  hop  size  for  pitch  estimation 
K=200; % hop  size  for  time  resolution of  pitch  estimation 
thres=50; % threshold  for  FFT  maxima 
% checked  pitch  range  in  Hz: 
f min=50 ; 
f  max=800 ; 
p-fac-thres=1.05; % threshold  for  voiced  detection 

win=hanning(Nfft)';%  window  for  FFT 
Nx=nl-nO+l+R; % signal  length 
blocks=f  loor  (Nx/K) ; 

nl=nO+Nx; % new  end  index 
[X,Fs]=wavread(fname,  [nO,nl]>; 

% deviation  of  pitch  from  mean  value 

Nx=(blocks-l)*K+Nfft+R; 

X=X(: ,l)'; 

pitches=zeros(l  ,blocks) ; 
for  b=l:blocks 

x=X((b-l)*K+l+(I:Nfft+R)); 
[FFTidx,  FO-est , FO-corrl = . . . 

if  -isempty(FO-corr) 

else 

find-pitch-fft(x,win,Nfft,Fs,R,fmin,fmax,thres); 

pitches(b)=FO-corr(1); % take  candidate  with  lowest  pitch 

pitches(b)=O; 
end 

end 
LLLL post-processing: 
L=9 ; % odd  number  of  blocks  for  mean  calculation 
O O P O  

D=(L-1)/2; % delay 
h=ones(l,L)./L; % impulse  response  for  mean  calculation 
% mirror  beginning  and  end  for  "non-causal"  filtering: 
p=[pitches(D+1:-l:2),pitches,pitches(blocks-l:-l:blocks-D)]; 
y=conv(p,h);  length:  blocks+2D+2D 
pm=y((l:blocks)+2*D); % cut  result 

Fac=zeros(l,blocks); 
idx=find(pm"=O); % don't  divide  by  zero 
Fac(idx)=pitches(idx)  ./pm(idx); 
ii=f  ind  (Facc  1 & Fac"=O) ; 
Fac(ii)=l./Fac(ii); % all  non-zero  elements  are  now > 1 
voiced/unvoiced  detection: 
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voiced=Fac"=O & Fac<p-fac-thres; 

T=40 ; % time  in  ms  for  segment  lengths 
M=round(T/lOOO*Fs/K); % min.  number  of  consecutive  blocks 
[V,p2]=segmentation(voiced, M, pitches) ; 
p2=v.  *p2 ; % set  pitches  to  zero  for  unvoiced 

figure(1) ,cif, 
time=(O:blocks-i)*K+l; % start  sample  of  blocks 
time=time/Fs; % time  in  seconds 
t=(O:length(X)-l)/Fs; % time  in  sec  for  original 
subplot  (211) 
plot(t,X),title('original x ( n ) ' )  
axis(C0  max([t,time])  -I.l*max(abs(X))  l.l*max(abs(X))]) 
subplot  (212) 
idx=f  ind  (p2"=0) ; 
plot-split(idx,time,  p2:)  ,title('pitch  in Hz'); 
xlabel('time/s  \rightarrow') ; 
axis([O  max([t,time])  .9*min(p2(idx))  l.l*max(p2(idx))l) 

In  the above  implementation  the  post-processing is performed by choosing the low- 
est  pitch  candidate in each block. Then  the mean  pitch of surrounding blocks is 
computed  and  compared  to  the  detected  pitch. If the  deviation from the mean 
value is higher than  a given threshold,  this block is considered as "unvoiced". 
Finally a segmentation is performed to get a minimum  number of consecutive  blocks 
that  are voiced/unvoiced (to avoid  very short  segments). M-file 9.19 presents  an im- 
plementation for the  segmentation. 

M-file 9.19 (segmentation.m) 
function [V,pitches2]=segmentation(voiced, M, pitches) 
% voiced:  original  voiced/unvoiced  detection 
% M: min.  number  of  consecutive  blocks  with  same  voiced  flag 
% pitches:  original  pitches 

pitches2:  changed  pitches 
% v: changed  voiced  flag 

blocks=length(voiced); % get  number  of  blocks 
pitches2=pitches; 
V=voiced; 
Nv=length(V) ; 

1 Q 0 ~ 0 0 0 ~ 0 Q 0  LLdLLLLLLLL stepl:  eliminate  too  short  voiced  segments: 
V(NV+~)="V(NV); % change  at  end  to  get  length  of  last  segment 
dv=[O,  diff (V)] ; % derivative 
idx=find(dv"=O); % changes  in  voiced 
di=[idx(l)-1,diff  (idx)] ; % segment  lengths 
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vO=V(l) ; % status  of  1st  segment 
kO=l ; 
ii=l; counter  for  segments, idx(ii)-l  is  end  of  segment 
if vO==O 
kO=idx( I)  ; % start  of  voiced 
ii=ii+l; 1 first  change  voiced  to  unvoiced 

end 
while  'ii<=length(idx) ; 
L=di (ii) ; 
kl=idx(ii)-l; % end  of  voiced  segment 
if L<M 

V(kO:kl)=zeros(l,kl-kO+l); 
end 
if  ii<length(idx) 

end 
ii=ii+2; 

kO=idx(ii+l); % start  of  next  voiced  segment 

end 

1 Q O Q Q Q Q O O Q Q  LLLLLLLLLLL step2:  eliminate  too  short  unvoiced  segments: 
V(Nv+l)=-V(Nv); % one  more  change  at  end 
dv=[O,  diff (V)] ; 
idx=find(dv"=O); % changes  in  voiced 
di=[idx(l)-1,diff  (idx)] ; % segment  lengths 
if  length(idx)>l % changes  in V 
vO=V(l) ; % status  of  1st  segment 
kO=l ; 
ii=l; % counter  for  segments, idx(ii)-l  is  end  of  segment 
if vO==O 
kO=idx(2);  start  of  unvoiced 
ii=ii+2; % first  change  unvoiced  to  voiced 

end 
while  ii<=length(idx); 
L=di (ii) ; 
kl=idx(ii)-l;  end  of  unvoiced  segment 
if L<M 

if  klcblocks % NOT last  unvoiced  segment 
V(kO:kl)=ones(l,kl-kO+l); 
% linear  pitch  interpolation: 
pO=pitches(kO-l) ; 
pl=pitches(kl+l) ; 
N=kl-kO+l; 
pitches2(kO:kl)=(l:N)*(pl-pO)/(N+l)+pO; 

end 
end 
if  ii<length(idx) 
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kO=idx(ii+l);  start of next  unvoiced  segment 
end 
ii=ii+2; 

end 
end 

V=V(I:Nv); % cut  last  element 

The plot-split function is  given  by  M-file 9.20. 

M-file 9.20 (p lot -spl i t  .m) 
function  plot-split(idx, t, x) 
% idx:  vector  with  positions of vector  x  to  be  plotted 
X x  is  segmented  into  parts 
di=dif  f  (idx) ; 
L=length(di) ; 

nO= l ; 
pos-di=f  ind(di>l) ; 
ii=l; % counter  for  pos-di 

hold off  
while  ii<=length(pos-di)  %nO<=length(x) 
nl=pos-di(ii) ; 
plot(t(idx(n0:nl))  ,x(idx(nO:nl))) 
hold  on 
nO=nl+l; 
ii=ii+l; 

end 

ni=length(idx); 
plot(t(idx(n0:ni))  ,x(idx(nO:nl))) 
hold  off 

The  result of the pitch  tracking  algorithm is illustrated in Fig. 9.30. The  bottom 
plot shows the pitch  over  time  calculated  using the block-based FFT approach. 

Any FFT-based  pitch  estimator  can  be improved by detecting the harmonic 
structure of the  sound. If the  harmonics of the  fundamental frequency are de- 
tected,  the  greatest common divisor of these  harmonic  frequencies  can  be  used 
in the  estimation of the  fundamental frequency [O’SOO, p. 2201. M.R. Schroeder 
mentions for speech  processing in [SchSS, p. 651, “the  pitch  problem was finally 
laid to rest  with  the invention of cepstrum  pitch  detectors” [No164]. The  cepstrum 
technique  allows  the  estimation of the pitch  period  directly  from  the  cepstrum se- 
quence c(.). Schroeder  also  suggested  a  “harmonic product  spectrum” [Sch68] to 
improve the  fundamental frequency estimation, which sometimes  outperforms the 
cepstrum  method [Sch99, p. 651. A  further  improvement of the  pitch  estimates  can 



348 9 Source-Filter  Processing 

original x(n) 
0.3 k I l I I l I I I I 

-0.3 1 I I I I I I 1 I I 

0 0.5 1 1.5 2 2.5  3 3.5 4  4.5 

pitch in Hz 
I I I l I I l I l I 

I I I I I I 1 I I I 1  

0 0.5 1 1.5 2  2.5  3  3.5  4  4.5 
tirnels + 

Figure 9.30 Pitch  over time from the FFT with  phase  vocoder  approach  for  a  signal 
segment of Suzanne Vega’s  “Tom’s Diner”. 

be  achieved by applying a peak  continuation  algorithm  to  the  detected pitches of 
adjacent  frames, which is described in section 10.3.1. 

General  Remarks on  Time-Domain Pitch Extraction 

In  the  time  domain  the  task of pitch  extraction  leads us to find the  correspond- 
ing pi tch   per iod .  The pitch  period is the  time  duration of one  period.  With  the 
fundamental  frequency f o  (to be  detected)  the  pitch  period is given by 

To = f o ’  

1 
(9.44) 

For a  discrete-time  signal  sampled at f ,  = & we have to find the p i t ch  lag M which 
is the number of samples in one  period.  The  pitch  period is TO = M .  T, which leads 
t o  

(9.45) 
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Since only integer-valued  pitch lags can  be  detected, we have a certain  frequency 
resolution  in  detecting the  fundamental frequency  dependent  on fo and fs .  Now  we 
are assuming the case of &f = A4 + 0.5 where M is the detected  integer  pitch lag. 
The detected  fundamental  frequency is s o  = instead of the exact  pitch fo = h. 
The frequency  error  factor is in this case 

fo M 0.5 fo 
f o  M M fs 

a(f0) := T - 1 + - = 1 + 0.5-. (9.46) 

With  the halftone  factor a h , t  = 'fi and  setting a( fo)  = agt, the frequency  error in 
halftones is 

(9.47) 

Figure  9.31 shows the frequency  error both  as  factor a(f0) and  as percentage of 
halftones for pitches in the range from 50 to 5000 Hz at  the sampling  frequency f,$ = 
44.1 kHz. The maximum  frequency  error is approximately  6  percent  or  one  halftone 
for pitches up  to 5000 Hz. For a  fundamental  frequency of 1000 Hz the frequency 
error is only 20 percent of a halftone which is reasonably  accurate precision. 

(a) pitch error factor a(f ) 
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Figure 9.31 Resolution of time-domain  pitch  detection at f3 = 44.1 kHz, (a) frequency 
error factor, (b) pitch  error in percentage of a halftone. 

Normally the pitch  estimation in the  time  domain is performed in three  steps 
[O'SOO, p. 2181: 

1. Segmentation of the  input signal into overlapping blocks and pre-processing of 
each block, for example lowpass filtering (see segmentation shown in Fig. 9.27). 

2. Basic pitch  estimation  algorithm  applied to  the pre-processed block. 

3. Post-processing for an error  correction of the pitch  estimates  and  smoothing 
of pitch  trajectories. 
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Autocorrelation and LPC 

The  autocorrelation sequence can also be  used to  detect  the  pitch  period of a signal 
segment.  First, we present different definitions of autocorrelation sequences: 

0 Using  one  block 

n=m 

0 using  one  windowed  block 

N-l 

(9.48) 

(9.49) 
n=m 

with u(n) = ~ ( n )  . w(n) (window  function W(.)) 

0 and using the  exact  signal,  thus using  samples  preceding the considered block 

N-l  

Fzz(m) = c z(n)z(n - m). (9.50) 
n=O 

Notice, that in the definitions  given by (9.48)-(9.50) no  normalization to  the block 
length N is applied. 

Figure 9.32  shows the  three different autocorrelation sequences for an excerpt 
of the speech  signal “la”. Here the same  input  signal is used as in Fig. 9.28. In 
this  example  the  pitch  lag  corresponding  to  the  fundamental frequency is M = 160 
samples,  thus at the  third  maximum of the  autocorrelation. Normally we expect 
the first maximum  in the  autocorrelation at the pitch  lag.  But  sometimes,  as in this 
example,  the  first  maximum in the  autocorrelation  function is not  at  this  position. 
In  general,  the  autocorrelation  has  maxima at the pitch  lag M and  at  its  multiples 
since, for a periodic  signal, the  same  correlation  occurs if comparing  the  signal  with 
the same  signal  delayed by multiples of the  pitch  period. Since, in the  example of 
Figures  9.28  and 9.32, the  third  harmonic is more  dominant  than  the  fundamental 
frequency, the first  maximum in the  autocorrelation is located at  M/3. Conversely 
there  can  be a higher peak in the  autocorrelation  after  the  true  pitch  period. 

Often the prediction  error of an  LPC analysis  contains  peaks  spaced by the  pitch 
period, see Fig. 9.9. Thus  it  might  be promising to  try  to  estimate  the  pitch period 
from the  prediction  error  instead of using the original signal.  The  SIFT  algorithm 
[Mar72],  which  has  been  developed for voice, is based  on  removing the  spectral 
envelope by inverse filtering  in  a  linear  prediction  scheme.  But in some cases it is 
not possible to  estimate  the  pitch period  from the prediction  error,  because  the linear 
prediction  has removed all  pitch  redundancies  from the signal. Figure 9.33 compares 
two  excerpts of a speech  signal  where the  input block (top)  and  the  autocorrelations 
of both  the  input  signal  (middle)  and  the  prediction  error  (bottom)  are shown. An 
LPC analysis of order p = 8 using the  autocorrelation  method  has been  applied. 
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(a)  input  signal (b)  exact  autocorrelation 
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Figure 9.32 Comparison  between  different autocorrelation computations  for  speech  signal 
“la”. (a) input block z(n), (b) exact autocorrelation Tzz(m), (c) standard autocorrelation 
rzz (m)  using  block, (d) standard autocorrelation rzz(m) using  windowed  block. 

For the example  presented  in  subplots  (a)-(c) the pitch  period  can  be well de- 
tected in the  autocorrelation of the  prediction  error  (same  excerpt  as in Figures 
9.28 and  9.32). For the  other  excerpt  presented in subplots  (d)-(f)  it is not possible 
to  detect  the  pitch  in  the  autocorrelation of the  prediction  error while the  autocor- 
relation of the  input  signal  has  a local maximum at the correct  pitch  period.  Notice 
that  in  the  plots of the  autocorrelation sequences  only time lag ranges  from 29 to 
882 are shown. This  corresponds to pitch  frequencies  from 1500 down to 50 Hz at 
sampling  frequency 44.1 kHz. 

Another  time-domain  method for the  extraction of the  fundamental frequency is 
based  on ‘‘center clipping” the  input  signal  and  subsequent  autocorrelation  analy- 
sis [Son68]. First,  the  input  signal is bandlimited by a lowpass  filter. If the filter 
output  signal exceeds  a certain  threshold f c  the  operation xclip(n) = x(.) F c is 
performed,  otherwise zclip(n) = 0 [RS78, Son681. The  result of this pre-processing 
is illustrated  in  Fig. 9.34. The  autocorrelation sequence T,, (m) of the  center clipped 
signal xciip(n) shows a strong positive peak at the  time lag of the  pitch  period. 

Long-Term Prediction (LTP) 

A  further  method of estimating  the  fundamental frequency is based  on  long-term 
prediction. A common approach  to remove  pitch  period  redundancies  from a signal 
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Figure 9.33 Autocorrelation  sequences for input signal and prediction  error for two  ex- 
cerpts of the speech  signal “la”.  Input signals (a, d), autocorrelation of input (b, e), auto- 
correlation of prediction error (c, f) .  

is to  use a short FIR prediction  filter  after  a delay line of M samples, where M is 
the pitch  lag  [KA90].  Thus  the  long-term  prediction  error  or residual is given by 

P 

d ( n )  = .(n) - c bkz(n - M - IC), (9.51) 
k=O 

where the  order q + l is normally in the range of {l, 2,3} [KA90]. Considering the 
case of a one-tap  filter,  the residual simplifies to 

d ( n )  = .(n) - bo . .(n - M )  (9.52) 

which is shown in  Fig. 9.35. 

For minimizing the energy of d ( n )  over one block of length N we set the deriva- 
tive  with  respect to bo to zero. This leads to  the optimal  filter coefficient 

(9.53) 
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Figure 9.34 Center  clipping and subsequent autocorrelation analysis: input signal, low- 
pass  filtered and center  clipped  signal  (notice the time  delay) and autocorrelation. 

Figure 9.35 Long-term  prediction  with a one-tap  filter. 

with f z z (m)  as defined in (9.50) and 

N-l 

rzzo(m) = C x2(n - m) (9.54) 
n=O 

which is the energy of a block delayed by m samples. Setting  this solution  into 
(9.52) leads to  the error energy 

N-l 

E d  = c x2(n) - rzz,nown(M) (9.55) 
n=O 
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(9.56) 

Figure 9.36 shows an example  where the  input signal shown in Figure  9.33(a) is 
used. The  top plot shows the exact  autocorrelation ?,+(m), the middle  plot shows 
the normalized  autocorrelation r,,,,,,,(m), and  the  bottom plot shows the LTP 
coefficient b o ( m )  dependent  on the lag m. 
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Figure 9.36 Autocorrelation,  normalized autocorrelation and LTP coefficient  dependent 
on lag m for  excerpt  from the speech  signal “la”.  The circles  show the pitch  lag candidates, 
the dashed  lines the accepted bo values. 

In ~,,,,,,,(m) the  lag m = M has  to be  found where ~,,,,,,,(m) is maximized 
to minimize the residual energy. Considering  one block of length N ,  the  numerator 
of (9.56) is the squared  autocorrelation while the denominator is the energy of the 
block delayed by M samples. The function ~,,,,,,,(m) therefore  represents a kind 
of normalized  autocorrelation  sequence  with only positive values. If used for the 
detection of the pitch  period, rzz,norm(m) does  not need to have a global  maximum 
a t  m = M ,  but  it is expected to have a local maximum at that position. 

To find candidates of the pitch  lag M ,  first local maxima in ~,,,,,,,(m) are 
searched.  In a second step, from  these  maxima only those  ones  are considered where 
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the autocorrelation f Z Z ( m )  is positive  valued. The function ~ , , , ~ ~ ~ ~ ( m )  also  has 
maxima at positions where fz,(m) has  minima.  In a third  step  the b o ( m )  values 
are considered. The value of the coefficient bo is close to one for voiced sounds  and 
close to zero for noise-like sounds  [JN84,  p. 3151. Thus  the value of bo can serve as 
a  quality check for the  estimate of the  computed  pitch lag. 

In the example in Figure  9.36, bo values in the  range 0.8,. . .1.2 are  accepted. 
This  range is shown by the  dashed lines in the  bottom  plot.  The circles represent 
the positions of pitch  lag  candidates.  Thus, at  these  positions rZz,norm(m) has  a 
local maximum, f z z ( m )  is positive  valued, and b o ( m )  lies in the described  range. 
In  this  example,  the first  pitch  lag candidate corresponds to  the pitch of the sound 
segment. 

The described  algorithm for the  computation of pitch  lag  candidates from a 
signal block is implemented by the following M-file 9.21. 

M-file 9.21 (find-pitch-1tp.m) 
function [M,Fp]=find~pitch~ltp(xp,lmin,lmax,Nblock,Fs,bO~thres) 

% XP : input  block  including  lmax  pre-samples 
% for  correct  autocorrelation 
% lmin : min.  checked  pitch  lag 
% lmax : max.  checked  pitch  lag 
% Nblock : block  length  without  pre-samples 
% Fs : sampling  freq. 
% bo-thres:  max  bO  deviation  from 1 

lags = 1min:lmax; 1 tested  lag  range 
Nlag = length(1ags); % no. of lags 
[rxx-norm,  rxx,  rxxO] = xcorr-norm(xp,  lmin,  lmax,  Nblock); 

y----- calc.  autocorr  sequences ----- 
BO = rxx./rxxO; % LTP coeffs  for  all  lags 
idx = find-loc-max(rrx-norm); 
i = f  ind(rxx  (idx) >O) ; % only  max.  where  r-xx>O 
idx = idx(i); % indices  of  maxima  candidates 
i = find(abs(BO(idx)-l)<bO-thres); 

y----- only  max.  where LTP coeff is close t o  l ----- 
idx = idx(i) ; indices  of  maxima  candidates 

y----- vectors  for  all  pitch  candidates: ----- 
M = lags  (idx) ; 
M = M(:); pitch  lags 
Fp = Fs./M; 
Fp = FP(:); % pitch  freqs 

The function find-locmax is given in section 9.4.1. The function xcorrnorm 
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to  compute  the  autocorrelation sequences is given  by  M-file 9.22. 

M-file 9.22 (xcorrnorm.rn) 
function [rxx-norm, rxx, rxxO] = xcorr-norm(xp, lmin,  lmax, Nblock) 
y===== calc.  normalized  autocorrelation===== 

X = xp((l:Nblock)+lmax); % input block  without  pre-samples 
lags = 1min:lmax; % tested  lag  range 
Nlag = length(1ags) ; % no. of lags 
rxx = zeros(1,Nlag); autocorr.  sequence 
rxxO = zeros(1,Nlag); % energy of delayed  blocks 
rxx-norm = zeros(1,Nlag); % normalized  autocorr.  sequence 
for  l=l:Nlag 

ii = lags (1) ; tested  lag 
rxxO(1) = sum(xp((l:Nblock)+lmax-lags(1)) . -2) ;  

rxx(1) = sum(x.*xp((l:Nblock)+lmax-lags(1))); 
%----- energy of delayed  block 

end 
rxx_norm=rxx.-2./rxxO; % normalized  autocorr.  sequence 

The  performance of the function xcorrnorm is quite slow in  Matlab.  The com- 
putation  speed  can  be improved if using a C-MEX function.  Thus  the  function is 
implemented  in  C  and a “MEX” file is created  with  the C compiler  (on  Windows 
systems  the MEX file is a  dll).  In  this  example  the  computation  speed is improved by 
a  factor of approximately  50, if using the MEX file instead of the  Matlab  function. 

The  described  LTP  algorithm may also be  applied to  the prediction  error of a 
linear  prediction  approach.  Figure  9.37  compares  LTP  applied  to original signals 
and  their  prediction  errors. In this  example  the  same  signal  segments  are used as in 
Fig. 9.33. The circles denote  the  detected global maxima in the normalized autocor- 
relation. For the first  signal  shown  in  plots  (a)-(c)  the  computed LTP coefficients 
are boz = 1.055 for the  input  signal  and bo, = 0.663 for the  prediction  error.  The 
LTP coefficients for the second  signal are bo, = 0.704 and boe = 0.141, respectively. 
As in  Figure 9.33, the pitch  estimation from the prediction  error  works well for the 
first  signal  while  this  approach fails for the second  signal. For the second signal the 
value of the  LTP coefficient indicates that  the prediction  error is noise-like. 

Figure 9.38  shows the  detected  pitch  lag  candidates  and  the  corresponding fre- 
quencies  over time for a  signal  segment of Suzanne Vega’s “Tom’s Diner”.  It is the 
same  example  as  presented in Fig.  9.29  where  also a spectogram of this  sound  signal 
is given. The  top plot of Fig. 9.38  shows the  detected  pitch  lag  candidates  computed 
by the  LTP  algorithm  applied  to  the  input  signal.  The  parameter bo-thres is set  to 
0.3,  thus bo values in the  range  0.7,. . . ,1.3 are  accepted.  The  corresponding pitch 
frequencies in the  bottom  plot  are  computed by f, = f s / M  (see (9.45)). 

In  the  top  plot of Figure 9.38 the lowest detected  pitch lag normally corres- 
ponds to  the pitch of the signal  frame.  The  algorithm  detects  other  candidates  at 
multiples of this  pitch  lag.  In  some  parts of this  signal (for example,  between 3 
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Figure 9.37 Normalized  autocorrelation  sequences for input signal and prediction  error 
for two excerpts of the speech  signal “la”.  Input signals (a,  d), normalized autocorrelation 
of input (b, e), normalized  autocorrelation of prediction error (c, f ) .  

and 4 seconds) the  third  harmonic of the real  pitch is more dominant  than  the 
fundamental frequency. In  these  parts  the lowest detected  pitch  lag is not the one 
to be  chosen. In  this  time-domain  approach  the precision of the  detected  pitch 
lags can  be improved if the  greatest common divisor of the pitch  lag  candidates is 
used.  The  algorithm  computes only  integer-valued  pitch lag candidates.  LTP with 
a higher precision (noninteger  pitch  lag M )  is presented in [LVKL96, KA901. As in 
the  FFT-based  approach  a post-processing  should  be  applied to choose  one of the 
detected  candidates for each  frame.  For  a  more  reliable  pitch  estimation  both  time 
and frequency  domain  approaches  may  be  combined. 

The following  M-file 9.23  presents  an  implementation of a pitch  tracker  based 
on the  LTP  approach. 

M-file 9.23 (Pitch-TrackerLTP.m) 
fname=’Toms_diner’; 
n0=2000; start index 
nl=210000; 
K=200; % hop s ize  f o r  time re so lu t ion  of p i t ch   e s t ima t ion  
N=1024; % block l eng th  
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Figure 9.38 Pitch lag  candidates and corresponding  frequencies. 

% checked  pitch  range  in Hz: 
f min=50 ; 
f max=800 ; 
bO_thres=.2; % threshold  for LTP coeff 
p-fac-thres=1.05; % threshold  for  voiced  detection 

% deviation  of  pitch  from  mean  value 

[xin, Fs] =wavread(f  name,  [no  no] ) ; %get  Fs 
% lag  range  in  samples: 
lmin=floor(Fs/fmax); 
lmax=ceil(Fs/fmin) ; 
pre=lmax; % number  of  pre-samples 
if nO-pre<l 
nO=pre+l ; 

end 
Nx=ni-nO+l;  signal  length 
blocks=floor(Nx/K); 

[X, Fs]  =wavread(f name,  [no-pre  nO+Nx] ) ; 
Nx=(blocks-l)*K+N; 
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pitches=zeros (1 , blocks) ; 
for  b=l:blocks 
x=X(  (b-l)*K+(l:N+pre)); 
[M, FO]=find-pitch-ltp(x,  lmin,  lmax, N, Fs, bo-thres); 
if  -isempty(M) 

else 
pitches(b)=Fs/M(i); % take  candidate  with  lowest  pitch 

pitches(b)=O; 
end 

end 

0 0 0 .  LALL post-processing: 
L=9 ; % number  of  blocks  for  mean  calculation 
if  mod(L,2)==0 % L is  even 

end 
D=(L-1)/2; % delay 
h=ones(l,L)./L; % impulse  response f o r  mean  calculation 
% mirror  start and end  for  “non-causal“  filtering: 
p=[pitches(D+I:-l:2), pitches, pitches(blocks-i:-l:bl~~ks-D)]; 
y=conv (p , h) ; % length:  blocks+2D+2D 
pm=y ((1 : blocks)+2*D) ; cut  result 

L=L+l ; 

Fac=zeros(l,blocks); 
idx=find(pm-=O); % don’t.  divide  by  zero 
Fac(idx)=pitches(idx)./pm(idx); 
ii=f  ind(Fac<i & Fac“=O) ; 
Fac(ii)=l./Fac(ii); % all  non-zero  element  are  now > 1 
% voiced/unvoiced  detection: 
voiced=Fac-=0 & Fac<p-fac-thres; 

T=40 ; % time  in ms for  segment  lengths 
M=round(T/iOOO*Fs/K);  min.  number  of  blocks  in  a  row 
[V,p2]=segmentation(voicedY M, pitches); 
p2=V.*p2; % set  pitches  to  zero  for  unvoiced 

figure(1) ,clf; 
time=(O:blocks-i)*K+i; % start  sample  of  blocks 
t  ime=time/Fs ; time  in  seconds 
t=(O:length(X)-l)/Fs;  time  in  sec  for  Original 
subplot (211) 
plot(t, X) ,title(’original  x(n> ’1 ; 
axis([O  max([t,time])  -l.l*max(abs(X))  i.l*max(abs(X))I) 
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subplot (212) 
idx=f  ind(p2“=0) ; 
plot-split(idx,time,  pa),title(’pitch in Hz’); 
xlabel(’time/s  \rightarrow’); 
axis( CO max([t,timel)  .9*min(p2(idx))  l.l*max(p2(idx))]) 

The  result of the presented  pitch  tracking  algorithm is illustrated in Fig. 9.39. 
The  bottom plot  shows the  pitch over time  calculated  using the  LTP  method.  In 
comparison to  the  FFT-based  approach in Fig. 9.30, the  FFT  approach  performs 
better in the regions  where  unvoiced parts  occur.  The described approach performs 
well for singing voice examples.  The selection of the post-processing  strategy de- 
pends  on  the specific sound  or signal. 

original x(n) 

0.3 1 I I l I I l I I I 

-0.3 I I l I I I I I 1 

0 0.5 1 1.5  2 2.5 3 3.5 4 4.5 

pitch in Hz 
I I I I l I l I I 

300 

280 

260 

- 

- 180 

- 200 

- 220 

- 240 

- 

JI 
1, 

i 
160L l I I I I I I I 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
timek + 

Figure 9.39 Pitch over time using the long-term  prediction method for a signal  segment 
of Suzanne Vega’s  “Tom’s Diner”. 
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9.4.2 Other  Features 

Amplitude Envelope 

One  very important  feature  that  can  be used for adaptive effects is the  amplitude 
envelope of a sound  evolving  with time. Even the modulation of a  sound by the 
envelope of another  sound is an effect  by itself. But more  generally the  amplitude 
envelope can  be used to control  many variables of an effect. Applications of ampli- 
tude  detection  can  be found in dynamics  processing (see Chapter 5) but  can also 
be  integrated  into  many effects as  an  external  control  parameter. 

Except  for  the  fact  that we want to write  a signal as x ( n )  = amp(n),sig(n),  there 
is no  unique definition of an  amplitude envelope of a sound.  The  ear is devised in 
such  a way that slow variations of amplitude  (under 10 Hz) are considered as a time 
envelope while more  rapid  variations would be  heard  as  a  sound.  This  distinction 
between an envelope and  a signal is known in  electroacoustic  music  as  the difference 
between a “shape”  and  a  “matter”, two terms well developed by P. Schaeffer in his 
Trait6 des objets musicaux [Sch66]. 

The RMS (root  mean  square)  algorithm  has been largely used in Chapter 5 
as  an  amplitude  detector  based  on filtering the  squared  input  samples  and  taking 
the  square  root of the filter output.  The RMS  value is a  good  indication of the 
temporal  variation of the energy of a sound,  as shown in Fig. 9.40. This filtering 
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Figure 9.40 Signal and amplitude  envelope (RMS value) of the signal 

can also be  performed by a FIR filter,  and  in  this case  can  be  inserted into  an 
FFT/IFFT-based  analysis-synthesis scheme for a digital  audio effect. The  FFT 
window can  be considered a lowpass FIR  filter,  and one of the  reasons for the 
crucial choice of window  size for a short-time Fourier  transform is found in the 
separation between shape  and  matter: if the window is too  short,  the envelope will 
follow rapid oscillations which should not  be  included. If the window is too  large, 
the envelope will not  take  into  account  tremolos which  should  be  included. The 
following  M-file 9.24  calculates  the  amplitude envelope of a signal according to  an 
RMS algorithm. 
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M-file 9.24 (UXlms.m) 
% UX-rms.m 
clear;  clf 

[DAFx-in,  FS] = wavread(’xl.wav’); 
hop = 256; % hop  size  between  two  FFTs 
WLen = 1024; % length  of  the  windows 
W = hanningz  (WLen) ; 
y----- some  initializations ----- 
WLen2 = WLen/2; 
normW = norm(w ,2) ; 

X----- USER  DATA ----- 

Pft = 1; 
If = floor((length(DAFx-in) - WLen)/hop); 
f eature-rms = zeros  (If, l) ; 
tic 
e ~==____-----____---_____________________---- -____----___-----___----------------_---- 
pin = 0; 
pend = length(DAFx-in) - WLen; 

while  pincpend 
grain = DAFx-in(pin+l:pin+WLen).* W; 
feature-rms(pft) = norm(grain,2) / normw; 
pft = pft + 1; 
pin = pin + hop; 

end 

toe 
subplot(2,2,1);  plot(DAFx-in);  axis([l  pend  -1  11) 
subplot (2,2,2) ; plot (f eature-rms) ; axis ( [l If  -1  11 ) 

There is another definition of the  amplitude envelope of a signal: It could ideally 
be considered the  magnitude of the  analytical  signal x+(n) = x(.) + j?(n),  where 
the real  part is the  input  signal z (n)  and  the  imaginary  part is the  Hilbert  transform 
of the real  part  (see  section 4.2.3). However, this definition does not fit with  the 
perception:  this envelope is supposed to vary slowly with  time  and  not  include 
frequency  information. So the  magnitude of the  analytical  signal which,  except for 
a sinusoidal  signal,  keeps oscillations following the  fundamental frequency,  does not 
fit the definition of an  amplitude  detector. 

Center of Gravity of a Spectrum (Spectral Centroid) 

An important  feature of a sound is the  evolution of the “richness of harmonics” 
over time. It has  been  clearly  pointed  out  at  the  beginning of computer  music that 
sounds  synthesized  with  a fixed waveform give only static  sounds,  and  that  the 
sound’s  harmonic  content  must evolve  with time  to give a lively sound  impression. 
So algorithmic  methods of synthesis  have  used  this  variation:  additive  synthesis 
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uses the balance  between  harmonics or  partials, waveshaping or  FM  synthesis use 
an  index which  changes the richness by the  strength of the components. 
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Figure 9.41 Center of gravity of a spectrum as a good indicator of the richness of a 
harmonic  sound. 

A good  indication of the  instantaneous richness of a  sound  can  be  measured by 
the center of gravity of its  spectrum,  as  depicted in Fig. 9.41. A sound  with  a fixed 
pitch  but  with  stronger  harmonics  has  a  higher  center of gravity. It should  be  noted 
here that  this  center of gravity is linked to  the pitch of the  sound,  and  that  this 
should  be taken  into  account  during  the use of this  feature.  Thus, a good  indicator 
of the  instantaneous richness of a  sound  can  be the  ratio of the center of gravity 
divided by the pitch. 

A straightforward  method of calculating  this  centroid  can  be  achieved inside an 
FFT/IFFT-based  analysis-synthesis scheme. The  spectral  centroid is at the center 
of the  spectral energy distribution  and  can  be  calculated by 

(9.57) 

The  centroid is defined by t,he ratio of the sum of the  magnitudes multiplied by 
the  corresponding  frequencies  divided by the  sum of the  magnitudes  and  it is also 
possible to use the  square IX(k)12 = X ( k ) X * ( I c )  of the magnitudes. 

Another  method  working  in  the  time  domain  makes use of the  property of the 
derivative of a sinusoid which gives & A h  sin(Rkn) = A k R k  . cos(Rkn)  with RI, = 
27rk. If we can  express  the  input  signal by a sum of sinusoids according  to 

N / 2  - 1 

:C(.) = c A~,sin(Rkn), 
k=O 

the  derivative of the  input  signal  leads  to 

(9.58) 

(9.59) 
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The  spectral  centroid  can  then  be  computed  according  to (9.57) by the  ratio of 
the RMS  value of the derivative of the  input  signal divided by the RMS  value of 
the  input  signal itself. The  derivative of the discrete-time  input signal z (n )  can  be 
approximated by Ax(.) = ~ ( n )  - x(n - 1). The  described  time-domain  method 
is quite effective because  it does not need  any FFT and is suitable for real-time 
applications.  The following M-file 9.25 illustrates  these possibilities. 

M-file 9.25 (UX-centr0id.m) 
% UX-centr0id.m 

% feature-centroid1  and 2 are  centroids 
% calculate  by  two  different  methods 
clear;  clf 

[DAFx-in,  FS] = wavread(  ’xi. wav’ ) ; 
hop = 256; hop  size  between  two  FFTs 
WLen = 1024; % length  of  the  windows 
W = hanningz  (WLen) ; 
y----- some  initializations ----- 
WLen2 = WLen/2; 
tx = (1 :WLen2+1) ’ ; 
normW = norm(w,2) ; 
coef = (WLen/(2*pi)); 

%----- USER DATA ----- 

Pf t = 1; 
If = floor((length(DAFx-in) - WLen)/hop); 
feature-rms = zeros(1f ,l) ; 
feature-centroid = zeros(lf,l); 
feature-centroid2 = zeros(lf,l); 
tic 
y------------------------------------------- 
I 

--________------_--- 
pin = 0; 
pend = length(DAFx-in) - WLen; 

while  pincpend 
grain = DAFx-in(pin+i:pin+WLen).* W; 
f  eature-rms  (pf  t) = norm(grain,2) / normw; 
f = fft(grain)/WLen2; 
fx = abs(f  (tx)) ; 
feature-centroid(pft) = sum(fx.*(tx-l)) / sum(fx); 
f x2 = fx.*fx; 
feature_centroid2(pft) = sum(fx2.*(tx-l)) / sum(fx2); 
grain2 = diff(DAFx-in(pin+l:pin+WLen+l)).* W; 
feature-deriv(pft) = coef * norm(grain2,2) / norm(grain,2); 

p  in = pin + hop; 
Pf t = pft + l; 

end 
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% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
toc 
subplot  (4,1,1) ; plot (f eature-rms) ; xlabel ( ’RMS ’ ) 
subplot (4, l ,2) ; plot (f eature-centroid) ; xlabel ( ’ centroid  1 ) 
subplot(4,1,3); plot(feature-centroid2); xlabel(’centroid 2 ’ )  
subplot(4,1,4) ; plot(feature-deriv) ; xlabel(’centroid  3’) 

For each method  the center of gravity is calculated in frequency  bins.  Figure 9.42 
illustrates  the  results for each method. It can  be seen at the  end of a flute  sound 
that  the centroid parameter is very important:  the variations of the centroid are 
quite  independent of the RMS values of the signal. The centroid  takes  some  time 
to oscillate and  then is maintained  until  the  end of the sound. 
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Figure 9.42 Spectral centroid  computation  in  frequency and time  domain. Plots (b)-(d) 
show the centroids  in  bins,  where the corresponding  tone  pitch  is  given  by j k  = &js (with 
FFT length N and sampling  frequency fs). 

A digital effect which rel.ies on  this  feature is the mimicking of a natural sound 
by a  synthetic one. As an example, we can use a waveshaping synthesis  method. 
This  method calculates a synthetic  sound by distorting a sine wave with  the help 
of a waveshaping function  (also called nonlinear  transfer  function) and multiplying 
the  result by an amplitude variation (see Fig. 9.43). The waveshaping  function  is 
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- amplitude 
Feature extraction:  Sine  wave  Waveshaping 

- pitch 
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Figure 9.43 Mimicking with  waveshaping. 

usually  a  polynomial,  because  this  function  can  be  calculated  with the aim of having 
a fixed output  spectrum  [ArflS, Bru791. So apart from the  pitch of the sine wave, 
this  method relies on the evolution of two parameters:  the  amplitude of the sine 
wave, which is called the “index”  because the sine wave is used as  an  input  to 
the waveshaping  function, and  an  amplitude  factor, which is used as  an  amplitude 
envelope. If  we extract  the centroid and  the RMS evolution  from a natural  sound,  as 
well as  the  pitch, we can  compute an index  proportional to  the  ratio of the centroid 
towards the pitch  (this  proportional  factor, apart from a necessary  normalization, 
drives the general  brigthness of the  sound)  and  an  amplitude  factor  proportional 
to  the  extracted RMS feature.  Thus we obtain a  synthetic  sound that  retains some 
characteristics of the  initial  sound  and is given by 

s ( t )  = amp . f [index. cos(2.irfTt)]  (9.60) 

f T  = pitch,  index = coef . ____ centroid 
pitch 

,amp = rms. 

The mimicking is improved when the waveshaping  function is calculated for the 
spectrum at one  point of the initial  sound.  Two  other  further  improvements  can  be 
added: an  amplitude  normalization  factor  due to  the fact that  the index  should only 
change the  centroid  and  not  the  amplitude,  and a  correcting  factor for the index 
due  to  the fact that  the index  and centroid of the  synthetic sound have no reason 
to be in a  linear  relationship.  But even the simple  process we have described gives 
a variety of allotropic  sounds which all resemble the original in some way, but  are 
purely  harmonic  and  do  not  contain  any noisy components. 

Autocorrelation Features 

We can  extract  important  features from the autocorrelation  sequence of a win- 
dowed signal: an  estimation of the  harmonic/non-harmonic  content of a signal, the 
odd/even  harmonics  ratio in the case of harmonic  sounds  and  a  voiced/unvoiced 
part in a speech  signal.  Several  algorithms which determine  whether a speech  frame 
is voiced or unvoiced are known from speech research [Hes83]. Voiced/unvoiced de- 
tection is used either for speech  recognition  or for synthesis. For digital  audio effects, 
such  a feature is useful as a control  parameter for an  adaptive  audio effect. The first 
peak value of the normalized  autocorrelation  sequence rxx(m) for m > 0 is a  good 
indicator of the unvoiced or voiced part of a  signal, as shown in Fig. 9.44. When 
sounds  are  harmonic,  the  first  autocorrelation  peak (m > 0) on the abscissa  corres- 
ponds to  the pitch  period of this  sound.  The value of this peak will be  maximum 
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Figure 9.44 Unvoiced (upper part)  and voiced (lower part) signals and the corresponding 
autocorrelation  sequence r z z  ( m ) .  

if the sound is harmonic  and minimum if the  sound is noisy. If a window  is used, 
which gives a better  estimate for pitch extraction,  this  peak value will not go to 
one but will be weighted by the  autocorrelation of the two windows. This first peak 
value will be  denoted pv and is a good indication of voiced/noisy parts  in a  spoken 
or  sung voice. In the case of harmonic  sounds,  it  can be noted that  the  oddfeven 
harmonics ratio  can also  be  retrieved from the value at half of the  time lag of the 
first  peak. 

An alternative  computation of the autocorrelation sequence can  be  performed 
in the frequency  domain [OS75]. Normally, the  autocorrelation is computed from 
the power spectrum I X ( l c ) I 2  of the  input signal by rz.(m) = IFFT [lX(k)12].  Here, 
we perform the IFFT of the  magnitude ( X ( k ) (  (square  root of the power spectrum), 
which is computed  from  the FFT of a windowed signal. This  last  method is illus- 
trated by the following M-file 9.26 that leads to a curve following the voicedfunvoiced 
feature,  as shown in  Fig. 9.45. 

M-file 9.26 (UX-v0iced.m) 

X UX-v0iced.m 
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% feature-voice  is  a  measure  of  the  maximum of the  second  peak 
% of  the  acf 
clear ; clf 

[DAFx-in,  FS] = wavread(’x1.wav’); 
hop = 256; % hop  size  between  two  FFTs 
WLen = 1024; % length of the  windows 
W = hanningz  (WLen) ; 
y----- some  initializations ----- 

tx = (1 : WLen2+1) ’ ; 

X----- USER DATA ----- 

WLen2 = WLen/2; 

normW = norm(w,2); 
coef = (WLen/  (2*pi) ) ; 
Pf t = 1; 
If = floor((length(DAFx-in) - WLen)/hop); 
f  eature-voiced = zeros  (If, l) ; 
tic 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
pin = 0; 
pend = length(DAFx-in) - WLen; 

while  pincpend 
grain = DAFx-in(pin+l:pin+WLen).* W; 
f = f  f  t  (grain)  /WLen2; 
f2 = real(ifft(abs(f1)); 
f2 = f2/f2(1) ; 
[v,il] = min(f2(1:WLen2)>0.); 
f2(1:i1) = zeros(i1,l); 
[v,  imax] = max (f 2 ( 1 : WLen2) ) ; 
feature-voiced(pft) = v; 
Pft = pft + 1; 
pin = pin + hop ; 

end 
y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

toc 
subplot  (2,1, l) 
plot (f eature-voiced) 

A particular way to use this  feature is the construction of an  adaptive  time 
stretching effect, where the stretching  ratio a depends  on  this  feature according to 
a mapping  function a = 8P” (see Fig. 9.46). The  time  stretching  ratio will vary from 
1 to 8, depending  on the evolution of pv over time. A threshold  detector  can  help 
to force this  ratio  to  one in the case of silence. This leads to  great improvements 
over regular time  stretching  algorithms. 
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Figure 9.45 Vocal  signal and  the “voiced/unvoiced” feature pw(n). 
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Figure 9.46 Adaptive  time stretching based  on autocorrelation feature. 

Statistical Features 

As an example,  Dubnov  [DT96]  has  obtained  the classification of instrumental tim- 
bres  on a 2-D map by using skew and  kurtosis.  These  features  can help in defining 
a texturization of a  sound. The  texture of a  sound is very difficult to evaluate: 
why a trumpet does  not  sound like a string  does not rely only on a spectral rich- 
ness. The way the  individual  components  are synchronized  or not is an  important 
key for defining a texture. Many  other  features  can  be  extracted from a sound 
[HB98, RDS+99, DHOO], just to mention  a few from a very active field of research. 
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9.5 Conclusion 
The central  topic of this  chapter is the division of the  audio signal into  its source sig- 
nal  and a time-varying  filter  derived  from the  spectral envelope of the signal. These 
two features  are individually processed before synthesis of an  output signal. The 
source-filter  model of an  audio  signal, originally a basic  technique for speech pro- 
cessing, allows the implementation of several  digital audio effects based  on  these two 
global features of an  audio signal and opens up new vistas for experimentation  and 
further research. These global features  can  either  be  extracted by time-frequency 
techniques (FFT/IFFT)  and  the cepstrum  method  or  time-domain  techniques  based 
on  linear  prediction (LPC).  Both techniques deliver a  source-filter  model of the au- 
dio input  signal. Beyond it, they allow the  extraction of further global  features  such 
as  pitch  or  fundamental frequency, which can  be  estimated by the  cepstrum  method 
or  autocorrelation  techniques  applied to the  input  directly or the  extracted source 
signal. Further global  features  such as  amplitude envelope, spectral  centroid,  and 
autocorrelation  features  (voiced/unvoiced  detection)  have  been  introduced, which 
can  be  estimated by simple  time-domain or by advanced  time-frequency  techniques. 
The main  objective  here is the introduction  and  estimation of these  parameters for 
the control of various other  digital  audio effects, which are presented throughout 
this  book. A further  alternative  to  the source-filter processing  presented in this 
chapter, is the  separation of the audio  signal into individual  components  such as 
sinusoids and noise, which is discussed in Chapter  10. 
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Chapter 10 

Spectral  Processing 

X. Amatriain, J .  Bonada, A. Loscos, X. Serra 

10.1 Introduction 

In the  context of this book, we are looking for representations of sound  signals  and 
signal  processing  systems thak can  provide ways to design sound  transformations in a 
variety of music applications  and  contexts. It should have been clear throughout  the 
book that several points of view have to be  considered,  including  a  mathematical, 
thus objective  perspective,  and a cognitive, thus mainly  subjective,  standpoint.  Both 
points of view are necessary to fully understand  the concept of sound effects and  to 
be  able to use the described  techniques in practical  situations. 

The mathematical  and  signal  processing  points of view are  straightforward  to 
present,  although  not necessarily easy, since the language of the  equations  and of 
flow diagrams is suitable for them. However, the top-down  implications are much 
harder to express  due to  the huge number of variables involved and  to  the inherent 
perceptual  subjectivity of the music making  process.  This is clearly  one of the main 
challenges of the book and  the main  reason for its existence. 

The use of a spectral  representation of a  sound yields a perspective that is 
sometimes closer to  the one used in a sound  engineering  approach. By understanding 
the basic  concepts of frequency  domain  analysis, we are  able  to acquire the tools 
to  use a large  number of effects processors and  to  understand  many  types of sound 
transformation  systems. Moreover, as the frequency  domain  analysis is a  somewhat 
similar  process to  the one  performed by the human  hearing  system, it yields fairly 
intuitive  intermediate  representations. 

The basic  idea of spectral  processing is that we can  analyze  a  sound to  obtain 
alternative frequency  domain  representations, which can then  be  transformed  and 
inverted to produce new sounds (see Fig. 10.1). Most of the  approaches  start by de- 
veloping an analysis/synthesis  system from which the  input  sound is reconstructed 

373 
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without  any  perceptual loss of sound  quality. The techniques  described in Chapters 
8 and 9 are clear examples of this  approach.  Then  the  main issue is what  the  inter- 
mediate  representation is and  what  parameters  are available to apply  the desired 
transformations. 

Original 
Sound Transformations .Transformed 

Sound 

I 
l 

Original 
Spectrum 

I 
l 

Transformed 
Spectrum 

Figure 10.1 Block diagram of a simple spectral processing framework. 

Perceptual  or musical concepts  such as  timbre  or pitch are clearly related to  the 
spectral  characteristics' of a  sound.  Even  some very common processes for sound 
effects are  better explained using a frequency domain  representation. We usually 
think  about  the frequency axis when we talk  about equalizing,  filtering,  pitch  shift- 
ing,  harmonizing . . . In fact, some of them  are specific to  this signal  processing 
approach  and  do  not have an immediate  counterpart in the  time  domain. On the 
other  hand, most (but not  all ) of the sound effects presented in this book  can  be 
implemented in the frequency  domain. 

Another issue is whether  or  not this  approach is the most efficient, or  practical, 
for a given application.  The process of transforming a time  domain  signal  into a fre- 
quency domain  representation  is, by itself,  not an immediate  step. Some parameters 
are difficult to  adjust  and force us to  take several compromises. Some settings, such 
as  the size of the analysis window, have little  or  nothing to do  with the high-level 
approach we intend to favor, and require the user to have a basic  signal  processing 
understanding. 

In  that sense, when we talk  about higher level spectral processing we are  thinking 
of an intermediate  analysis  step in which relevant  features are  extracted or  computed 
from the  spectrum.  These relevant  features  should  be much closer to a musical or 
high-level approach. We can  then process the features  themselves or even apply 
transformations that keep the  features unchanged. For example, we can  extract  the 
fundamental  frequency  and  the  spectral  shape from a  sound and  then modify the 
fundamental frequency without affecting the  shape of the  spectrum. 

Assuming that  there is no single representation  and  processing  system  optimal 
for everything,  our ap:proach will be to present a set of complementary  spectral 
models that can  be combined to be used for the largest possible set of sounds  and 
musical applications. 

In  section 10.2 we introduce  two  spectral models: sinusoidal  and  sinusoidal  plus 
residual.  These models already  represent  a step  up  on  the  abstraction  ladder  and 
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Figure 10.2 Block diagram of a higher-level spectral processing framework. 

from  either of them, we can  identify and  extract higher-level information of a sound, 
such  as:  harmonics,  pitch,  spectral  shape,  vibrato,  or  note  boundaries, that is higher 
level features.  This analysis step brings the representation closer to  our perceptual 
understanding of a sound. The complexity of the analysis will depend  on  the  type of 
feature that we wish to identify and  the sound to analyze. The benefits of going to 
this higher level of analysis are  enormous  and  open  up a wide range of new musical 
applications. 

Having  set the basis of the sinusoidal  plus  residual  model, we will then give some 
details of the techniques used both in its analysis and  synthesis process,  providing 
MATLAB code to implement an analysis-synthesis  framework in section 10.3. This 
MATLAB implementation is based  on the  spectral modeling  synthesis (SMS) frame- 
work [SMS].  SMS is a  set of spectral-based  techniques and  related  implementations 
for the analysis/transformation/synthesis of an audio  signal  based on the scheme 
presented in Fig.  10.2. 

In  section 10.4 we will provide a set of basic audio effects and  transformations 
based  on the implemented  sinusoidal  plus  residual  analysis/synthesis. MATLAB 
code is provided for all of them. 

We  will finish with an explanation of content-dependent  processing  implementa- 
tions.  In section 10.5.1 we introduce a real-time  singing voice conversion application 
that  has been developed for use in karaoke, and in section 10.5.2 we define the basis 
of a  nearly lossless time  scaling  algorithm. The complexity  and  extension of these 
implementations  prevent us from providing the associated MATLAB code, so we 
leave that  task  as a challenge for advanced  readers. 

10.2 Spectral Models 
The  most common approach for converting  a time domain signd  into  its frequency 
domain  representation is the  short-time Fourier transform  (STFT). It is a general 
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technique  from  which we can  implement lossless analysis/synthesis  systems.  Many 
sound  transformation  systems  are  based on  direct  implementations of the basic 
algorithm  and  several  examples have  been  presented in Chapter 8. 

In  this  chapter, we will briefly mention the sinusoidal  model  and will concentrate, 
with  a MATLAB sample  code,  on  the sinusoidal plus  residual  model.  The decision 
as to  what  spectral  representation  to use in  a  particular  situation  is  not  an easy 
one.  The  boundaries  are  not clear and  there  are always  compromises to take  into 
account,  such as: (1) sound fidelity, (2) flexibility, (3) coding efficiency, and (4) 
computational  requirements. Ideally, we want to maximize fidelity and flexibility 
while  minimizing  memory  consumption and  computational  requirements.  The  best 
choice for maximum fidelity and minimum computation  time is the  STFT  that, 
anyhow, yields a rather inflexible representation  and inefficient coding  scheme. Thus 
our  interest in finding higher-level representations  as  the ones we present in this 
section. 

10.2.1 Sinusoidal  Model 

Using the  output of the  STFT,  the sinusoidal model  represents a step  towards  a 
more flexible representations while  compromising both  sound fidelity and  computing 
time. It is based  on  modeling the time-varying  spectral  characteristics of a  sound 
as  sums of time-varying  sinusoids.  The  input  sound s(t) is modeled by 

R 

(10.1) 
r=l 

where A,(t) and t9,(t) are  the  instantaneous  amplitude  and  phase of the rth sinusoid, 
respectively  [MQ86, SS87]. 

To obtain  a  sinusoidal  representation from a sound,  an  analysis is performed in 
order  to  estimate  the  instantaneous  amplitudes  and  phases of the sinusoids. This es- 
timation is generally done by first computing  the  STFT of the  sound,  as described 
in Chapter  8,  then  detecting  the  spectral  peaks  (and  measuring  the  magnitude, 
frequency and phase of each  one),  and finally organizing  them  as  time-varying si- 
nusoidal  tracks. 

It is a quite  general  technique that  can  be used in a wide  range of sounds  and 
offers a  gain in flexibility compared  with  the  direct  STFT  implementation. 

10.2.2 Sinusoidal plus Residual  Model 

The  sinusoidal plus  residual  model  can cover a wide “compromise  space” and  can 
in fact  be seen as  the generalization of both  the  STFT  and  the sinusoidal models. 
Using this  approach, we can decide what  part of the  spectral  information is modeled 
as sinusoids and  what is left as  STFT.  With  a good  analysis, the sinusoidal plus 
residual  representation  is very flexible while maintaining a good sound fidelity, and 
the  representation is quite efficient. In this  approach,  the sinusoidal representation is 
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used to model  only the  stable  partials of a sound.  The  residual,  or  its  approximation, 
models  what is left, which should ideally be a stochastic  component.  This  model is 
less general  than  either  the  STFT or the sinusoidal representations  but  it  results in 
an  enormous  gain in flexibility [Ser89, SS90, Ser961. 

The  input  sound s ( t )  is rnodeled by 

R 

s ( t )  = c AT(t)  cos[@,(t)] + e ( t )  
,=l 

(10.2) 

where A,(t) and O,(t) are  the  instantaneous  amplitude  and  phase of the rth sinusoid, 
respectively, and e ( t )  is the noise component at time t (in  seconds). 

The sinusoidal plus  residual  model  assumes that  the sinusoids are  stable  partials 
of the  sound with a slowly changing  amplitude  and frequency. With  this  restriction, 
we are  able  to  add  major  constraints  to  the  detection of sinusoids in the  spectrum 
and  omit  the  detection of the phase of each  peak.  The  instantaneous  phase that 
appears in the  equation is taken  to  be  the  integral of the  instantaneous frequency 
w r ( t ) ,  and  therefore satisfies 

(10.3) 

where w ( t )  is the frequency in radians,  and r is the sinusoid number.  When  the 
sinusoids are used to model  only the  stable  partials of the  sound, we refer to  this 
part of the sound  as the deterministic  component. 

Within  this model we can  either leave the residual  signal, e ( t ) ,  to  be  the difference 
between the original  sound  and  the sinusoidal component,  resulting  into an identity 
system, or we can  assume that e ( t )  is a stochastic  signal.  In  this case, the residual 
can  be described as filtered white noise, 

t 
e ( t )  = h(t, 7)u(7)d7 (10.4) 

where u(t)  is white noise and h(t,.r) is the response of a  time varying filter to  an 
impulse at  time t .  That is, the  residual is modeled by the time-domain  convolution 
of white  noise  with  a  time-varying  frequency-shaping filter. 

The  implementation of the  analysis for the sinusoidal plus residual model is more 
complex than  the one for the sinusoidal model.  Figure 10.3 shows a simplified block 
diagram of this  analysis. 

The first few steps  are  the  same  as  those in a sinusoidal-only analysis.  The ma.jor 
differences start in the  peak  continuation  process since in order to have a good 
partial-residual  decomposition we have to refine this  peak-continuation  process in 
such a way as  to be able  to identify the  stable  partials of the  sound. Several strategies 
can  be used to accomplish this.  The simplest  case is when the sound is monophonic 
and  pseudo-harmonic. By using the  fundamental frequency  information in the  peak 
continuation  algorithm, we can easily identify the  harmonic  partials. 
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Figure 10.3 Block diagram of the sinusoidal  plus  residual  analysis. 

Figure 10.4 Spectrogram of sinusoidal  component  (upper  plot) and residual  component 
(lower plot). 



10.3 Techniques 379 

The  residual  component is obtained by first  generating the sinusoidal component 
with  additive  synthesis,  and  then  subtracting  it from the original waveform. This 
is possible because the  instantaneous  phases of the  original  sound  are  matched  and 
therefore the  shape of the  time  domain waveform is preserved. A spectral  analysis 
of this  time  domain  residual is done by first windowing it, using a window which 
is independent of the one  used to find sinusoids, and  thus we are free to choose 
a different time-frequency  compromise.  An amplitude  correction  step  can  improve 
the  time  smearing  produced  in  the sinusoidal subtraction.  Then  the  FFT is com- 
puted  and  the  resulting  spectrum  can  be modeled  using several existing  techniques. 
The  spectral  phases  might be  discarded if the residual  can  be  approximated as a 
stochastic signal. Figure 10.4 shows a spectrogram  illustrating  the sinusoidal and 
residual  components. 

The  original sinusoidal plus  residual  model  has led to  other different spectral 
models that still  share  some of its  basic principles [DQ97, FHCOO, VMOO]. 

10.3 Techniques 

It is beyond the scope of this  chapter  to discuss deeply the whole analysis-synthesis 
process that results in a sinusoidal plus  residual  representation of the  sound,  but 
let  us  describe in some  detail  the  major  steps. 

10.3.1 Analysis 

The  analysis  step of the sinusoidal plus  residual  model  has  already  been  presented 
in the  previous  section  and is illustrated in Fig. 10.3. Next we will introduce  the 
most  important techniques and  the basic considerations that need  be  taken  into 
account when analyzing  a  sound. 

Previous Considerations: STFT Settings 

In  this  section, we will see that  the  STFT process is far  from  being  unsupervised, 
and  its  settings  are indeed  critical in order to get a good representation of the  sound. 
The  main  parameters involved in  this  step  are window size, window type,  frame size 
and  hop size. 

As has  already been  mentioned in previous chapters,  the first step involved in  the 
process of converting  a  time  domain signal into  its frequency  domain representation, 
is the windowing of the  sound.  This  operation involves selecting a number of samples 
from the sound  signal  and  multiplying  their  value by a windowing  function [Har78]. 

The  number of samples  taken in every  processing step is defined by the window 
size. It is a  crucial  parameter, especially if  we take  into  account  that  the  number 
of spectral  samples  that  the  DFT will yield at its  output  corresponds  to half the 
number of samples of its  input  spread over half of the original  sampling  rate. We  will 
not go into  the  details of the  DFT  mathematics  that lead to  this  property,  but  it is 
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very important  to  note  that  the longer the window, the more  frequency  resolution 
we will have. On  the  other  hand,  it is straightforward to see the drawback of taking 
very  long windows: the loss of time  resolution.  This  phenomenon is known as  the 
time vs. frequency  resolution  trade-off (see Fig. 10.5). A more specific limitation of 
the window size has to do  with  choosing windows with  odd  sample-length in order 
to guarantee even  symmetry  about  the  origin. 

Figure 10.5 Time vs. frequency  resolution trade-off. 

The kind of window used  also has a very strong effect on the qualities of the 
spectral  representation we  will obtain.  At  this  point we should  remember that a 
time  domain  multiplication  (such  as the one  between the  signal  and  the windowing 
function) becomes a frequency  domain  convolution  between  the  Fourier  transforms 
of each of the signals  (see  Fig. 10.6 ). One may be  tempted to forget  about  deciding 
on  these  matters  and  apply  no window at all, just  taking n samples  from the signal 
and feeding them  into  the chosen FFT algorithm.  Even in this  case,  though, a 
rectangular window is being  used, so the  spectrum of the signal is being convolved 
with the transform of a rectangular  pulse, a sinc-like function. 

0 
sine  wave. 2.000 HZ I I Hamming  window 

sine  wave spectrum 

Figure 10.6 Effect of applying a window in the  time  domain. 

Two  features of the transform of the window are  specially  relevant to whether 
a  particular  function is useful or  not: the width of the  main  lobe,  and  the  main  to 
highest  side  lobe  relation. The main  lobe  bandwidth is expressed  in  bins  (spectral 
samples)  and, in conjunction  with the window size, defines the ability to distinguish 
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two sinusoidal  peaks (see Fig. 10.7). The following formula expresses the relationship 
the window size M ,  the main lobe bandwidth B, and  the sampling rate fs should 
have in order to distinguish  two  sinusoids of frequency f k  and fk+1:  

(10.5) 

WO sinusoids of 2.000 Hz and 2.200 Hz 

spectrum  with  a  small  window  spectrum  with a larger  window 

Figure 10.7 Effect of the window size in distinguishing  between two sinusoids. 

The amplitude  relationship between the main  and  the highest  side  lobe  explains 
the  amount of distortion a peak will receive from surrounding  partials.  It would 
be  ideal to have a window with an extremely  narrow  main  lobe and a very high 
main to  secondary lobe relation. However, the  inherent trade-off between these  two 
parameters forces a  compromise to be  taken. 

Common windows that can  be used in the analysis step  are  Rectangular, Trian- 
gular, Kaiser-Bessel, Hamm.ing, Hanning and Blackmann-Harris. In  the code  sup- 
plied in this cha,pter, we have chosen a Blackmann-Harris 92 dB window for the sake 
of simplicity. This window has a rather wide main lobe (9 bins) but  an extremely 
high main-to-secondary  lobe  relation of 92 dB.  This difference is so close to  the 
dynamic  range of a 16-bit representation that, in that case, we need only take  into 
account  the influence of the main  lobe. The following M-file 10.1 implements the 
generation of a  Blackman-Harris window. 

M-file 10.1 (bh92.m) 
function[bh92SINE2SINE,bh92SINE2SINEsize]=bh92SINE2SINEgeneration; 
%function~bh92SINE2SINE,bh92SINE2SINEsize]=bh92SINE2SINEgeneration; 
% 
% ==> generation of the  Blackman-Harris  window 
% output  data: 

% bh92SINE2SINE:  (sampled) window 
% bh92SINE2SINEsize:  size of the window 

bh92SINE2SINEsize = 4096; 
bh92SINE2SINE = zeros(bh92SINE2SINEsize,l); 
bh92N = 512; 
bh92const = C.35875, .48829,  .14128, .Oll68] ; 
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bh92Theta = -4*2*pi/bh92N; 
bh92ThetaIncr = 8*2*pi/bh92N/bh92SINE2SINEsize; 
for  i=l:bh92SINE2SINEsize 

for m=0:3 
bh92SINE2SINE(i)=bh92SINE2SINE(i)-bh92const(m+l~/2* ... 

(sine2sine(bh92Theta-m*2*pi/bh92N,bh92N)+ . . .  
sine2sine(bh92Theta+m*2*pi/bh92N,bh92N)); 

end ; 
bh92Theta = bh92Theta + bh92ThetaIncr; 

end ; 
bh92SINE2SINE = ~ ~ ~ ~ S I N E ~ S I N E / ~ ~ ~ ~ S I N E ~ S I N E ( ~ ~ ~ ~ S I N E ~ S I N E S ~ Z ~ / ~ + I ) :  

The value of the sine2sine function  (not included in the basic MATLAB package) 
is  computed as follows: 

M-file 10.2 (sine2sine.m) 
function  x = sine2sine( x , N ) 

x = sin(  (N/2)*x) / sin(x/2) ; 
sine2sine  function ! ! !  

One  may think  that a  possible way of overcoming the  timelfrequency trade-off is to 
add zeros to the windowed signals in order to have a  longer FFT and so increase the 
frequency  resolution. This process is known as zero-padding and it represents an 
interpolation in the frequency  domain. Thus, when we zero-pad  a  signal before the 
DFT process, we are  not  adding  any  information  to  its frequency  representation (we 
will still  not  distinguish  two sinusoids if (10.5) is not  satisfied),  but we are indeed 
increasing the frequency  resolution by adding  intermediate  interpolated  bins.  This 
process  can  help in the peak  detection  process, as explained  lat,er. 

A final step is the circular  shift  already  described in section 8.2.2. This buffer 
centering guarantees  the preservation of zero-phase  conditions in the analysis  pro- 
cess. 

Once the  spectrum of a frame has  been computed,  the window must move to  the 
next  position in the waveform in order to  take  the next  set of samples. The distance 
between the centers of two  consecutive windows is known as hop size. If the hop size 
is smaller than  the window size, we will be  including  some  overlap, that is, some 
samples will be used  more than once  in the analysis  process. In general, the more 
overlap,  the  smoother  the  transitions of the  spectrum will be  across time,  but  that 
is a computationally  expensive  process.  The window type  and  the hop size must  be 
chosen in such  a way that  the resulting envelope adds  approximately to a constant, 
following the  equation 

00 

A,(m) E c w(m - n H )  M constant. (10.6) 
n=--00 

A measure of the  deviation of A, from a constant is the difference between the 
maximum  and minimum values for the envelope as a  percentage of the maximum 
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value: 

(10.7) 

This  measure is referred to  as  the  amplitude deviation of the overlap  factor. Vari- 
ables  should  be chosen accordingly to keep this  factor  around or below 1 percent. 

We have seen that  the  STFT process that is bound to provide a suitable fre- 
quency  domain  representation of the  input  signal, is a far  from  trivial process and 
is dependent  on  some low-level parameters closely related to  the signal  processing 
domain. A little  theoretical knowledge is required but only practice will surely  lead 
to  the desired  results. 

Peak Detection 

The sinusoidal model assumes that each spectrum of the  STFT representation  can 
be  explained by a series of sinusoids. For a given frequency  resolution, using enough 
points in the  spectrum, a sinusoid can  be identified by its  shape. Theoretically, 
a sinusoid that is stable  both in amplitude  and in frequency - a partial - has a 
well-defined frequency  representation: the transform of the analysis window used 
to compute  the Fourier transform. It should  be possible to  take advantage of this 
characteristic to distinguish partials from other  frequency  components. However, in 
practice  this is rarely  the case, since most natural  sounds  are not  perfectly  periodic 
and  do  not have nicely spaced and clearly defined peaks in the frequency  domain. 
There  are  interactions between the different components,  and  the  shapes of the 
spectral  peaks  cannot  be  detected  without  tolerating  some  mismatch.  Only  certain 
instrumental  sounds (e.g., the  steady-state  part of an oboe  sound)  are  periodic 
enough and sufficiently free from prominent noise components that  the frequency 
representation of a stable sinusoid can  be recognized easily in a single spectrum (see 
Fig. 10.8). A practical  solution is to detect as many  peaks as possible,  with  some 
small constraints,  and delay the decision of what is a “well behaved” partial,  to  the 
next  step in the analysis: the peak  continuation  algorithm. 

A “peak” is defined as a local maximum in the  magnitude  spectrum,  and  the only 
practical  constraints to be  made in the peak  search are  to have a frequency range 
and a magnitude  threshold.  Due to  the sampled nature of the  spectrum  returned 
by the  FFT, each  peak is accurate only to within half a  sample. A spectral  sample 
represents a frequency  interval of f s / N  Hz, where f s  is the sampling rate  and N 
is the  FFT size. Zero-padding in the  time  domain increases the number of spectral 
samples  per Hz and  thus increases the accuracy of the simple peak  detection (see 
previous section). However, to  obtain frequency  accuracy on the level of 0.1 percent 
of the distance  from the  top of an ideal  peak to  its first zero crossing (in the case 
of a  Rectangular  window),  the  zero-padding  factor  required is 1000. 

A more efficient spectral  interpolation scheme is to zero-pad  such that  quadratic 
(or  other  simple)  spectral  interpolation, using only samples  immediately  surround- 
ing the maximum-magnitude  sample, suffices to refine the  estimate  to 0.1 percent 
accuracy. That is the  approach we have chosen and is illustrated in Fig. 10.9. The 
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Figure 10.8 Peak detection. (a) Peaks in magnitude  spectrum. (b) Peaks in the phase 
spectrum. 
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Figure 10.9 Parabolic  interpolation in the peak detection process. 

frequency and  magnitude of a  peak  are  obtained from the  magnitude  spectrum ex- 
pressed in dB.  Then  the  phase value of the peak is measured by reading  the value 
of the unwrapped  phase  spectrum at  the position  resulting  from  the  frequency of 
the peak. 

Although we cannot rely  on the exact  shape of the  peak to decide  whether it is 
a partial or not,  it is sometimes useful to have a  measure of how close its  shape is 
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to  the ideal sinusoidal  peak. With this idea in mind, different techniques  have  been 
used in order  to  improve the estimation of the  spectral  peaks  parameters [DH97]. 

The M-file 10.3 implements  the  peak  detection  algorithm, the function  PickPeaks 
finds the local maximums of the spectrum. 

M-file 10.3 (Pickpeaks .m) 
function  [loc,  val] = PickPeaks(spectrum,  nPeaks,  minspace) 
%function  [loc,  val] = pickpeaks(spectrum,  nPeaks,  minspace) 

X==> peaking  the  nPeaks  highest  peaks  in  the  given  spectrum 
% from  the  greater  to  the  lowest 
% data: 

% 

% lac: bin  number  of  peaks  (if  loc(i)==O,  no  peak  detected) 
% Val:  amplitude  of  the  given  spectrum 
% spectrum:  spectrum  (abs(fft(signa1)) 
% nPicks:  number  of  peaks  to  pick 
% minspace:  minimum  of  space  between  two  peaks 

[r, cl = size(spectrum); 
rmin = min(spectrum1 - l; 

% ---find  a  peak,  zero  out  the  data  around  the  peak,  and  repeat 
val = ones(nPeaks,c)*NaN; 
loc = zeros(nPeaks,c); 

for  k=l:c X--- find  all  local  peaks 
difference = diff([rmin;  spectrum(:,k);  rmin]); % derivate 
iloc = find(difference(l:r)>= 0 & difference(2:r+l) <= 0 ) ;  

ival = spectrum(i1oc  ,k) ; % peak  values 
% peak  locations 

for  p=l:nPeaks 
[val(p,k)  ,l] = max(iva1); % find  current  maximum 
loc(p,k) = iloc(1) ; save  value  and  location 
ind = find(abs(iloc(1)-iloc) > minspace); 

if  (isempty  (ind) ) 
break % no  more  local  peaks  to  pick 

end 
ival = ival  (ind) ; shrink  peak  value and location  array 
iloc = iloc(ind); 

% find  peaks  which  are  far  away 

end 
end 

The function  interpolatedvalues  (M-file 10.4) computes  interpolated  values for 
each  peak. 
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M-file 10.4 (interpolatedVa1ues.m) 
function  [iftloc,  iftphase,  iftval] = interpolatedvalues . . .  

%function  [iftloc,  iftphase,  iftval] = interpolatedvalues . . .  
% (r, phi, N,  zp, ftloc,  ftval) 
% 
X==> computation  of  the  interpolated  values 

% and  phase  (linear  interpolation) 
% 
% data: 
% iftloc:  interpolated  location  (bin) 
% iftval:  interpolated  magnitude 
% iftphase:  interpolated  phase 
% f  tloc : peak  locations  (bin) 
% f  tval : peak  magnitudes 
% r:  magnitude  of  the FFT 
% phi : phase  of  the FFT 
% N:  size  of  the FFT 
% zp : zero-padding  multiplicative  coefficient 

”/-- e calculate  interpolated  peak  position  in  bins  (iftloc) ------ 

(r,  phi, N,  zp, ftloc,  ftval) 

of  location  and  magnitude  (parabolic  interpolation) 

leftftval = 
rightftval= 
lef  tf  tval = 
rightftval= 
f  tval 
iftloc = 

- - 

(leftftval - 2*ftval + rightftval); 

iftloc = (iftloc>=i).*iftloc + (iftloc<l).*i; 
if tloc = (if  tloc>N/2+1) . * (zp/2+1) + (if  tloc<=N/2+1) . *if  tloc ; 

y--- calculate  interpolated  phase  (iphase) ...................... 

leftftphase = phi(floor(ift1oc)); 
rightftphase=  phi(floor(iftloc)+l); 
intpfactor = iftloc-ftloc; 
intpfactor = (intpfactor>O).*intpfactor . . .  

dif  fphase = unwrap2pi  (rightf  tphase-leftf  tphase) ; 
iftphase = leftftphase+intpfactor.*diffphase; 

+(intpfactor<O)  .*(i+intpfactor); 

y--- calculate  interpolate  amplitude  (iftval) ------------------- 
iftval = ftval-.25*(leftftval-rightftval) .*(iftloc-ftloc); 
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These  functions (as well as others that will be  introduced  later in this  chapter) make 
use of the  unwrap2pi function given by M-file 10.5. 

M-file 10.5 (unvraplpi .m) 
function  argunwrap = unwrap2pi  (arg) 
% function  argunwrap = unwrap2pi  (arg) 
% 
%==> unwrapping of the   phase ,   in   [ -p i ,   p i ]  
% arg :   phase   to  unwrap 
a rg  = a rg  - f loor(arg/2/pi)*2*pi ;  
argunwrap = a rg  - (arg>=pi)*%pi;  

Pitch Estimation 

Although the  term  pitch should  ideally  be used to refer only to perceptual  issues, 
the  term  fundamental frequency is not  suitable to describe the  output of techniques 
that will be  explained  herein. For that reason we will use both  terms  without making 
any  distinction to refer to  the  output of these  algorithms that  aim  to provide an 
estimation of this psychoacoustical  sensation that is often (but  not always) explained 
by the value of the  fundamental frequency of a given harmonic series. 

Pitch  estimation is an optional  step used when we know that  the  input sound 
is monophonic and pseudo-harmonic. Given this  restriction  and  the  set of spectral 
peaks of a frame,  obtained  as in the sinusoidal  analysis,  with  magnitude  and fre- 
quency values for each one,  there  are  many possible pitch  estimation  strategies, 
none of them perfect [Hes83, MB94, Can981. The most obvious approach is to  cle- 
fine the  pitch  as  the common divisor of the  harmonic series that best  explains  t,he 
spectral peaks  found in a given frame. For example, in the two-way mismatch proce- 
dure proposed by Maher and  Beauchamp  the  estimated F0 is chosen as  to minimize 
discrepancies between measured  peak frequencies and  the  harmonic frequencies gen- 
erated by trial values of Po, For each trial F', mismatches between the harmonics 
generated  and  the measured  peak frequencies are averaged over a fixed subset of 
the available  peaks. This is a basic idea  on  top of which we can add  features  and 
tune all the  parameters for a given family of sounds. 

Many trade-offs are involved in the implementation of a fundamental  frequency 
detection  system  and every application will require a clear design strategy. For 
example, the issue of real-time  performance is a  requirement  with strong design im- 
plications. We can  add context-specific optimizations when knowledge of the signal 
is available. Knowing, for instance,  the frequency  range of the F' of a particular 
sound  helps both  the accuracy and  the  computational  cost.  Then,  there  are  sounds 
with specific characteristics, like in a clarinet where the even partials  are softer than 
the odd ones. From this  information, we can define a  set of rules that will improve 
the performance of the usecl estimator. 

In the framework of the sinusoidal  plus  residual  analysis  system, there  are  strong 
dependencies between the  fundamental frequency  detection step  and  many  other 
analysis  steps. For example, choosing an  appropriate window for the Fourier analysis 
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will facilitate  detection of the  fundamental  and,  at  the  same  time,  getting a good 
fundamental  frequency will assist  other  analysis  steps,  including  the selection of an 
appropriate window. Thus,  it could  be  designed as  a recursive process. 

M-file 10.6 implements  an  algorithm for pitch  detection  (note  that,  first, different 
computations  are accomplished in order  to decide if the region  being  analyzed is 
harmonic or not). 

M-file 10.6 (pitchDetecti0n.m) 
function[pitchvalue,pitcherror,isHarm]=pitchDetection(r,N, . . . 

% function  [pitchvalue  ,pitcherror,  isHarm] = . . . 
% pitchDetection(r,N,SR,nPeaks,iftloc,iftval) 

X==> pitch  detection  function,  using  the  Two-way  Mismatch 

SR,nPeaks,iftloc,iftval) 

% 

% algorithm  (see  TWM.m) 

% data: 
% 

% r: FFT magnitude 
% N: size of the FFT 
% SR : sampling  rate 
% nPeaks:  number  of  peaks 
% iftloc,  iftval:  location 

tracked 
(bin)  and  magnitude  of  the  peak 

I--- harmonicity  evaluation  of  the  signal 
highenergy = sum(r(round(5000/SR*N):N/2)); % 5000  Hz  to SR/2 Hz 
lowenergy = sum(r(round(50/SR*N):round(2OOO/SR*N))); 

isHarm = max(O,(highenergy/lowenergy < 0.6)); 
% 50 Hz  to 2000 Hz 

if  (isHarm==l) %-- 2-way  mismatch  pitch  estimation  when  harmonic 
npitchpeaks = min(50,nPeaks); 
[pitchvalue,pitcherror] = . . .  

TWM(iftloc(1:npitchpeaks) ,iftval(l:npitchpeaks) ,N,SR); 
else 

pitchvalue = 0; 
pitcherror = 0; 

end ; 

y--- , In . case  of  too  much  pitch  error, 
% signal  supposed  to  be  inhamonic 
isHarm = min (isHarm,(pitcherror<=l.5)); 

The two-way mismatch  procedure is implemented as follows: 

M-file 10.7 (TWM.m) 
function  [pitch,  pitcherror] = TWM  (iloc,  ival, N, SR) 
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%function  [pitch,  pitcherrorl = TWM  (iloc,  ival, N, SR) 
% 
% => Two-way  mismatch  error  pitch  detection 
% using  Beauchamp & Maher  algorithm 
% 
% data: 
% iloc:  location  (bin)  of 
% ival:  magnitudes  of  the 
% N:  number  of  peaks 
% SR:  sampling  rate 

the  peaks 
peaks 

ifreq = (iloc-l)/N*SR; % frequency  in  Hertz 

y--- avoid  zero  frequency  peak 
[zvalue , zindex] = min  (if  req) ; 
if  (zvalue==O) 

ifreq(zindex) = 1; 
ival(zindex) = -100; 

end 

ival2 = ival; 
[MaxMag,MaxLocl] = max(i.val2) ; 
ival2(MaxLocl) = -100; 
CMaxMag2,  MaxLoc2]=  max  (i.val2) ; 
ivalZ(MaxLoc2) = -100; 
CMaxMag3,  MaxLoc3]=  max  (i.val2) ; 

X--- pitch  candidates 
nCand = IO; % number  of  candidates 
pitchc = zeros (I, 3*nCand) ; 
pitchc(l:nCand)=(ifreq(MaxLocl)*ones(i,nCand)) ./((nCand . . . 

+l-[I:nCandl)); 
pitchc(nCand+l:nCand*2)=(ifreq(MaxLoc2)*ones(i,nCand)) ./ ((nCand . 

+l-[l:nCand])); 
~ ~ ~ ~ ~ ~ ( n ~ a n d ~ 2 + 1 : n C ~ d * 3 ) = o f r e q ( M a x L o c 3 ~ * o n e s ~ ~ , n C ~ ~ ~ ~ . / ~ ~ ~ ~ ~ ~  . 

+l- [l :nCand] ) ) ; 
~pitchc=l00:300; 
harmonic = pitchc; 

X--- predicted  to  measured  mismatch  error 
ErrorPM = zeros(fliplr(size(harm0nic))); 
MaxNPM = min(lO,length(iloc)); 
for  i=l:MaxNPM 

difmatrixPM = harmonic’ * ones(size(ifreq)) ’ ; 
difmatrixPM = abs(difmatrixPM . . .  
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-ones (f liplr  (size  (harmonic) ) ) *if req’ ) ; 
[FreqDistance,peakloc] = min(difmatrixPM, [] ,2) ; 
Ponddif = FreqDistance .* (harmonic’.-(-0.5)); 
PeakMag = ival  (peakloc) ; 
MagFactor = max(0,  MaxMag - PeakMag + 20) ; 
MagFactor = max(0, 1.0 - MagFactor/75.0); 
ErrorPM = ErrorPM . . .  

+(Ponddif+MagFactor.*(l.4*Ponddif-O.5)); 
harmonic = harmonic+pitchc; 

end 

y--- measured  to  predicted  mismatch  error 
ErrorMP = zeros (fliplr(size(harmonic))); 
MaxNMP = min(lO,length(ifreq)); 

for  i=l : length(pitchc) 
nharm = round(ifreq(l:MaxNMP)/pitchc(i)); 
nharm = (nharm>=l) . *nharm + (nharmcl) ; 
FreqDistance = abs(ifreq(1:MaxNMP) - nharm*pitchc(i)); 
Ponddif = FreqDistance.* (ifreq(l:MaxNMP).-(-O.5)); 
P  e  akMag = ival(1:MaxNMP); 
MagFactor = max(0,MaxMag - PeakMag + 20) ; 
MagFactor = max(0,l.O - MagFactor/75.0); 
ErrorMP(i) = sum(MagFactor.*(Ponddif . . .  

+MagFactor.*(1.4*Ponddif-O.5))); 
end 

X - - -  total  error 
Error = (ErrorPM/MaxNPM) + (0.3*ErrorMP/MaxNMP); 
[pitcherror,  pitchindex] = min(Error); 

pitch = pitchc(pitchindex); 

Peak Continuation 

The peak  detection  process  returns  the  estimated  magnitude, frequency, and phase 
of the prominent  peaks in a given frame  sorted by frequency. Once the  spectral peaks 
of a frame  have  been  detected,  and possibly a fundamental  frequency  identified, a 
peak  continuation  algorithm  can  organize  the  peaks  into  time-varying  trajectories. 

The  output of the sinusoidal  analysis is a set of spectral peak values (frequency, 
magnitude  and  phase) organized into frequency trajectories, where each trajectory 
models a time-varying  sinusoid (see Fig. 10.10). As will be shown later, from this 
information we can  synthesize  a  sound using additive  synt,hesis. The less restrictive 
the  peak  detection  step  is,  the  more  faithful  the  reconstruction of the original  sound 
will be  after  synthesis. 
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Figure 10.10 Frequency trajectories resulting from the sinusoidal  analysis of a vocal 
sound. 

The sinusoidal  model  assumes that each of these  peaks is part of a  frequency 
trajectory  and  the  peak  continuation  algorithm is responsible for assigning each peak 
to a given "track".  There  are  many possibilities for such  a process. The original  one 
used by McAulay and  Quatieri (see Fig. 10.11) in  their  sinusoidal  representation 
[MQ86] is based on finding, for each peak,  the closest one in frequency in the 
following frame. 

The schemes used in the  traditional sinusoidal  model (as  the one just  mentioned), 
incorporate  all  the  spectral peaks into  trajectories,  thus  obtaining a  sinusoidal rep- 
resentation for the whole sound.  These schemes are not  optimal when we want the 
trajectories to  follow just  the  stable  partials, leaving the  rest to be  modeled as 
part of the residual  component. For example, when the  partials significantly change 
in frequency from one  frame to  the  next, these  algorithms easily switch from the 
partial  that  they were tracking to  another one, which is closer at that point. 
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Figure 10.11 Traditional peak continuation algorithm [MQ86]. 
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Figure 10.12 Peak continuation process. g represents  the guides and p the  spectral peaks. 

Here we will describe  a  basic  framework  under which we can define rules for 
specifying the behavior of the  partials of musical sounds  and  thus implement  systems 
for identifying partials  out of spectral  peaks. The behavior of a partial,  and therefore 
the way to  track  it, varies depending on the signal. Whether we have speech,  a 
harmonic  instrumental  tone, a gong sound, a  sound of an  animal, or any  other,  the 
time-varying  behavior of the  partials will be different. Thus,  the  algorithm requires 
some knowledge about  the  characteristics of the sound that is being  analyzed. 

The basic  idea of the algorithm is that a  set of “guides”  advances in time  through 
the  spectral  peaks of each  frame, looking for the  appropriate peaks to be used 
(according to  the specified constraints)  and forming trajectories  out of them (see 
Fig. 10.12). Thus, a guide is an  abstract  entity employed to  create sinusoidal trajec- 
tories, which are  the  actual result of the peak  continuation  process.  The  instantan- 
eous state of the guides,  including  their  frequency and  magnitude, is continuously 
updated as the guides are  turned on, continued,  and finally turned off. In  the case 
of harmonic  sounds,  these guides are initialized  according to  the  harmonic series 
of the  detected  fundamental frequency, and for inharmonic  sounds, each guide is 
created  dynamically. 
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The guides use the peak values and  their  context, such as  surrounding  peaks 
and  fundamental  frequency, to advance in time  and form  trajectories. For example, 
by using the  detected  fundamental frequency and  the “memory” of an incoming 
trajectory  to a given frame, we control  the  adaptation of the guides to  the instan- 
taneous changes in the  sound. For a very harmonic  sound, since all the harmonics 
evolve together,  the  fundamental should  be the  main control.  Nevertheless, when 
the  sound is less harmonic  and we cannot rely on the fundamental  frequency  as  a 
strong reference for all the  harmonics,  the  information of the incoming trajectory 
should have a bigger weight. 

Each  peak is assigned to  the guide that is closest to  it  and  that is within a 
given frequency and  amplitude  deviation. If a guide  does  not find a match,  it is 
assumed that  the corresponding trajectory  must  “turn off’. In  inharmonic  sounds, 
if a guide has  not found  a  continuation  peak for a given amount of time the guide is 
killed. New guides, and therefore new trajectories,  are  created from the peaks of the 
current  frame  that  are  not  incorporated  into  trajectories by the existing  guides. If 
there  are killed or unused  guides, a new guide  can be started. Searching  through the 
“unclaimed”  peaks of the  frame for the one  with the highest  magnitude  creates  a 
guide.  Once the  trajectories have been continued for a few frames, the  short ones can 
be deleted and we can fill the “gaps”  encountered in long trajectories.  A  real-time 
implementation would not  be  able to use the rules that make use of the information 
of “future”  frames. 

The creation of trajectories from the  spectral peaks is compatible  with very 
different strategies  and  algorithms. A promising  approach is to use Hidden Markov 
models [DGR93]. This  type of approach  might  be very valuable for tracking  partials 
in polyphonic  sounds and complex inharmonic  tones. 

In  our  MATLAB  implementation (M-file 10.8), we have chosen to provide a 
simple tracking  algorithm that uses a simplified version of the techniques previously 
introduced for the case of harmonic  and  inharmonic sounds. 

M-file 10.8 (peakTrackSimple .m) 
functionCiloc,ival,iphase,previousiloc,previousival, . . .  

distminindex]=peakTrackSimple(nSines,nPeaks,N, ... 
SR,pitchvalue,iftloc,iftval,iftphase,isHarm, . . .  
previousi loc,previousival)  ; 

% function[iloc,ival,iphase,previousiloc,previousival, . . .  
% distminindex]=peakTrackSimple(nSines,nPeaks,N, . . .  

SR,pitchvalue,iftloc,iftval,iftphase,isHarm, . . .  
% previousiloc,previousival) ; 
% 
X==> simplest  partial  tracking 
% data: 
% iloc,ival,iphase:  location (bin), magnitude 

% previousiloc,previousival,previousiphase: idem for 

% iftloc,  iftval, iftphase:  idem of all of the peaks in the FT 

% and phase of peaks (current  frame) 

% previous  frame 
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distminindex:  indexes  of  the  minimum  distance 
between  iloc  and  iftloc 

nPeaks : number  of  peaks  detected 
nSines : number  of  peaks  tracked 
N: size  of  the FFT 
SR : sampling  rate 
pitchvalue: estimated  pitch  value 
isHarm: indicator  of  harmonicity 

tmpharm = pitchvalue; X--- temporary  harmonic 
iloc = zeros  (nsines, 1) ; 
MindB = -100; 
ival = zeros(nSines,l) + MindB; 
iphase = zeros(nSines,i); 
distminindex = zeros(nSines,l); 
Delta = 0.01; 

for  i=i  :nSines x---  for  each  sinus  detected 
if  (isHarm==l) %--- for  a  harmonic  sound 
[closestpeakmag,closestpeakindex]=min(abs((iftloc-l)/N*SR-tmpharm)); 
tmpharm = tmpharm + pitchvalue; 
else x---  for  an  inharmonic  sound 
[closestpeakmag,closestpeakindex]=min(abs(iftloc-previousiloc(i))); 

end 
iloc(i) = iftloc(c1osestpeakindex); %--- bin  of  the  closest 
ival(i) = iftval(c1osestpeakindex); 
iphase(i) = iftphase(c1osestpeakindex); 
dist = abs  (previousiloc-iloc (i) ) ; 
[distminval,  distminindex(i)] = min(dist); 
end 

You will also  need the code for the function CreateNewTrack (M-file 10.9), which 
implements the initialization of newborn  tracks  during the peak  continuation  pro- 
cess. 

M-file 10.9 (CreateNeuTrack.m) 
function~newiloc,newival]=CreateNewTrack(iftloc,iftval, . . .  

previousiloc,previousival,nSines,MinMag); 
% function~newiloc,newival]=CreateNewTrack(iftloc,iftval, . . .  
% previousiloc,previousival,nSines,MinMag); 
% 
%==> creation  of a new  track  by  looking  for  a  new  significant 
% peak  not  already  tracked 
% data:  iftlov,  iftval:  bin  number & magnitude  of  peaks  detected 
% previousiloc, 
% previousival:  idem  for  previous  peaks  detected 
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% nSines : number  of  sines 
% MinMag : minimum  magnitude (-io0 dB) for 
% 0 amplitude 

y--- , removing  peaks  already  tracked 
for  i=i:nSines 

[min,  ind] = min(abs(iftva1 - previousival(i))); 
if tval  (ind) = MinMag; 

end 
X--- keeping  the  maximum 
[newival , ind] = max  (if  t.val) ; 
newiloc = if  tloc  (ind) ; 

M-file 10.10 implements  a  visual  representation of the sinusoidal tracks. 

M-file 10.10 (P1otTracking.m) 
function  PlotTracking(SineFreq,  pitch) 
%function  PlotTracking(SineFreq,  pitch) 
% 
%==> plot  the  partial  tracking 
% data: 
% SineFreq:  frequencies  of  the  tracks 
% pitch:  frequency  of  the  pitch 
[nSines,  nFrames] = size(SineFreq) ; 

for  n=i:nSines 
f=l; 
while  (f<=nFrames) 

while  (f<=nFrames & SineFreq(n,f )==O) 

end 
iStart = min(f  ,nFrames) ; 
while  (f<=nFrames & SineFreq(n,f)>O) 

end 
iEnd = min(max(1,f-l)  ,nFrames); 
if  (iEnd > istart) 
line(  (istart : iEnd) , SineFreq(n,  istart : iEnd) ) ; 
end 

f = f+l; 

f = f + l ;  

end 
end 

h = line((l:nFrames),  pitch(1:nFrames)); 
set  (h,  linewidth’ , 2 ,  ’Color’ , ’black’ ) ; 
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Residual Analysis 

Once we have identified the  stable  partials of a sound, we are  ready to  subtract 
them from the original  signal and  obtain  the residual  component.  This  subtraction 
can  be  done  either in the  time  domain or in the frequency  domain. A time  domain 
approach  requires that first the  time  domain signal is synthesized from the sinu- 
soidal trajectories, while if  we stay in the frequency  domain, we can  perform the 
subtraction  directly in the already  computed  magnitude  spectrum. For the time 
domain  subtraction,  the phases of the original  sound  have to be  preserved in the 
synthesized  signal, thus we have to use a type of additive  synthesis  with which we 
can  control  the  instantaneous phase and  this is a  t,ype of synthesis that is com- 
putationally  quite  expensive.  On  the  other  hand,  the  sinusoidal  subtraction in the 
spectral  domain is simpler but  not considerably  more. Our sinusoidal  information 
from the analysis is very much undersampled,  since for every sinusoid we only have 
the value at  the  top of the peaks,  and  thus we have to generate  all the frequency 
samples that belong to  the sinusoidal  peak to be  subtracted. 

Once we have either  the residual spectrum or the residual  time  signal, it is useful 
to  study it in order  to check how  well the  partials of the  sound were subtracted  and 
therefore  analyzed. If partials  remain in the residual,  the possibilities for transfor- 
mations will be  reduced,  mainly  because  it will not  be possible to approximate  the 
residual as a stochastic  signal,  thus reducing its flexibility. In  this case, we should 
re-analyze the sound  until we get  a good residual, free of deterministic  components. 
Ideally, the resulting  residual  should  be  as close as possible to a stochastic  signal. 

From the residual  signal, we can  continue  our  modeling  strategy.  To  model  the 
stochastic part of sounds,  such as the  attacks of most  percussion instrument,  the bow 
noise in string  instruments,  or  the  breath noise in wind instruments, we need a good 
time resolution and we can give up some  frequency  resolution. The  deterministic 
component  cannot  maintain  the  sharpness of attacks,  because, even if a  high  frame- 
rate is used, we are forced to use a  long  enough window, and  this size determines 
most of the  time resolution.  When the deterministic  subtraction is done in the 
time  domain,  the  time resolution in the  stochastic analysis  can  be  improved by 
redefining the  analysis window. The frequency  domain  approach implies that  the 
subtraction is done in the  spectra  computed for the  deterministic  analysis,  thus  the 
STFT  parameters  cannot  be changed [Ser89]. 

Since it is the deterministic  signal that is subtracted from the original sound, 
measured  from  long windows, the  resulting residual  signal  might  have the  sharp 
attacks  smeared. To  improve the  stochastic analysis, we can “fix” this residual so 
that  the sharpness of the  attacks of the original  sound is preserved. The  result- 
ing  residual is compared  with the original waveform and  its  amplitude re-scaled 
whenever the residual has a greater energy than  the original waveform. Then  the 
stochastic  analysis is performed on this scaled residual. Thus,  the smaller the win- 
dow, the  better  time resolution we will get  in the residual. \.lie can also  compare  the 
synthesized  deterministic  signal  with  the  original  sound  and whenever this signal 
has a greater energy than  the original waveform, it  means  that a  smearing of the 
deterministic  component  has  been  produced.  This  can  be fixed somewha,t by scal- 
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ing the  amplitudes of the  deterministic analysis in the corresponding  frame by the 
difference between the original  sound and  the  deterministic signal. 

Sinusoidal Subtraction 

The first step of the residual  analysis is the synthesis of the sinusoidal  tracks ob- 
tained as  the  output of the peak  continuation  algorithm. For a time  domain  subtrac- 
tion (see Fig.  10.13) the synt,hesized signal will reproduce the instantaneous  phase 
and  amplitude of the  partials of the original  sound.  One  frame of the sinusoidal part 
of the  sound, d(m), is generaied by 

R 

d(m) = c A, cos[m3, + g,], m = 0, l, 2 , .  . . , S  - 1 (10.8) 
T= 1 

where R is the number of trajectories  present  in  the  current  frame  and S is the 
length of the  frame. To avoid “clicks” at the  frame  boundaries,  the  parameters 
A,, G,, G, are  smoothly  interpolated from frame to frame. 

The  instantaneous  amplitude A(m) is easily obtained by linear  interpolation 
from frame to frame. Frequency and phase values are  tied  together (frequency is 
the  phase  derivative),  and  both  control the instantaneous  phase 8(m), defined by 

O(m) = m3 +G. (10.9) 

Different approaches  are possible for computing the instantaneous  phase [MQ86]. 
Thus we are able to synthesize one  frame of a  sound by 

(10.10) 

which goes smoothly  from  the previous to  the current  frame  with  each sinusoid 
accounting for both  the  rapid  phase changes  (frequency) and  the slowly varying 
phase  changes. 

Residual Approximation 

One of the underlying  assumptions of the sinusoidal  plus  residual  model is that  the 
residual is a stochastic  signal. Such an assumption implies that  the residual is fully 
described by its  amplitude  and  its general  frequency  characteristics (see Fig.  10.14). 
It is unnecessary to keep either  the  instantaneous  phase  or  the  exact  spectral  shape 
information.  Based  on  this,  a  frame of the  stochastic residual  can  be  completely 
characterized by the  output of a filter, which has a noise input signal. The filter 
encodes the amplitude  and general  frequency  characteristics of the residual. The 
representation of the residual for the overall sound will be a sequence of these 
filters, i.e., a  time-varying  filter. 
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Figure 10.13 Time  domain  substraction. 
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Figure 10.14 (a) Original  spectrum, (b) residual spectrum  and  approximation 

The filter  design  problem  is generally solved by performing some sort of curve 
fitting in the  magnitude  spectrum of the  current  frame  [Str80, Sed881. Standard 
techniques  are:  spline  interpolation  COX^^], the  method of least  squares [Sed88], or 
straight-line  approximations. 

One way to  carry  out  the line-segment approximation is to  step  through  the 
magnitude  spectrum  and find local  maxima in each of several defined sections, thus 
giving  equally  spaced  points in the  spectrum  that  are connected by straight lines to 
create  the  spectral envelope. The number of points gives the accuracy of the fit, and 
can  be  set  depending  on  the  sound complexity. Other  options  are unequally  spaced 
points, for example,  logarithmically  spaced, or spaced  according to  other perceptual 
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criteria. 

Another  practical  alternakive, as already seen in Chapter 9 (see section 9.2.2), 
is to  use a type of least  squares  approximation called linear  predictive  coding, LPC 
[Mak75, MG751. LPC is a  popular  technique used in speech research for fitting an 
nth-order  polynomial to  a magnitude  spectrum. For our  purposes,  the line-segment 
approach is more flexible than  LPC,  and  although  LPC  results  in less analysis 
points, the flexibility is considered more  important. For a comprehensive collection 
of different approximation  techniques of the residual  component see [Goo97]. 

10.3.2 Feature Analysis 

The accomplishment of a meaningful parameterization for sound  transformation 
applications is a difficult task. We want a  parameterization that offers an intuitive 
control over the sound  transformation  process,  with which we can access most of the 
perceptual  attributes of a  sound. The analysis  techniques  described so far  result in 
a simple  parameterization,  appropriate for describing the lower physical character- 
istics of the sound.  In  the sinusoidal  plus  residual  model,  these parameters  are  the 
instantaneous  frequency,  amplitude  and  phase of each partial  and  the  instantaneous 
spectral  characteristics of the residual  signal. 

There  are  other useful instantaneous  attributes  that give a higher-level abstrac- 
tion of the sound  characteristics. For example, we can  describe  fundamental fre- 
quency,  amplitude  and  spectral  shape of the sinusoidal  component,  amplitude and 
spectral  shape of the residual  component,  and  the overall amplitude.  These at- 
tributes  are calculated at  each  analysis  frame from the  output of the basic sinusoidal 
plus  residual  analysis.  Afterwards,  some of them can be  extracted. 

From a  digital effects design point of view, the  extraction of such attributes al- 
lows us to implement  transformations that modify only one of those  features  without 
affecting the  rest. A clear  example is illustrated in Fig. 10.2 where the  fundamental 
frequency is extracted, multiplied by a scaling factor,  and  then  incorporated back 
into  the original  spectral data. 

Many other  features like the degree of harmonicity, noisiness, spectral  tilt,  or 
spectral  centroid,  can also  be  computed from the  spectral  representation of a sound. 
Some of them  are  just information attributes  that describe the  characteristics of the 
frame and have mainly f0un.d applications in sound classification tasks. 

Apart from the instantaneous,  or  frame, values, it is also useful to have param- 
eters that characterize  the -time evolution of the  sound.  The  time changes  can  be 
described by the derivatives of each  one of the instantaneous  attributes. 

Another  important  step  towards a musically useful parameterization is the seg- 
mentation of a  sound  into regions that  are homogeneous in terms of its  sound 
attributes.  Then we can  identify and  extract region attributes  that will give higher- 
level control over the sound. 

From the basic  sinusoidal  plus  residual  representation it is possible to  extract 
some of the  attributes mentioned  above. The critical issue is  how to  extract  them 
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while minimizing  interferences, thus  obtaining significant high level attributes free 
of correlations [SB98]. The general  process will be to first extract  instantaneous 
attributes  and  their derivatives, then segment the  sound based  on that information, 
and finally extract region attributes. 

As already  indicated, the basic  insta.ntaneous  attributes  are:  amplitude of sinu- 
soidal  and  residual  component, overall amplitude,  fundamental frequency, spectral 
shape of sinusoidal and residual  component,  harmonic  distortion, noisiness, spectral 
centroid,  and  spectral  tilt.  These  attributes  are  obtained at  each frame using the 
information that results  from  the basic  sinusoidal  plus  residual  analysis and  not 
taking  into  account  the  data from previous or  future  frames.  The  amplitude of the 
sinusoidal  component is the  sum of the amplitudes of all  ha,rmonics of one  frame 
expressed in dB, 

(10.11) 

where ai is the linear amplitude of the  ith harmonic  and E is the  total  number of 
harmonics  found in the frame. 

The  amplitude of the residual  component is the  sum of the absolute values of 
the residual of one  frame  expressed in dB.  This  amplitude  can also  be  computed by 
adding  the frequency  samples of the  corresponding  magnitude  spectrum, according 
to 

/ N - l  \ 

(10.12) 

where z ~ ( n )  is the residual sound, M is the size of the frame, X ~ ( l c )  is the  spectrum 
of the residual  sound,  and N is the size of the  magnitude  spectrum. 

The  total  amplitude of the sound at  one  frame is the  sum of its  absolute val- 
ues expressed in dB. It can also be  computed by summing  the  amplitudes of the 
sinusoidal and residual  components,  as given by 

/ z  N-l \ 
(10.13) 

where ~ ( n )  is the original  sound and X ( k )  is its  spectrum. 
The  fundamental frequency is the frequency that best  explains the harmonics 

of one  frame. Many  different  algorithms can  be used to  compute  the fundamental 
frequency (see previous  section  10.3.1, for example)  but a  reasonable  approximation, 
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once we have the sinusoidal component,  can  be  the  weighted  average of all  the 
normalized  harmonic  frequencies 

(10.14) 

where fi is the frequency of the  ith harmonic. 

The  spectral  shape of the sinusoidal component is the envelope  described by the 
amplitudes  and frequencies of the  harmonics, or its  approximation, 

Sshape  = ((f~,a~)(f~,a~)...(fi,al)}. (10.15) 

The  spectral  shape of the residual component is an  approximation of the  magnitude 
spectrum of the residual sound of one  frame. A simple  function is computed  as  the 
line segment approximation of the  spectrum, 

R s h a p e  = {el, ez, . . . ,e4, .  . . , eNcoef}  (10.16) 

Other  spectral  approximation techniques  can  be  considered  depending  on the  type 
of residual  and  the  application [Goo96]. 

The  frame-to-frame  variation of each attribute is a useful measure of its  time 
evolution,  thus  an  indication of changes in the  sound.  It is computed in the  same 
way for each attribute, 

Val(l) - Val(Z - 1) 
A =  

H /  f S 

(10.17) 

where  Val(l) is the  attribute value for the  current  frame, Val(l - 1) is the  attribute 
value for the previous  one, H is the hop size and fs is the  sampling  rate. 

As an  example,  the following function (M-file 10.11) implements the  computation 
of the  spectral  shape  that will be  used in some of the effects implemented in the 
next  sections. 

M-file 10.11 (sort  .m) 

[isortedloc, ind] = sort  (iloc) ; 
isortedval = ival (ind) ; 
[indr,  indc] = f  ind(isorted1oc) ; 
newloc = isortedloc(indr); 
newval = isortedval(indr); 

spectralshape = [] ; 
spectralShape(1,l) = 1; 
spectralShape(2,l) = MinMag; 
shapePos = 1; 
f o r  i=l:length(newloc) 

y--- I sorting  according to the  frequencies  iloc 

y--- I computing the spectral  shape without redundant  values 

if newloc(i) > spectralShape(1,shapePos) 
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shapePos = shapePos + 1; 
spectralshape (1, shapePos) = newloc (i) ; 
spectralShape(2,shapePos) = newval(i); 

end 
end 
y--- I adding  boudaries  values 
spectralShape(l,shapePos+l) = N/2; 
spectralShape(2,shapePos+l) = MinMag; 

Segmentation 

Sound  segmentation  has proven important in automatic speech recognition and 
music transcription  algorithms. For our  purposes  it is very valuable as a way to 
apply  region-dependent  transformations. For example, a time  stretching  algorithm 
would be  able to transform  the  steady  state regions, leaving the rest  unmodified. 

A musically meaningful  segmentation  process  divides a melody into  notes  and 

The techniques  originally developed for speech [VidSO], such as those  based  on 
pattern recognition or knowledge-based methodologies, start  to be used in music 
segmentation  applications [RRSC98]. Most of the  approaches  apply classification 
methods that  start from  sound  features,  such  as the ones described in this  chapter, 
and  are  able  to  group sequences of frames  into predefined categories. Xo reliable 
and  general-purpose  technique  has been found.  Our experience is that they  require 
narrowing the problem to a specific type of musical signal or including a user inter- 
vention stage  to help  direct the segmentation  process. 

silences and  then each note  into  an  attack, a steady  state  and a release region. 

Region Attributes 

Once a given sound  has been segmented into regions we can  compute the  attributes 
that describe  each  one. Most of the  interesting  attributes  are  the mean and variance 
of each of the frame  attributes for the whole region. For example, we can  compute 
the  spectral  shape  or  the  mean  and variance for the amplitude of sinusoidal  and 
residual  components, the  fundamental frequency, or  the  spectral  tilt. 

Global attributes  that can  characterize  attacks  and releases make use of the 
average  variation of each of the  instantaneous  attributes, such as average  funda- 
mental  frequency  variation,  average  amplitude  variation, or average spectral sha,pe 
change.  In the  steady  state regions it is important  to  extract  the average value of 
each of the  instantaneous  attributes  and  measure  other global attributes such as 
time-varying rate  and  depth of vibrato.  Vibrato is a specific attribute present in 
many  steady  state regions of sustained  instrumental  sounds  that requires a special 
treatment [HB98]. 

Some  region attributes  can  be  extracted  from  the  frame  attributes  in  the same 
way that they were extracted from the sinusoidal  plus  residual data.  The result of 
the  extraction of the frame  and region attributes is a  hierarchical multi-level data 
structure where  each level represents  a different sound  abstraction. 
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10.3.3 Synthesis 

From the  output of the analysis  techniques  presented we can  synthesize a new 
sound. The similarity  with  respect to  the original  sound will depend  on how  well 
the  input  sound fits the implicit model of the analysis  technique and  the  settings of 
the different variables that  the given technique  has. In  the  context of the chapt-er 
we are  interested in transforming  the analysis output in order to produce a specified 
effect  in the synthesized  sound. 

All these  transformations  can  be  done in the frequency  domain.  Afterwards, the 
output  sound can  be  synthesized using the techniques  presented in this section. 
The sinusoidal  component will be generated using some type of additive  synthe- 
sis approach  and  the residual, if present, will be  synthesized using some type of 
subtractive synthesis  approach. 

Thus,  the  transformation  and synthesis of a sound  are done in the frequency 
domain;  generating  sinusoids, noise, or arbitrary  spectral  components,  and  adding 
them all to a  spectral  frame.  Then, we compute  a single IFFT for each  frame, which 
can yield efficient implementations. 

Figure 10.15 shows a block diagram of the final part of the synthesis process. 
Previous to  that we have to transform  and  add all the high-level features, if they 
have been extracted,  and  obtain  the lower  level data (sine and residual) for the 
frame to be  synthesized. Since the  stored  data might have a different frame rate,  or 
a variable  one, we also have to generate  the  appropriate  frame by interpolating  the 
stored  ones.  These  techniques are presented in the following sections. 

sine generation 
phases spectrum 

synthesis 

residual 

generation 
rectangular 
conversion 

I- spectrum 

Figure 10.15 Diagram of the  spectral  synthesis. 

Sinusoidal Synthesis 

The sinusoidal  component is generated  with  additive  synthesis,  similar to  the si- 
nusoidal synthesis that was part of the analysis,  with  the difference that now the 
phase  trajectories  might  be  discarded. 
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Figure 10.16 Additive  synthesis block diagram. 

Additive  synthesis is based  on the control of the instantaneous  frequency  and 
amplitude of a bank of oscillators, as shown in Fig. 10.16. The instantaneous  am- 
plitude A(,) of an oscillator is obtained by linear  interpolation 

(10.18) 

where m = 0,1, .  . . , S - 1 is the  time  sample in the Z t h  synthesis  frame. 

The  instantaneous  phase is taken to  be  the integral of the instantaneous fre- 
quency,  where the  instantaneous  radian frequency ;(m) is obtained by linear  inter- 
polation 

(10.19) 

and  the  instantaneous  phase for the rth sinusoid is given by 

Finally, the synthesis  equation becomes 

R' 

dl(,) = c A:(,) cos[e:(m)] 
r=l 

(10.21) 

where A(,) and 8(m) are  the  calculated  instantaneous  amplitude  and phase. 

A very efficient implementation of additive  synthesis, when the instantaneous 
phase is not  preserved, is based  on the inverse FFT [RD92].  While this  approach 
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loses some of the flexibility of the  traditional oscillator  bank  implementation, espe- 
cially the instantaneous  control of frequency and  magnitude,  the gain in speed is 
significant. This gain is based on the fact that a sinusoid in  the frequency  domain is 
a sinc-type  function, the  transform of the window used, and in these  functions  not 
all the samples carry  the same weight. To generate a sinusoid in the  spectral  domain 
it is sufficient to calculate the samples of the main  lobe of the window transform, 
with  the  appropriate  magnitude, frequency and  phase values. We can then  synthe- 
size as many sinusoids as we want by adding  these  main lobes in the  FFT buffer and 
performing an IFFT to obtain  the  resulting time-domain  signal.  By an overlap-add 
process we then get the time-varying  characteristics of the sound.  In M-file 10.12 
we implement a sinusoidal  synthesis  algorithm  based  on this  latter  approach. 

M-file 10.12 (sinefi1lspectrum.m) 
function padsynthft=sinefillspectrum(iloc,ival,iphase,nSines, . . .  

%function  padsynthf =sinefillspectrum(iloc,ival,iphase,nSines, . .  
% wllength, zp, bh92SINE2SINE,  bh92SINE2SINEsize) 

%=> compute  the  spectrum  of  all  the  sines  in  the  frequency 
% domain,  in  order  to  remove  it  from  the  signal 

wllength, zp, bh92SINE2SINE,  bh92SINE2SINEsize) 

% 

% data: 
% padsynth: 
% iloc,  ival,  iphase: 
% 
% nsines: 
% wllength: 

% bh92SINE2SINE: 
% bh92SINE2SINEsize: 

% zp: 

location (bin), magnitude  value  (dB) 
and  phase  of  a  peak 
number  of  sines  (=length  of  ival  and  iloc) 
size  of  the  analysis  window 
zero-padding  multiplicative  coefficient 
Rlackman-Harris  window 
Rlackman-Harris  window  size 

% magnitude  (in CO ; l] ) 
% bin  number  of  the  half  lobe 

f  irstbin=f  loor  (iloc)  -half  lobe; % first  bin  for  filling  positive 
% frequencies 

firstbin2=floor(wlLength*zp-iloc+2)-halflobe; 

binremainder=iloc-floor(i1oc); 
sinphase=sin  (iphase) ; 
cosphase=cos(iphase); 
findex=l-binremainder; 
bh92SINE2SINEindexes  =zeros(8*zp,l); 
sinepadsynthft=zeros(wl~ength*zp+halflobe+halflobe+l,l); 
padsynthft  =zeros(wlLength*zp,l); 

% idem  for  negative  frequencies 

y--- I computation  of  the  complex  value 
for  i=l:nSines X--- for  each  sine 
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if (iloc(i)-=O) %--- JUST WORK WITH NON ZEROS VALUES OF iloc ! ! !  
% -> tracked  sines 

beginindex = floor(0.5 + findex(i)*512/zp)+l; 
bh92SINE2SINEindexes=[beginindex:512/zp:beginindex . . .  

if (bh92SINE2SINEindexes(8*zp)>bh92SINE2SINEsize) 
bh92SINE2SINEindexes(8*zp)=bh92SINE2SINEsize; 

end 
magsin=bh92SINE2SINE(bh92SINE2SINEindexes) . . .  

. *sinphase (i) *peakmag( i) ; 
magcos=bh92SINE2SINE(bh92SINE2SINEindexes) . . .  

.*cosphase(i)*peakmag(i); 
%--- fill positive  frequency 
sinepadsynthft(firstbin(i)+halflobe:firstbin(i) . . . 

+halflobe+8*zp-l)= . . .  
sinepadsynthft(firstbin(i)+halflobe:firstbin(i)+ . . .  
halflobe+8*zp-l)+(magcos+j*magsin); 
%--- fill  negative frequency 
if (f irstbin2(i)+half lobe <= wlLength*zp) 
sinepadsynthft(firstbin2(i)+halflobe:firstbin2(i) . . .  

sinepadsynthft(firstbin2(i)+halflobe:firstbin2(i)+ . . .  
halflobe+8*zp-l)+(magcos-j*magsin) ; 
end 

+512/~p*(8*~p-l)] ’ ; 

+halflobe+8*zp-l)= . . .  

end 
end 

%--- fill  padsynthft 
padsynthft=padsynthft+sinepadsynthft(halflobe+l:halflobe+l . . .  

padsynthft(1:halflobe) = padsynthft(1:halflobe) + . . .  

padsynthft(wlLength*zp-halflobe+l:wlLength*zp) = . . .  

+wlLength*zp-l); 

sinepadsynthft(wlLength*zp+l:wlLength*zp+halflobe); 

padsynthft(wlLength*zp-halflobe+l:wlLength*zp) . . .  
+ sinepadsynthft(1:halflobe); 

The synthesis  frame rate is completely  independent of the analysis  one. In  the im- 
plementation using the  IFFT we want to have a  frame  rate high enough so as  to 
preserve the  temporal  characteristics of the sound. As in  all  short-time  based  pro- 
cesses we have the problem of having to make  a  compromise between time  and 
frequency  resolution. The window transform  should  have the fewest possible signifi- 
cant bins  since this will be the number of points  required to generate each sinusoid. 
A good window choice is the Blackman-Harris  92dB  because, as  already explained 
in section 10.3.1, its  main lobe includes  most of the energy. However, the problem 
is that such a window does  not  overlap  perfectly to a constant  in  the  time  domain 
without  having to use very high overlap  factors,  thus very high frame  rates. A solu- 
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tion  to  this problem [RD92] is to  undo  the effect of the window  by dividing by it in 
the  time  domain  and  applying a triangular window before  performing the overlap- 
add process. This will give a good  time-frequency  compromise. The  Matlab code 
for generating  the  triangular window is given  by  M-file 10.13. 

M-file 10.13 (triang.m) 
function W = triang(n) 
% TRIANG  Triangular  window. 
if  rem(n,  2) 
% It's an odd  length  sequence 
W = 2*(l:  (n+l)/2)/(n+i); 
W = [W w((n-1)/2:-1:1)] '; 
else 
% It ' s  even 
W = (2*(1: (n+l)/2)-l)/n; 
W = [W w(n/2:-1:1)]'; 
end 

Residual Synthesis 

The  synthesis of the residual component of the  sound is also  performed in the 
frequency  domain (see Fig. 10.17).  When  the  analyzed  residual  has  not been  ap- 
proximated, i.e. it is represented  as a magnitude  and  phase  spectrum for each  frame, 
as a STFT, each  residual  spectrum is added to  the  spectrum of the sinusoidal com- 
ponent a t  each  frame.  But  when a magnitude  spectral envelope has  approximated 
the  residual,  an  appropriate complex spectrum  has  to  be  generated. 

approximation of residual 
spectral  magnitude 

L :hsr- ",,W - 
random  spectral  phase 

synthesized  sound 

synthesized  sound 
with  window 

Figure 10.17 Residual  synthesis approximation. 

The  synthesis of a  stochastic signal from the residual  approximation  can be 
understood  as  the  generation of noise that  has  the frequency and  amplitude  charac- 
teristics  described by the  spectral  magnitude envelopes. The  intuitive  operation is 
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to filter  white noise with  these frequency  envelopes, that is,  perform a time-varying 
filtering of white  noise, which is generally  implemented using the time-domain con- 
volution of white noise with  the impulse  response  corresponding to  the spectral 
envelope of a frame. We do  it in the frequency  domain by creating  a  magnitude 
spectrum from the  approximated  one,  or  its  transformation,  and  generating a ran- 
dom  phase  spectrum  with new values at each  frame in order to avoid periodicity. 

Integration of Sinusoidal  and Residual Synthesis 

Once the two spectral  components  are  generated, we have to  add  the  spectrum 
of the residual  component to  that of the sinusoids. In  the process of generating 
the noise spectrum  there  has  not been  any window applied,  since the  data was 
added  directly  into the  spectrum  without  any  smoothing  consideration,  but in the 
sinusoidal  synthesis we have used a Blackman-Harris  92dB, which is undone in 
the  time  domain  after  the  IFFT.  Therefore we should  apply  the  same window to 
the noise spectrum before adding  it to  the sinusoidal spectrum. Convolving the 
transform of the Blackman-Harris  92dB by the noise spectrum accomplishes this, 
and  there is only the need to use the main  lobe of the window since it includes 
most of its energy. This is implemented  quite efficiently because it only involves 
a few bins and  the window is symmetric.  Then we can use a single IFFT for the 
combined spectrum (see Fig. 10.18). Finally, in the  time  domain we undo  the effect 
of the Blackman-Harris  92dB  and  impose  the  triangular window. By an overlap-add 
process we combine successive frames to get  the time-varying  characteristics of the 
sound. 

Sinousoidal  data - 
Blackman-Harris I 
92 dB 

I 

T -  u 

spectral  data 
Residual 

Figure 10.18 Integrating sinusoidal plus residual  synthesis 

Several other  approaches have been used to synthesize the  output of a sinusoidal 
plus  residual  analysis. However, these  techniques  include  modifications to  the model 
as a whole (see [FHCOO], for example). 
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10.3.4 Main Analysis-Synthesis  Application 

In M-file 10.14 we make use of all the previous  functions in order to implement 
a  complete  analysis-synthesis process. We  will use this framework to implement 
sound effects in the  next sections.  Note that no  residual  approximation is used in 
this  implementation. 

M-file 10.14 (SMS.m) 

% SMS-Matlab  like  emulation 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 0  

clear  all 
close  all 
y==== USER DATA ===== 

DAFx-in = wavread(’love.wav’); % wave  file 
SR = 44100;  sampling  rate 
wlLength = 2048; % analysis  window  size 
nl = 256; % analysis  window  hop  size 
nPeaks = 100; % number  of  peaks  detected 
nSines = 50; % number  of  sinuosoids  to  track  (and  synthetise) 
minSpacePeaks = 2; % minimum  space  (bins)  between  two  picked  peaks 

rgain = l. ; % gain  for  the  residual  component 
MaxFreq = 11000; % maximum  frequency,  in  Hertz,  for  plottings 
MinMag = -100; % minimum  magnitude,  in dB, for  plottings 

ZP = 2; % zero-padding  coefficient 

X--- figure  data 
%fig1 = ’yes’; % if uncommented,  will  plot  the  Blackman-Harris 

%fig2 = ’yes’; % if uncommented,  will  plot  the  peaks  detection 

%fig3 = ’yes’; % if uncommented,  will  plot  the  peak  trackings 

%fig4 = ’yes’; % if uncommented,  will  plot  the  original  and 

%fig5 = ’yes’; % if  uncommented,  will  plot  the  peak  trackings 
% only  at  the  end of the  process 

%fig6 = ’yes’; % if  uncommented,  will  plot  the  original  signal, 
% its  sine  and  residual  part, 
% and  the  transformed  signal 

% window 

% and  tracking  in  one  frame 

% real-time 

% the  transformed FFT in  one  frame 

%=== Definition  of  the  Windows === 

x- - -  definition  of  the  analysis  window 
fConst=2*pi/(wlLength+l-l); 
wl= [l : wlLength] ’ ; 
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wl=.35875 -.48829*cos(fConst*wl)+.14128*cos(fConst*2*~1~ . . .  
- .01168*cos(fConst*3*w1) ; 

wl=wl/sum(wl) *2; 

y--- a synthesis  window 
w2=w  1 ; 
n2=nl; 
X--- triangular  window 
wt2=triang(n2*2+1); % triangular  window 
y--- D main  lobe  table  of  bh92 
[bh92SINE2SINE,bh92SINE2SINEsize]=bh92SINE2SINEgeneration; 
x - - -  data  for  the  loops 
frametime = nl/SR; 
pin = 0; 

TuneLength=length(DAFx-in) ; 
pend=TuneLength-wlLength; 

N=wlLength*zp; % new  size  of  the  window 

pout = 0; 

%=== Definition  of  the  data  arrays === 

DAFx-in = [zeros(wlLength/2-nI-l ,l> ; DAFx-in] ; 
DAFx-outsine = zeros(TuneLength,l); 
DAFx-outres = zeros(TuneLength,l); 

iloc = zeros  (nsines, 1) ; 
ival = zeros(nSines,l); 
iphase = zeros(nSines,l); 
previousiloc = zeros(nSines, 1) ; 
previousival = zeros  (nSines, l) ; 
maxSines = 400; % maximum  voices  for  harmonizer 
syniloc = zeros  (maxSines, l) ; 
synival = zeros(maxSines,i); 
previoussyniloc = zeros(maxSines,l); 
previousiphase = zeros(maxSines,l); 
currentiphase = zeros(maxSines,l); 

SineFreq = zeros(nSines,ceil(TuneLength/n2)); 
SineAmp = zeros(nSines,ceil(TuneLength/n2)); 
pitch = zeros(l,l+ceil(pend/nl)); 
pitcherr = zeros(l,l+ceil(pend/nl)); 

y--- arrays  for  the  partial  tracking 

y--- arrays  for  the  sinus)  frequencies  and  amplitudes 

y--- creating  figures --- 
if  (exist(’fig1))) 

end 
if  (exist(  ’fig2’)) 

h = f igure(1) ; set  (h,  ’position’, [IO, 45, 200, 2001) ; 
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h = figure(2) ; set(h,  ’position’, [ lo ,  320, 450, 3501); 
axisFig2 = [0 MaxFreq  MinMag 01; zoom on; 
end 
if(exist(’fig3’)) 

h = figure(3);  set(h, ’position’,  c220, 45, 550, 2001); 
axisFig3 = [l l+ceil(pend/nl) 0 MaxFreql;  zoom on; 

end 
if(exist(’fig4’)) 

h = figure(4);  set(h, ’position’,  C470,  320, 450, 3501); 
axisFig4 = [0 MaxFreq  MinMag 01 ; zoom on; 

end 
if(exist(’fig5’)) 

h = figure(5) ; set(h,  ’position’,  [220, 45, 550, 2001); 
axisFig5 = [l l+ceil(pend/nl) 0 MaxFreql ; zoom on; 

end 

%--- plot  the  Blackman-Harris  window 
if  (exist(’fig1’)) 
figure (1) 
plot(20*log10(abs(fftshift(fft(bh92SINE2SINE)/bh92SINE2SINEsize)))) 
title(’B1ackman-Harris window’);xlabel(’Samples’); 
ylabel(  ’Amplitude’) 
end 

tic 

disp(  ’analyzing  frame . . . ’1 ; 
%Pmrwwmnrwvmnrwuuuwwu 

while  pincpend 

grain = DAFx-in(pin+i:pin+wlLength).*wi(i:wlLength); 

padgrain = zeros (N, 1) ; 
padgrain(l:wiLength/2) = grain(wlLength/2+l:wiLength); 
padgrain(N-wlLength/2+1 :N) = grain(1:  wlLength/2) ; 
x-- -  fft computation 
f = f  ft  (padgrain) ; 
r = abs(f); 
phi = angle(f) ; 
ft = r.*exp(j*phi); 

y--- D windowing 

y--- I zero  padding 

%--- peak  detection (and their  plottings) 
[ftloc, ftval]=PickPeaks(r(i:N/2),nPeaks,minSpacePeaks); 
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y--- calculate  interpolated  values  (peak position,phase,amplitude) 
[iftloc,  iftphase,  iftval] = . . . 

interpolatedvalues (r,phi,N,zp,ftloc,ftval); 

%--- pitch  detection 
[pitchvalue,pitcherror,isHarm] = . . .  

pitch(i+pin/nl) = pitchvalue*isHarm; 
pitcherr(l+pin/nl) = pitcherror; 

pitchDetection (r,N,SR,nPeaks,iftloc,iftval); 

%--- peaks  tracking 
if  (pin==O) x- - -  for  the  first  frame 

else x---  creating  new  born  tracks 
for  i=l:nSines 

nNewPeaks = nSines; 

if  (previousiloc  (i)==O) 
[previousiloc(i),  previousival(i)] = CreateNewTrack . . .  

nNewPeaks = nNewPeaks - l; 
end 

(iftloc,  iftval,  previousiloc,  previousival,  nSines,  MinMag); 

end 

y--- simple  Peak  tracker 
[iloc,ival,iphase,previousiloc,previousival,distminindex] = . . .  
peakTrackSimple(nSines,nPeaks,N,SR,pitchvalue,iftloc, . . .  
iftval,iftphase,isHarm,previousiloc,previousival); 

end 

y--- savings 
previousival = ival; 
previousiloc = iloc; 
SineFreq(:,i+pin/nl)=max((iloc-l)/N*SR,O.); 

SineAmp ( : , i+pin/ni)  =max  (ival , MinMag) ; 
% frequency of the  partials 

% amplitudes  of  the  partials 

syniloc(i:nSines) = max(1,iloc); 
synival(1:nSines) = ival; 
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y--- , residual  computation 
resfft = ft; 
if  (isHarm==l) 
resfft=resfft-sinefillspectrum(iloc,ival,iphase,nSines, . . .  

end 
wllength, zp, bh92SINE2SINE,  bh92SINE2SINEsize); 

X - - -  figures 
if(exist(’fig2’)) 
f igure(2) ; clf ; hold on 

plot((l:N/2)/N*SR,  20*loglO(r(l:N/2))); 
% plot:  FFT  of  the  windowed  signal  (Hz,dB) 

for  1=1:nPeaks % plot:  the  peaks  detected 

[20*logIO(ftval(l))  ,MinMag-l]  ,’r:x’); 
end 

plot([ftloc(l)-l  ftlo~(l)-I]/N*SR, . . . 

for  l=l:nSines % plot:  sines  tracked  and  the  residual  part 
plot(  [iloc(l)-l,  iloc(l.)-I]/N*SR,  [ival(l),  MinMag-l] , ’k’) 
end 
plot((l:N/2)/N*SR, 20*10g10(abs(resfft(1:N/2))),’g7); 
if  (isHarm)  plot:  true  pitch  of  each  harmonic 
for  l=l:nSines 
plot(  [pitchvalue*l,  pitchvalue*l], [l, MinMag-l] , ’y: ’) 

end 
end 
xlabel(  ’Frequency  (Hz) ’ ) ; ylabel(  ’Magnitude  (dB) ’ ) ; axis  (axisFig2) ; 
title(’Peak  detection  and  tracking  for  one  frame’);  drawnow 
end 

%--- phase  computation 
if  (pin > 0) 

for  i=l:nSynSines 

ifreq = (previoussyniloc(distminindex(i))+ syniloc(i))/2; 

freq = (ifreq-l)/N*SR; % freq  in  Hz  (if  loc=l --> freq=O) 
currentiphase(i)=unwrap2pi(previousiphase(distminindex(i))+ ... 

if  (syniloc (i) “=O> 

average  bin 
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2*pi*freq*frametime); 
end 
end 

end 

previoussynival = synival; 
previoussyniloc = syniloc; 
previousiphase = currentiphase; . 

x---  residual  computation 
respadgrain=real(ifft(resfft)); 
resgrain=[respadgrain(N-~lLength/2+1:N) ; . . . 
respadgrain(l:wlLength/2)~./w2(i:wlLength); 
ressynthgrain=wt2(l:n2*2).*resgrain(wlLength/2-n2:wlLength/2+n2-1); 
DAFx~outres(pout+i:pout+n2*2)=DAFx~outres(pout+l:pout+n2*2)+ . . .  

ressynthgrain; 

y--- I sinusoidal  computation 
sinpadgrain=real  (iff  t  (padsynthf  t) ) ; 
singrain=[sinpadgrain(N-~lLength/2+I:N); . . .  

sinsynthgrain=wt2( 1 :n2*2) . *singrain(wlLength/2-n2: wlLength/2+n2-1) ; 
DAF~~outsine(pout+l:pout+n2*2)=DAFx_outsine~pou~+~:p~~~+~~*~~+ . . .  

sinpadgrain(l:wlLength/2)]./~2(i:wlLength); 

sinsynthgrain; 

x-- -  figure  with  original  signal  and  transformed  signal  FFT 
synthr = abs(fft(respadgrain + sinpadgrain)); 
if  (exist ( ’f ig4’)) 
figure(4); clf; hold  on 
plot((l:N/2)/N*SR, 20*loglO(r(l:N/2)),’b:’); axis(axisFig4); 
plot((l:N/2)/N*SR, 20*log10(synthr(l:N/2)),’r’); 
figure (4) ; 
xlabel(’Frequency (Hz)’);ylabel(’Magnitude (dB)’);axis(axisFig4); 
title(’FFT  of  original  (blue)  and  transformed  (red)  signals’); 
drawnow 
end 

%--- increment  loop  indexes 
pin = pin + nl; 
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pout = pout + n2; 
disp(pin/nl) ; 

end 
% w v w w v v v w m n n n n n r v v r n n r w u  
toc 

x===== write  output  sounds ===== 
DAFx-in = DAFx-in(wlLength/2-nl:length(DAFx-in)); 
% remove  the  zeros  added  for  the  process 
DAFx-outresynth = DAFx-outsine(l:TuneLength)+ . . .  
rgain*DAFx-outres(1:TuneLength); 
mm = max(abs(DAFx-outresynth)) ; 
wavwrite(DAFx-outresynth/mm, SR, ’DAFx-out.wav’); 
wavwrite(DAFx-outsine/mm, SR, ’DAFx-outsine.wav’); 
wavwrite(DAFx-outres/m, SR ,’DAFx-outres.wav’); 

if  (exist  (’f  ig3’)==0 t exist ( ’f  ig5’))%  plot : trackings  of  partials 
% only  at  the  end of the  process 

figure(5); clf; hold  on 
PlotTracking(SineFreq(:,l:l+pend/nl), pitch(l:l+pend/nl)); 
xlabel(  ’Frame  number ’ ) ; ylabel(  ’Frequency (Hz) ’ ) ; axis  (axisFig5) ; 
title(  ’Peak  tracking’) ; drawnow 
end 

if(exist(’fig6’)) % plot  the  input  signal,  its  sinus 

figure (6) 
subplot(4,1,1);  plot(DAFx-in);  xlabel(’input  signal’); 
subplot  (4, l ,2) ; plot  (DAFx-outsine)  ;xlabel(  ’sinus  part’) ; 
subplot (4, l, 3) ; plot  (DAFx-outres)  ;xlabel  (’residual  part ’> ; 
subplot  (4,1,4) ; plot  (DAFx-outresynth) ; 
xlabel(’resynthetized  signal’); 
end 

% and  its  residual  part,  and  the  transformed  signal 

10.4 FX and  Transformations 

In  this section we introduce a set of effects and  transformations  based  on  the 
analysis-synthesis  framework  introduced throughout  this  chapter. All of them  are 
accompanied by their corresponding Matlab code. In  order to use them, you just 
have to  add  the code of the effect to use under  the “= Transformation =” line in 
the main  analysis-synthesis  application  code of the previous  section. 
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10.4.1 Filtering  with Arbitrary Resolution 

Filters  are  probably  the  paradigm of a “classical” effect. Many different implemen- 
tations  are provided in the general DSP literature  and in the previous  chapters of 
this  book. Here we introduce a different approach that differs in many  aspects from 
the classical one. 

For our “filter”  implementation, we take  advantage of the sinusoidal plus residual 
model in order to modify the  amplitude of any  arbitrary  partial present in the 
sinusoidal  component. 

For example, we can  implement  a  bandpass  filter defined by (x, g) points where z 
is the frequency value in  Hertz  and g is the  amplitude  factor to apply (see Fig. 10.19). 
In  the  example code given below, we define a bandpass filter  with  passband  range 
[2100 30001. 

Ill, 4 2 0 5 10 15 20 f in  kHz 

Figure 10.19 Bandpass filter with  arbitrary  resolution. 

M-file 10.15 (chlO-t-filter-arb.m) 
x===== Filtering with arbitrary  resolution ===== 
Filter = [ 0 2099  2100 3000 3001 22050 ; 0 0 l 1 0 0 1 ; 
[syniloc,ind] = sort (iloc) ; 
FilterEnvelope = interpi (Filter( l, : ) ’ ,Filter(2, : ’ , syniloc/N*SR) ; 
synival = ival (ind) +(2O*loglO (max(FilterEnvelope, 10--9) ) ; 
synival (ind) = synival ; 
syniloc(ind) = syniloc; 

As shown, our filter  does  not need to be  characterized by a traditional  transfer 
function, and more  complex  functions can  be defined by summing  delta-functions. 

For example, the following code  filters out  the even partials of the  input  sound. 
If applied to a  sound  with a broadband  spectrum, like a vocal sound,  it will convert 
it  to a clarinet-like sound. 

M-file 10.16 (chl0~t~voice2clar.m) 
X=== voice  to clarinet === 
syniloc = iloc; 
synival = ival; 
if (isHarm == I) 
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for i=l:nSines 
harmNum = round(((iloc(i)-l)/w1Length*SR/2)/pitchvalue); 
if  (mod (harmNum, 2)==0) % case of an even  harmonic  number 

end 
synival(i) = MinMag; 

end 
end 

10.4.2 Partial Dependent Frequency Scaling 

In  a  similar way, we can  apply  a  frequency  scaling to  the sinusoidal  components of 
our modeled sound.  In  that way, we can  transpose  all the  partials in the  spectrum or 
reproduce  pseudo-inharmonicities like frequency  stretching of higher partials, which 
is representative of a  piano  sound. 

In  this first  example we introduce a frequency  shift  factor to  all the  partials of 
our  sound (see Fig. 10.20). Note, though,  that if a  constant is added to every partial 
of a harmonic  spectrum,  the resulting  sound will be  inharmonic. 

t 

Figure 10.20 Frequency shift of the partials. 

M-file 10.17 (chlO-tfreqshift  .m) 
X==== Frequency  Shift ===== 

fstretch = 300; % frequency shift in Hz 
syniloc = iloc + round(f stretch/SR*N) ; 
syniloc = syniloc.*(syniloc<=N/2); 

Another effect we can  implement following this  same  idea is to  add a  stretching 
factor to  the frequency of every partial.  The relative  shift of every partial will 
depend  on  its original partial  index, following the formula 

f .  - fz . f ( i - 1 )  2 -  stretch '  (10.22) 

Figure 10.21 illustrates  this frequency  stretching. 

M-file 10.18 (chiO-t2reqstretch.m) 
x===== Frequency  Stretch ===== 

fstretch = 1.1; 
[syniloc,ind] = sort(i1oc); 
syniloc = syniloc.*((fstretch)  .-[O:nSines-l] ' > ;  
syniloc = syniloc.*(syniloc<=N/2); 
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4 4 

Figure 10.21 Frequency stretching. 

In  the  same way, we can scale all the  partials  multiplying  them by a given scaling 
factor.  Note  that  this effect  will act as a pitch  shifter  without  timbre  preservation. 

M-file 10.19 (chlO-tfreqsca1e.m) 
x==== Frequency  Scale ====S 

fscale = 1.6; % frequency  scaling  factor 
syniloc = iloc * fscale; 
syniloc = syniloc.*(syniloc<=N/2); 

10.4.3 Pitch Transposition  with Timbre  Preservation 

In  section 9.3.4, a technique was introduced  in  order to  transpose  the  pitch of a 
sound  without affecting its  timbre. Here we use a similar  technique in order  to 
preserve the  spectral  shape of only the sinusoidal component.  For that reason we 
scale the frequency of each  partial  applying  the  original  spectral  shape. 

M-file 10.20 (chlO-t-pitchtimbre.m) 
l===== Pitch  transposition  with  timbre  preservation ===== 
if  (isHarm == l) 
pt = 2.; % pitch  transposition  factor 
[spectralShape,shapePos]=CalculateSpectralShape(iloc, . . .  
ival , MinMag , N) ; 
[syniloc,  synival]= PitchTransposition(iloc,ival, . . .  
spectralShape,shapePos,pt,N); 

CombCoef = 1; 
if  (isHarm==l) 
resf  f  t = CombFilter  (resf f t , N , SR/ (pitchvalue*pt) , CombCoef) ; 
end 

"/-- e comb  filtering  the  residual 

end 

The  function PitchTransposition is given  by: 

M-file 10.21 (PitchTransposition.m) 

function [syniloc,synival]=PitchTransposition(iloc,ival, . . .  

syniloc = iloc.*pt; 

x===== Pitch  Transposition ===== 

spectralShape,shapePos,pt,N) 
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syniloc = syniloc.  *(syniloc<=N/2) ; 
%lin.  interpol.  of  the  spectral  shape  for  synival  computation 
if shapePos > 1 
synival=interpl  (spectra:lShape( 1, : ’ , spectralshape  (2, : ’ , syniloc) ; 
else 
synival = ival; 
end 

The function CombFilter is implemented  as: 

M-file 10.22 (CombFi1ter.m) 
function  combFT = CombF:ilter(FT, N, delay,  ampl) 
X===> Comb  filter  in  the  frequency  domain 
% data: 
% combFT:  FT  of  the  signal  comb  filtered 
% FT : FT of the  signal  to  filtered 
% N:  size  of  the FT 
% delay:  delay  to  apply,  in  samples 
% ampl:  amplitude  of  the  multiplying  coefficient  (in CO, l] ) 
coef = ampl * exp (-2* j *:pi*delay* (0 : N-l) /N) ’ ; 
combFT = FT . * (1 + coef + coef . -2)  ; 

Pitch Discretization to Temperate Scale 

An interesting effect can  be accomplished by forcing the  pitch to take  the  nearest 
frequency value of the  temperate scale. It is indeed a very particular case of pitch 
transposition where the pitch is quantified to one of the 12 semitones of an octave. 
This effect  is widely used on vocal sounds for dance music and is many  times referred 
to  with  the misleading  name of vocoder effect. 

M-file 10.23 (chlO-t3itchDiscrete.m) 
X===== Pitch  discretization  to  temperate  scale ===== 
if  (pitchvalue -= 0) 
nst = round(l2*log(pitchvalue/55)/log(2)) ; 
discpitch = 55*((2̂ (1/12))̂ nst); % discretized  pitch 
pt = discpitch/pitchvalue ; % pitch  transposition  factor 
[spectralShape,shapePos]=CalculateSpectralShape(iloc,ival, . . .  
MinMag,N); 
[syniloc, synival]=PitchTransposition(iloc,ival,spectralShape, . . .  
shapePos,pt,N); 

CombCoef = 1; 
if  (isHarm==l) 
resfft = CombFilter(resfft, N, SR/(pitchvalue*pt),  CombCoef); 
end 

y--- comb  filtering  the  residual 

end ; 
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10.4.4 Vibrato and  Tremolo 

Vibrato  and  tremolo  are common effects used in different kinds of acoustical  instru- 
ments, including the  human voice. Both  are low frequency  modulations: vibrato is 
applied to  the frequency and  tremolo to  the  amplitude of the  partials. Note, though, 
that in this  particular  implementation,  both effects share  the  same  modulation fre- 
quency. 

M-file 10.24 (chlO-t-vibtrem.m) 

if  (isHarm == l) 

va = IO; % vibrato  depth  in  percentil 
td = 3; % tremolo  depth  in dB 
synival = ival + td*sin(2*pi*vtf*pin/SR); % tremolo 
pt=l+va/200*sin(2*pi*vtf*pin/SR);% pitch  transposition  factor 
[spectralshape,  shapePos] = CalculateSpectralShape(iloc, . . .  
ival,MinMag,N); 
[syniloc,synival]=PitchTransposition(iloc,ival,spectralShape, . . .  
shapePos,pt,N); 

X===== vibrato  and  tremolo ===== 

vtf = 5; % vibrato-tremolo  frequency in Hz 

y--- I comb  filtering  the  residual 
CombCoef = l; 
resfft = CombFilter(resfft, N, SR/(pitchvalue*pt),  CombCoef); 

end 

10.4.5 Spectral Shape  Shift 

As already seen in the previous chapter,  many  interesting effects can be accom- 
plished by shifting the  spectral  shape or spectral envelope of the sinusoidal compo- 
nents of a sound.  This  shift is performed in such a way that no new partials  are 
generated,  just  the  amplitude envelope of the sinusoidal  components is modified (see 
Fig. 10.22). In the following code we implement  a  shift of the  spectral envelope by 
just modifying the  amplitude of the  partials according to  the values of the shifted 
version of the  spectral  shape. I; t 

L 
Figure 10.22 Spectral shape shift of value A f. 

M-file 10.25 (chlO-t-SpectSS .m) 
X===== Spectral  Shape  Shift  (positive  or  negative) ===== 
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sss = -200; % spectral  shape  shift  value  in Hz 
y--- spectral  shape  computation 
[spectralShape,shapePos]=CalculateSpectralShape(iloc, . . .  
ival , MinMag , N) ; 

syniloc = zeros  (nsines, 1) ; 
if shapePos > 1 
[shiftedSpectralShape,shapePos]=SpectralShapeShift~sss, ... 
iloc,  ival,  spectralshape,  shapePos, N, SR); 
end 
syniloc = iloc; 
%linear  interpol.  of  the  spectral  shape  for  synival  computation 
if  shapePos l 
synival = interpl(shiftedSpectralShape(l,l:shapePos+l)’, . . . .  
shiftedSpectralShape(2,1:shapePos+1)’, syniloc,  ’linear’); 
else 
synival = ival; 
end 

y--- I spectral  shape  shift 

The  function SpectralShapeShift is implemented as follows: 

M-file 10.26 (SpectralShapeShift .m) 

function [shiftedSpectralShape,shapePos]=SpectralShapeShift(sss, . . .  
iloc,  ival,  spectralshape,  shapePos, N, SR) 
ShiftedSpectralShape = spectralshape; 
sssn = round (sss*N/SR);% spectral  shape  shift  in  number  of  bins 
if sssn > 0 

X===== Spectral  Shape  Shift ===== 

shif  tedSpectralShape (.l ,2 : shapePos)  =min(N/2, . . . 
spectralshape (l, 2 : shapePos) + sssn) ; 
for  i=shapePos:-1:l 

shapePos = i; 
break; 

if shiftedSpectralShape(1,i) < N/2 

end; 
end ; 

shiftedSpectralShape(l,2:shapePos)= . . .  
max(l,spectralShape(l,2:shapePos)+ sssn); 
for  i=l:shapePos 

else 

if shiftedSpectralShape(1,i) > 1 

shiftedSpectralShape(l>i:shapePos+l); 
shiftedSpectralShape(l,2:2+shapePos+l-i) = . . .  

shapePos = shapePos-(i-2); 
break; 

end ; 
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end ; 
end ; 

10.4.6 Gender Change 

Using the results of 10.4.3  and 10.4.5 we can change the gender of a given vocal 
sound.  Note how  by combining different “basic” effects we are  able to  step higher in 
the level of abstraction  and get closer to  what  a naive  user  could  ask for in  a  sound 
transformation  environment, such as  having  a  gender  control  on  a vocal processor. 

In  this  implementation, we apply  two  transformations in order to  convert a male 
voice into  a female  one  (variable tr=’m2f ’). The first one is a  pitch  transposition 
an  octave  higher.  The  other  one is a shift in the  spectral  shape . The  theoretical 
explanation  to  this effect is that women  change their  formant  (resonant  filters) 
frequencies depending  on  the  pitch.  That  is, when  a  female singer rises up  the 
pitch,  the  formants move along  with  the  fundamental frequency. 

To convert a female into  a  male voice (variable tr= ’ f 2m’ ) we also apply  a  pitch 
transposition  and  a  shift in the  spectral  shape.  This  shifting  has  to  be applied 
in such a way that  the  formants of the female voice remain  stable  along different 
pitches. 

M-file 10.27 (chlO-t3ender.m) 
X===== gender  change:  woman to  man ===== 
tr=’m2f’; %male to  female 
%tr=’f2m’ ; %female to  male 
if (isHarm == I) 
pitchmin=lOO; 
pitchmax=500; 
sssmax = 50; 
if (pitchvaluecpitchmin) 
sss = 0; 
elseif (pitchvalue>pitchmax) 
sss = sssmax; 
else 
sss = (pitchvalue-pitchmin)/((pitchmax-pitchmin)/sssmax); 
end 
if (tr==’f2m’) 
sss=-sss; 
pt=O .5; 

pt=2 ; 

y--- spectral  shape  computation 

y --- spectral  shape shift 

else 

end 

~spectralShape,shapePos]=CalculateSpectralShape(iloc,ival,MinMag,N); 

syniloc = zeros(nSines,l); 
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if shapePos > 1 
[shiftedSpectralShape,shapePos]=SpectralShapeShift(sss,iloc, ... 

end 
syniloc = iloc; 
%linear  interpol.  of  the  spectral  shape  for  synival  computation 
if  shapePos > 1 
synival = interpl(shiftedSpectralShape(l,l:shapePos+l)’, . . .  
shiftedSpectralShape(2,1:shapePos+l)’, syniloc,  ’linear’) ; 
else 
synival = ival; 
end 
%--- pitch  transposition 
pt = 0.5; 
[syniloc,  synival] = PitchTransposition(iloc,ival,spectralShape, . . .  
shapePos,pt ,N) ; 
%--- comb  filtering  the  residual 
CombCoef = 1; 
if  (isHarm==l) 
resf  f  t = CombFilter  (resf  f  t , N, SR/ (pitchvalue*pt) , CombCoef) ; 
end 
end 

ival,spectralShape,shapePos,N,SR); 

10.4.7 Harmonizer 

In  order to  create  the effect of a  harmonizing  vocal  chorus, we can  add  pitch-shifted 
versions of the  original voice (with  the  same  timbre)  and force them  to  be  in  tune 
with the original melody. 

M-file 10.28 (chiO-tharm0nizer.m) r===== harmonizer ===X= 

nVoices = 2 ;  
nSynSines = nSines*(l+nVoices); 
[spectralshape,  shapePos] = CalculateSpectralShape( . . . .  

syniloc (l : nSines) , synival(1:  nSines) , MinMag, N) ; 
synival(1:nSines) = synival(1:nSines) - 100; 
pt = [l . 3  l .5] ; 1 pitch  transposition  factor 
ac = [-l -21; % amplitude  change  factor  in dB 
for  i=l:nVoices 

[tmpsyniloc,  tmpsynival] = PitchTransposition(. . . 
syniloc(l:nSines),  synival(l:nSines), . . .  

spectralshape,  shapePos,  pt  (i) , N) ; 
tmpsynival = tmpsynival + ac(i); 
syniloc(nSines*i+l:nSines*(i+l)) = tmpsyniloc; 
synival(nSines*i+l.:nSines*(i+i)) = tmpsynival; 
if  (pin > 0 )  
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distrninindex(nSines*i+i:nSines*(i+l))= . . .  
distminindex(i:nSines)+nSines*i; 

end 
end 

10.4.8 Hoarseness 

Although  hoarseness is sometimes  thought of as a symptom of some  kind of vocal 
disorder  [Chi94],  this effect has  sometimes been  used by singers in order  to resemble 
the voice of famous  performers  (Louis  Armstrong  or  Tom  Waits, for example).  In 
this  elemental  approximation, we accomplish  a  similar effect by just  applying a gain 
to  the residual  component of our analysis. 

M-file 10.29 (chlO-th0arse.m) 
rgain = 2; % gain  factor  applied to  the residual 

10.4.9 Morphing 

Morphing is a  transformation  with which, out of two or more  elements, we can 
generate new ones  with  hybrid  properties. 

With different names,  and using different signal  processing  techniques, the  idea 
of audio  morphing is  well known in the  computer music  community [Ser94, THH95, 
Osa95, SCL961. In  most of these  techniques, the  morph is based  on the  interpolation 
of sound  parameterizations  resulting from  analysis/synthesis  techniques,  such  as  the 
short-time  Fourier  transform  (STFT),  linear  predictive coding (LPC) or sinusoidal 
models (see cross-synthesis  and  spectral  interpolation  in sections 9.3.1 and 9.3.3, 
respectively). 

In  the following Matlab  code we introduce a morphing  algorithm  based on the 
interpolation of the frequency, phase,  and  amplitude of the sinusoidal  component of 
two  sounds. The  factor alpha controls  the  amount of the  first  sound we will have 
in the resulting  morph. Different controlling  factors  could  be  introduced for more 
flexibility. Note, that if the  sounds have different durations,  the  sound  resulting 
from the morphing will have the  duration of the  shortest one. 

Next, we include the code lines that have to  be  inserted in the  transformation 
part. However, the  morph  transformation  requires two or more inputs we have  not 
included in order  to keep the code  short  and  understandable.  Therefore  the code 
will have to include the following  modifications: 

1. Read two input  sounds: 

DAFx-in1 = wavread(’sourcel.wav’); 
DAFx-in2 = wavread(’source2.wav’); 

2. Analyze both  sounds.  This  means every  analysis  code line will have to be 
duplicated using the variable  names: 
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iloci,  iloc2,  ivall,,  ival2, 
iphasei,  iphase2,  synilocl,  syniloc2,  synivali,  synival2, 
syniphasei,  syniphase2,  distminindexl,  distminindex2, 
previousiloci,  previousiloc2,  previousivali,  previousival2, 
pitchl,  pitch2,  and  pitcherrorl,  pitcherror2. 

M-file 10.30 (chlO-tm0rph.m) 
A--- Morphing === 
x- - -  sorting  the  frequencies  in  bins;  iloci,  iloc2 
[synilocl , indi] = sort  (iloci) ; 
synivall = ivall  (indl) ; 
syniphasei = iphasei(ind1); 
distminindexi = distminindexi  (indi) ; 
[syniloc2,  ind2] = sort  (iloc2) ; 
synival2 = ival2(ind2); 
syniphase2 = iphase2  (ind2) ; 
distminindex2 = distminindex2  (ind2) ; 
%--- interpolation ----- 
alpha = 0.5; 1 interpolation  factor 
syniloc = alpha*synilocl + (i-alpha)*syniloc2; 
synival = alpha*synivall + (l-alpha)*synival2; 
%--- pitch  computation 
isHarmsyn = isHarmi*isHarm2; 
if  (isHarmsyn ==l) 
npitchpeaks = min(50,nPeaks); 
[pitchvalue  ,pitcherror] = 
TWM(syniloc(l:npitchpeaks),synival(l:npitchpeaks),N,SR); 
else 
pitchvalue = 0; 
pitcherror = 0; 
end 
if  (pin==O) x---  for  the  first  frame 
nNewPeaks = nSines; 
else 
x- - -  creation  of  new  born  tracks 
for  i=i:nSines 

@ --- 

if  (previoussyniloc(i)==O) 
[previoussyniloc(i),previoussynival(i~]=CreateNewTrack . . .  
(syniloc,  synival ,previ.oussyniloc,previoussynival,nSines ,MinMag) ; 
nNewPeaks = nNewPeaks - 1; 
end 
end 
x-- -  peak  tracking of the  peaks  of  the  synthetized  signal 
[syniloc,synival,syniphase,previoussyniloc,previoussynival, . . .  
distminindex]=peakTrackSimple (nSines,nPeaks,N,SR,pitchvalue, ... 
syniloc,synival,syniphase,isHarmsyn,previoussyniloc, . . .  
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previoussynival); 
end 

10.5 Content-Dependent  Processing 

The hierarchical data  structure  that includes  a  complete  description of a given sound 
offers many  possibilities for sound  transformations. Modifying several attributes  at 
the  same  time  and  at different abstraction levels achieve, as has  already been  pointed 
out  in  the previous  section,  most musically or end-user  meaningful  transformations. 
Higher-level transformations  can refer to aspects like sound  character,  articulation 
or  expressive  phrasing.  These  ideas  lead to  the development’ of front  ends  such as 
graphical  interfaces  or knowledge-based systems [ALS97, ALS981 that  are able to 
deal  with the complexity of this  sound  representation. 

In this section we introduce two  applications that have been developed with 
these  ideas  in  mind:  a  singing voice conversion and a time scaling  module. 

10.5.1 Real-time Singing  Voice  Conversion 

Here we present a very particular case of audio  morphing. We want to morph, in 
real-time,  two  singing voice signals in such a way that we can  control the resulting 
synthetic voice by mixing  some  characteristics of the two  sources.  Whenever this 
control is performed by means of modifying a reference voice signal  matching  its 
individual  parameters to  another, we can refer to  it  as voice conversion [ANSK88]. 

In such a context, a karaoke-type  application, in which the user can  sing like 
his/her favorite  singers, was developed [CanOO]. The result is basically an  automatic 
impersonating  system  that allows the user to morph  his/her voice attributes (such 
as pitch,  timbre,  vibrato  and  articulations)  with  the ones from a pre-recorded  singer, 
which from now on we will refer to  as target. 

In this  particular  implementation,  the  target’s performance of the complete  song 
to  be morphed is recorded and analyzed  beforehand.  In  order to incorporate  the 
corresponding  characteristics of the  target’s voice to  the user’s voice, the  system first 
recognizes what  the user is singing  (phonemes and  notes), looks for the  same sounds 
in the  target  performance (i.e.  synchronizing the  sounds),  interpolates  the selected 
voice attributes,  and synthesizes the  morphed  output voice. All this is accomplished 
in real  time. 

Figure 10.23 shows the general block diagram of the voice impersonator  system. 
The system relies on  two  main techniques that define and constrict the architec- 
ture:  the SMS framework (see 10.2.2) and a Hidden  Markov  model-based Speech 
Recognizer (SR). The SMS implementation is responsible for providing  a  suitable 
parameterization of the singing voice in order to perform the  morph in a flexible and 
musically-meaningful way. On the  other  hand,  the SR is responsible for matching 
the singing voice of the user with  the  target. 
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Figure 10.23 System block diagram. 

Let  us take  an overview of the whole process. Before we can  morph a particular 
song, we have to supply  information  about  the  song to be  morphed  and  the song 
recording itself (Target  Information and Song  Information). The system  requires 
the phonetic  transcription of the lyrics, the melody as MIDI data,  and  the  actual 
recording to be used as  the  target  audio  data.  Thus, a  good  impersonator of the 
singer that originally sang  the song has  to be  recorded. This recording has  to be  an- 
alyzed  with SMS, segmented  into  morphing units  (phonemes),  and each unit labeled 
with the  appropriate  note  and  phonetic information of the song.  This  preparation 
stage is done  semi-automatically, using a non-real-time  application developed for 
this  task. 

Once we have all the required inputs  set we can start processing the user’s 
voice. The first  module of the  running  system includes the real-time  analysis and 
the recognition/alignment steps.  Each analysis  frame,  with the  appropriate  param- 
eterization, is associated  with  the phoneme of a specific moment of the song and 
thus  with a target  frame. Once a user frame is matched  with a target  frame, we 
morph  them by interpolating data from both frames and we synthesize the  output 
sound.  Only voiced phonemes are  morphed  and  the user has control over which 
parameters  are  interpolated,  and by  how much. The frames belonging to  unvoiced 
phonemes are left untouched,  thus always having the user’s unvoiced consonants in 
the  output. 

Several modifications are  done  to  the basic SMS procedures to  adapt  them  to  the 
requirements of the impersonator  system. The  major changes  include the real-time 
implementation of the whole analysis/synthesis  process  with  a processing latency 
of less than 30 milliseconds and  the  tuning of all parameters to the  particular 
case of the singing voice. These  modifications  include the  extraction of higher-level 
parameters meaningful in the case of the singing voice and  that will be  later used 
in the  morphing process. 
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The system  includes an  Automatic Speech Recognizer (ASR)  based on phoneme- 
base  discrete  Hidden  Markov  models in order to solve the matching  problem.  This 
ASR has been adapted  to handle  musical  information and works with very low delay 
[LCB99] since we cannot wait for a  phoneme to be finished before it is recognized, 
moreover, we have to assign a phoneme to  each  frame.  This would be  a  rather 
impossible/impractical  situation if it were not for the fact that  the lyrics of the 
song are known beforehand.  This reduces a large  portion of the search  problem: 
all the possible paths  are  restricted to  just one string of phonemes,  with  several 
possible  pronunciations. The problem is cut down to  the question of locating  the 
phoneme in the lyrics and positioning the  start  and  end  points. 

As well as knowing the lyrics, musical information is also  available. The user 
is singing  along  with the music, and hopefully according to  a tempo  and melody 
already specified in the score. Thus, we also know the  time  at which a phoneme is 
supposed to  be  sung,  its  approximate  duration,  its  associated  pitch,  etc. All this 
information is used to  improve the performance of the recognizer and also allows 
resynchronization, for example, in the case of a singer  skipping  a part of the song. 

Depending  on the phoneme the user is singing,  a  unit  from the  target is  se- 
lected.  Each  frame  from the user is morphed  with a different frame from the  target, 
advancing  sequentially  in  time. Then  the user has  the choice of interpolating  the 
different parameters  extracted  at  the analysis stage, such as  amplitude,  fundamen- 
tal frequency, spectral  shape, residual  signal, etc. In  general, the  amplitude will not 
be  interpolated,  thus always using the amplitude from the user and  the unvoiced 
phonemes will not  be  morphed  either,  thus always using the consonants from the 
user. This will give the user the feeling of being in control.  This recognition and 
matching  process is illustrated  in  Fig. 10.24. 

Figure 10.24 Recognition and matching of morphable  units. 

Whenever the  spectral  shape is interpolated,  and  the  morph  factor is set  around 
50 percent,  the  resulting  spectral  shape is smoothed  and loses much of its  timbre 
characteristic.  This problem  can  be solved if formants  are included in the  spectral 
shape model and  they  are  taken  into account in the interpolation  step. 
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In  most cases, the  durations of the user and  target phonemes to  be morphed will 
be  different. If a given user's  phoneme is shorter  than  the  one from the  target,  the 
system will simply  skip the remaining part of the  target phoneme and go directly 
to  the articulation  portion. 111 the case when the user sings a longer phoneme than 
the one  present in the  target  data,  the  system  enters in the loop  mode.  Each voiced 
phoneme of the  target  has a loop point  frame,  marked in the pre-processing, non- 
real  time  stage. The  system uses this  frame for loop-synthesis in case the user sings 
beyond that point in the phoneme. Once we reach this frame in the  target,  the rest 
of the frames of the user will be  interpolated  with that same  frame  until the user 
ends the phoneme. This process is illustrated in Fig. 10.25. 

Selected  frame 
for  looping 

n 

'. 
1 Normal  morphing 1 Loop-mode  morphing".. 

I *q User 

'. 

U 
Amplitude of each  user's  frame 
Spectral  shape  of  target's  frame 

Pitch of target's  frame +delta pitch  from  table 

Figure 10.25 Loop synthesis diagram. 

The frame used as a  loop  frame  requires a good spectral  shape  and, if possible, 
a  pitch very close to  the note that corresponds to  that phoneme. Since we keep 
a constant  spectral  shape, are have to do  something to  make the  synthesis sound 
natural.  The way we do  it is  by using some  "natural"  templates  obtained from the 
analysis of a  longer  phoneme that  are  then used to  generate  more  target frames to 
morph  with  the loop  frame. For example,  one  feature that  adds  naturalness is pitch 
variations of a steady  state note sung by the  same  target.  These  delta pitches are 
kept in a look-up table whose first access is random  and consecutive values are  read 
afterwards.  Two  tables  are  kept,  one  with  variations of steady  pitch  and  another 
one  with vibrato  to  generate  target frames. 

Once  all the chosen parameters have been interpolated in a given frame,  they 
are  added to  the basic synthesis  frame of the user. The synthesis is done  with the 
standard synthesis procedurles of SMS. 

10.5.2 Time Scaling 

Time scaling an audio  signal  means  changing the length of the sound  without affect- 
ing  other  perceptual  features,  such as pitch  or  timbre.  Many different techniques, 
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both  in  time  and frequency  domain, have been  proposed to implement this effect. 
Some frequency  domain  techniques yield high-quality  results and  can work with 
large  scaling  factors. However, they  are  bound to  present  some artifacts, like phasi- 
ness, loss of attack  sharpness  and loss of stereo  image. In  this section we will present 
a  frequency  domain  technique for near lossless time-scale  modification of a general 
musical stereo mix [BonOO]. 

The Basic System 

The general block diagram of the system is represented  in  Fig. 10.26. First,  the 
input  sound is windowed and applied to  the FFT which gives the analysis  frame 
AF,, that is, the  spectrum bins and  the  amplitude  and  phase envelopes (n  is the 
analysis  frame  index).  Then  the  time scaling module  generates  the  synthesis  frame 
SF,  that is fed to  the inverse FFT (IFFT, m is the synthesis  frame  index).  Finally, 
the windowing and overlap-add block divides the  sound segment by the analysis 
window and multiplies it by the overlap-add window, to reconstruct the  output 
sound.  The basics of the FFT/IFFT approach  are  detailed in Chapter 8. 

Windowing 

Overlap 
& output 

Figure 10.26 Block diagram of a general time scaling system based on the FFT/IFFT 
approach. 

It is important  to  remark  that  the  frame  rate used in both  the analysis and 
synthesis  modules is the  same,  as opposed to  the most  broadly used time  scaling 
techniques in which a  change of frame  rate  in  synthesis is used in order to achieve 
the effect. The window size and  type  must also  be the  same in both processes. 

Figure  10.27  illustrates  the  operations for a  time-scale  stretching  factor T S  > 1, 
and a time compression  factor T S  < 1.  The horizontal  axis  corresponds to  the 
time of the center of the frame in the  input  audio signal.  Therefore, when T S  > 
1, the  time  increments relative to  the  input audio  signal will be  shorter in the 
synthesis than in the analysis  frames, but  the  actual  frame  rate will be exactly  the 
same.  Each  synthesis  frame  points to  the nearest  look-ahead  analysis  frame. In some 
cases, as shown in Fig.  10.27, an analysis  frame is used twice (or  more) while in 
other cases  some  frames are never used. This technique will not add  any  artifacts, 
provided the frame size we use is small  enough and  the  sound does  not  present 
abrupt changes in that  particular region. In the case of a percussive attack,  though, 
a frame  repetition  or omission can  be noticed  regardless of the analysis  frame size. 
Therefore,  some knowledge of the  features of a  sound  segment is needed to decide 
where this  technique  can  or  cannot  be  applied. 
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Figure 10.27 Analysis and synthesis  frames. 

Figure 10.28 shows  a  detailed  block diagram of the  time scaling module.  The 
analysis  frames AF,, containing  the  spectrum  amplitude  and  phase envelopes, are 
fed to  the  time scaling module. This  module  performs  a  peak  detection  and a peak 
continuation  algorithm (see 10.3.1) on the  current  and previous z-' amplitude en- 
velopes. Then, only the peaks that belong to a sinusoidal track  are used as  inputs 
to  the  spectrum  phase  generation module.  Note that  the  time scaling module  only 
changes the  phase, leaving the  spectral  amplitude envelope as  it is. 

Generation 

Amplitude 
Continuation 

Detection 

L Amplitude ) 

Figure 10.28 The  time scaling module. 

The  phase of each  peak is computed  supposing that  the frequency varies linearly 
between  two  consecutive  frames and  that  there is some  phase  deviation Acp (see 
Fig. 10.29). The usage of the  same  frame  rate  in  analysis  and  synthesis allows us to 
suppose that  the phase  variation  between  two  consecutive  frames is also the  same. 

Common Problems and  Solutions  in Time Scaling 

Chapter 8 has  already  introduced a spectral  technique for time scaling based  on 
the  phase vocoder approach.  This kind of implementation  presents  very well-known 
artifacts. In this section we  will describe  some of these  problems and  the  solution 
that  the implementation we are  proposing  can provide. 



432 10 Spectral Processing 

f2 
f '3 

f '2  

f '1 

f 'Q 

AF,..  AF, 

n = Analysis  frame  index 
m = Synthesis  frame  index 

n 
Figure 10.29 Peak  continuation and phase  generation. 

Phasiness. In the phase  vocoder implementation,  the  original  frame  has  a flat 
phase envelope around  the  peak  because of the  circular convolution of the  analysis 
window with  the  sinusoid.  But  after  time scaling is applied,  the  phase loses its 
original  behavior.  This  artifact  is  introduced  due to  the  fact  that  the phase of 
each  bin  advances at different speed (see section 8.4.3). This loss of peak's  phase 
coherence is known as phasiness. To avoid this  problem we can  apply  the  original 
relative  behavior of the  phase  around  the  peak. As pointed  out  in [LD97], each  peak 
subdivides the  spectrum  into a different region, with a phase  related  to  that of the 
peak.  The  phase  around each  peak is obtained  applying  the  delta  phase  function of 
the original  spectrum  phase envelope (see Fig. 10.30). 

Amplitude f. Amplitude f. 

' AF, ' SF, 

Figure 10.30 Original delta phase  function around each  peak. 

Loss of attack  transients. Another  typical  artifact of the phase  vocoder ap- 
proach is the  smoothing of the  attack  transients. A possible solution is to modify the 
sinusoidal  plus  residual  model in order  to model these  transients [VM98]. Another 
possible approach is not  to time-scale the  input  signal  on  this kind of regions so 
that  the original  timing is respected (see Fig. 10.31). Consequently, and in order  to 
preserve the overall scaling  factor, a greater  amount of scaling  should  be  applied to  
surrounding regions. 

In  order to  apply  the  previous  technique,  it is necessa,ry to  detect  attack  tran- 
sients of the  sound  in  an  unsupervised  manner.  The  computation of relative  changes 
of energy  along  several  frequency  bands  can  be  used for that purpose. A low fre- 
quency  band  could, for example,  detect  sharp  bass  notes, while a high  frequency 
band could be  set to  detect  hits of a crash  cymbal. 
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Figure 10.31 Attack transient region. 

The  spectrum of the  input signal is given by 

X ( s R u ,  k )  = IX(sR,, IC)[ . e j 4 s R - k )  (10.23) 

where the  FFT has been sampled every R, samples  in  time, and S is the time  index 
of the  short-term  transform. If we define a  set of frequency bands Bi(k), then  the 
energy of the i th band  can  be  computed  as 

(10.24) 

and  the relative  change of energy C ( s ,  i )  at frame S as 

C ( s , i )  = 
-2E(s - 2, ‘i) - E ( s  - 1, i )  + E(. + 1, i )  + 2E(s  + 2, i )  

E(% 4 . (10.25) 

The maxima of C ( s , i )  over some threshold  should  then  indicate  the  attack  tran- 
sients of the  input signal at  the desired band. 

Frequency versus time  resolution. As explained in 10.3.1, it is desirable to 
have long windows in order to achieve a high frequency  resolution,  but  also to have 
short windows so to achieve a better  time resolution. If the  audio signal  presents an 
important low frequency  component,  the use of a long window is a must, because the 
low frequency  peaks will be t,oo close to be  distinguishable if  we use a short window. 
On  the  other  hand if  we apply  a very long window, the  time scaling process will 
add reverb and will smooth the sound. 

The solution  proposed is to use parallel windowing, that is,  several  analysis 
channels (see Fig.  10.32).  Each  channel is the result of an  FFT with  a specific window 
size, window type  and zero-.padding. Obviously, the window should  be longer for 
low frequencies than for high frequencies. The peak  detection  process is applied to 
each of the channels while the peak  continuation  takes  care of the desired  channel 
frequency cuts, so it  can connect  peaks of different channels. Then  the  time scaling 
module fills the  spectrum of all the channels  (amplitude  and  phase envelopes) and 
applies  a  set of parallel  filters Hk(f) that must  add  up to a  constant  (allpass  filter). 

If the cut-off frequency of a channel was close to a spectral  peak,  this would be 
broken apart  into two different channels and we would be  introducing some kind 
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Figure 10.32 Multiple  parallel windowing. 

of artifacts. For that reason,  and  in  order to  guarantee  that phase  and  amplitude 
envelopes around  the  peak behave the way we expect, we need to provide  our  system 
with  time-varying  frequency  cuts.  Each  frequency  cut is computed  as  the middle 
point  between the  two closest peaks to  the original  frequency cut (see Fig. 10.33). 

Synthesis  Frame m-l Synthesis  Frame m 

Amolitude  Arnolitude 

Freq 

/ Desired / Desired 
Used  frequency  Used  frequency 

frequency 
cut 

cut  frequency  cut 
cut 

Figure 10.33 Variable phase frequency cut. 

Loss of stereo image. In the case of stereo  signals, if  we process each one 
of the channels  independently,  most of the stereo  image is bound to  be lost.  This 
artifact is mainly due  to  the fact that  the time  scaling  process  changes the  phase 
relationship  between the two  channels.  Therefore, if  we want to  keep the  stereo 
image, it is necessary to preserve the phase  and  amplitude  relationship between left 
and  right  channels. 

The fact that  the system  does  not  change  the  amplitude envelope of the spec- 
trum  guarantees  that  the  amplitude  relationship between channels will be  preserved, 
provided we always use frames  with  identical  time  tags for both channels. For that 
purpose, we need to synchronize the  attack  transients between the two  channels. 

Figure 10.34 shows the simplified block diagram of the stereo  time scaling sys- 
tem. Notice that  the number of FFT and  IFFT operations is multiplied by two and, 
as a consequence, the same  happens to  the processing time. 
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Figure 10.34 Stereo  time scaling. 

Time-varying Time Scaling 

The system  presented  can  deal  with  time-varying  scaling  factors  with  no loss of 
quality  trade-off. The only significant change is that  the time  increments of the 
synthesis  frames in the  input signal are not constant. 

The application of time-varying tempo variations  opens up many new and  inter- 
esting  perspectives. The system could easily be  adapted  and used for alignment and 
synchronization of two sound  sources. Also, the  amount of time  scaling  could  be 
used in a wise  way to inspire  emotions. For example, to increase the climax  or the 
suspense of a musical piece, by slowing or increasing the  t,empo  during  certain frag- 
ments.  Another  interesting  application could be to control  the  time scaling  factor 
in the same way as  the  orchestra  conductor does and play in real  time a previously 
recorded  background  with  a live performance. 

10.6 Conclusion 

Throughout  this  chapter, we have shown how the use of higher-level spectral models 
can  lead to new and  interesting  sound effects and  transformations. We have also 
seen that  it is not easy nor  immediate to get a good spectral  representation of a 
sound, so the usage of this kind of approach  needs to be carefully considered bearing 
in mind the  application  and  the  type of sounds we want to process. For example, 
most of the techniques  presented  here work well only on  monophonic  sounds and 
some  rely  on the pseudo-harmonicity of the  input signal. 

Nevertheless, the use of spectral models for musical processing has  not been 
around  too long and  it  has  already proven useful for many  applications,  as the ones 
presented in this  chapter. TJnder many  circumstances, higher-level spectral  mod- 
els,  such as  the sinusoidal  plus  residual, offer much more flexibility and processing 
capabilities than  more  immediate  representations of the sound  signal. 

In general, higher-level sound  representations will  offer more flexibility at the 
cost of a more complex and  time-consuming  analysis  process. It is important  to 
remember that  the model of the sound we choose will surely have great effect on 
the kind of transformations we will be  able to achieve and on the complexity and 
efficiency of our  implementation. Hopefully, the reading of this  chapter,  and t,he 
book as a whole, will guide the reader  towards  making  the  right decisions in order 
to  get the desired  results. 
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Chapter 11 

Time and Frequency 
Warping  Musical Signals 

G .  Evangelista 

11.1 Introduction 

In  this  chapter we describe  interesting  audio effects that can be  obtained by deform- 
ing the time  and/or  the frequency  axis.  Whilst  discrete-time  warping  techniques 
were introduced in 1965 [Bro65], their  interest in musical applications is fairly re- 
cent.  Time warping  aims at deforming the waveform or  the envelope of the signal 
while frequency  warping modifies its  spectral  content, e.g., by transforming an har- 
monic signal into  an  inharmonic one or vice versa. The effects obtained by warping 
often  increase the richness of the signal by introducing  detuning or  fluctuation of 
the waveform. The sounds  from  natural  instruments like piano  and  drums  already 
possess this  property.  The wave propagation in stiff strings  and  membranes  can ac- 
tually  he  explained in terms of frequency  warping. By warping  these  sounds  one  can 
enhance  or reduce  their natural  features. Even  uninteresting  synthetic  sounds  such 
as pulse trains may  be  transformed  into  interesting  sounds by warping.  Frequency 
warping is amenable to a  time-varying version that allows us to introduce  dynamic 
effects such as vibrato,  tremolo,  Flatterzunge in flute. 

The quality of warping  ultimately  depends  on  the  warping  map,  i.e.,  on  the func- 
tion  describing the deformat,ion of the  time  or frequency  axis.  Time and frequency 
warping are flexible techniques that give rise to a  tremendous  amount of possibili- 
ties,  most of which are  at present  still  unexplored  from a musical point of view. By 
choosing the proper map  one  can  actually  morph  the  sound of an instrument  into 
that produced by another  instrument. 

This  chapter is divided  into two main  sections. In  the first  section we describe 
the  time  and frequency  warping  operations and derive  algorithms for computing 
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these effects. In  the second  section we illustrate some of their musical  applications 
based  on  examples  and  case  studies. 

1 1.2 Warping 

11.2.1 Time Warping 

Suppose that we want to change  the  shape of a periodic  waveform s ( t )  by moving 
the  amplitude values attained by the signal to  other  time  instants.  One  can achieve 
this by plotting  the  signal  on  an  elastic  sheet  and by stretching  and/or compressing 
the  sheet  in different points along its  horizontal  direction.  The waveshape appears  as 
if the original  time  axis  had  been  deformed.  Instants of time  that were equidistant 
now have  a different time  distribution.  This  deformation of the  time  axis called 
time  warping is characterized by a  warping  map O(t)  mapping  points of the original 
t-axis  into  points of the  transformed  axis. An example of time  warping  a  sinewave is 
shown in Fig. 11.1. The figure is obtained by plotting  the  original  signal along the 
ordinates  and  transforming  time  instants  into new time  instants  via  the  warping 
map,  obtaining  the  signal  plotted along the  abscissa  axis. Notice that  to one  point 
of the original  signal  there  can  correspond more points of the warped  signal.  These 
points  are  obtained by joining  time  instants of the  original  signal  to  points on the 
warping  characteristic O(t)  using  horizontal lines. The corresponding  warped  time 
instants  are  the  value(s) of the abscissa  corresponding  to  these  intersection  point(s). 
The  time  warped  signal is obtained by plotting  the  corresponding  amplitude values 
at  the new time  instants  along  the  abscissa.  In  this  example  the signal sin(O(t)) 
may be  interpreted  as a phase  modulation of the  original sinewave. Time  warping  a 
signal  composed of a superposition of sinewaves is equivalent to phase  modulating 
each of the component  sinewaves and  adding  them  together. By time warping we 
alter  not only the waveshape but  also  the  period of the  signal. Clearly, the  map is 
effective modulo  the  period of the  signal,  that  is,  the  map O(t) and  the  map 

Figure 11.1 Time warping a sinewave  by means of an arbitrary map O(t ) .  
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where rem(x,T) denotes the remainder of the integer division of x by T ,  have 
the  same  net effect on a  T-periodic  signal. More generally, we can  time warp an 
arbitrary,  aperiodic signal s ( t )  via an  arbitrary  map,  obtaining a signal 

st,(t) = s(O(t)) 
whose waveshape and envelope may  be  completely different from the  starting signal, 
If the  map is invertible,  i.e.,  one-to-one, then 

st,(O-'(t)) = s ( t ) .  

That is, at  time 7 = O-l ( t )  the  time warped  signal attains  the  same  amplitude 
value as  that  attained by the  starting signal at  time t .  

Time  warping  transformations  are useful for musical applications,  e.g., for mor- 
phing a sound  into a new one in the  time  domain. 

11.2.2 Frequency  Warping 

Frequency warping is the frequency  domain counterpart of time  warping. Given a 
signal whose discrete-time Fourier transform  (DTFT) is S(W) ,  we form the signal 
spw(t)  whose DTFT is 

S f W ( W )  = S(@J)). 
That is, the frequency spectrum of the frequency  warped  signal  agrees  with that of 
the  starting signal at  frequencies that  are displaced by the  map O(w). If the  map is 
invertible, then 

S f w ( O - l  ( W ) )  = S(W) 

The frequency  warped  signal is obtained by computing the inverse DTFT of the 
warped  frequency spectrum.  In  order to  obtain a  real  warped  signal from a  real 
signal,  the warping map  must have odd  parity,  i.e., 

e ( - W )  = -O(W). 

In  order to illustrate  the  features of frequency  warping, consider a  periodic  signal s ( t )  
whose frequency spectrum peaks at integer  multiples of the  fundamental frequency 
WO. The frequency  spectrum. of the warped  signal will peak at  frequencies 

G k  = O-l(lCw0). 

The  situation is illustrated in Fig. 11.2, where the original  harmonic frequencies are 
represented by dots along the  ordinate axis. The warped frequencies are  obtained 
by drawing  horizontal lines from the original  set of frequencies to  the  graph of O(W) 
and by reading  the corresponding values of the abscissa. As a result, harmonically 
related  partials  are  mapped  into non-harmonically  related  ones.  Furthermore, if 
the frequency  warping map is not  monotonically  increasing,  one obtains effects 
analogous to  the foldover of frequencies. This is similar to  that which is obtained 
from a phase vocoder in which the frequency  bands are scrambled in the synthesis of 
the signal. However, the resolution and flexibility of the frequency warping  method 
are generally much higher than  that of the scrambled  phase  vocoder. 
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Figure 11.2 Frequency warping  of  a  periodic  signal:  transformation of the harmonics  into 
inharmonic partials. 

Energy Preservation and Unitary Frequency  Warping 

By  frequency  warping a signal  one  dilates or shrinks  portions of its frequency spec- 
trum. As a result, the  areas  under  the  spectral  characteristics  are affected.  Percep- 
tually  this  results  in  an amplification of certain  bands  and  an  attenuation of other 
bands.  This is depicted  in  Fig. 11.3 where the original  narrow  band spectrum of 
Fig.  11.3(a) is dilated  obtaining the  dotted curve  shown  in 11.3(b). In  order to cir- 
cumvent this  problem, which causes an  alteration of the relative  energy levels of the 
spectrum,  one should  perform an equalization  aimed at  reducing the  amplitude of 
dilated  portions  and increasing that of shrunk  portions of the  spectrum.  Mathemat- 
ically this is simply  achieved,  in the case where the warping map is increasing, by 
scaling the  magnitude  square of the  DTFT of the warped  signal by the derivative 
of the warping  map.  In  fact,  the energy in an  arbitrary  band [WO,  w1] is 

By the simple  change of variable W = @(O) in the last  integral we obtain 

where 

(11.2) 

is the  DTFT of the scaled  frequency  warped  signal. Equation (11.1) states  the energy 
preservation  property of the scaled  warped  signal  in  any  band of the  spectrum:  the 
energy in any  band [wg,w1] of the original  signal  equals the energy of the warped 
signal in  the warped  band [@- l (wo) ,& l (w l ) ] .  Thus,  the scaled  frequency  warping 
is a unitary  operation  on signals. 
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Figure 11.3 Frequency  warping a narrow band signal: (a) original  frequency spectrum 
and (b) frequency  warped spectrum (dotted line) and scaled frequency  warped spectrum 
(solid line). 

11.2.3 Algorithms for Warping 

In sections  11.2.1 and 11.2.2 we explored  basic  methods for time  warping  in the  time 
domain  and frequency  warping in the frequency  domain, respectively. However, one 
can  derive  time and frequency  warping  algorithms in crossed domains. It is easy to 
realize that time  and frequency  warping are  dual  operations.  Once  a  time  domain 
algorithm for frequency  warping is determined,  then a frequency  domain  algorithm 
for time  warping will work the same way. This section  contains an overview of 
techniques for computing  frequency  warping. The same  techniques  can  be used for 
time  warping  in the  dual  domain. We start from the basic maps using the Fourier 
transform  and  end  up  with time-varying warping using allpass  chains in dispersive 
delay lines. 

Frequency  Warping  by  Means of FFT 

A simple way to implement the frequency  warping  operation  on  finite  length  discrete- 
time  signals is via the  FFT algorithm.  Let 

denote  the  DFT of a  length N signal s(n) .  Consider a map 0 ( W )  mapping  the 
interval [-x, 7 r ]  onto itself and  extend B ( W )  outside  this interval by letting 

B (W + 2k7r) = 6(w)  + 2k7r, k integer 

The last  requirement is necessary in order to  guarantee  that  the warped  discrete 
time signal has 27r-periodic Fourier transform 

sfw(W + 2kT) = S (6 (W -k 2kT)) = S (6 (W)  -b 2kT) = S (6 ( W ) )  = sfw(W), 
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i.e., Sfw(w)  is the Fourier  transform of a  discrete-time  signal. In order to  obtain  the 
frequency  warped  signal we would need to compute S (6' (T)) and  then perform 
the inverse  Fourier  transform. However, from the  DFT we only know S ( W )  at integer 
multiples of g. The  map 6' ( W )  is arbitrary  and 6' (F) is not necessarily a  multiple 
of %. However, we may  approximate 6' (9) with  the  nearest integer  multiple of 

i.e., we can define the  quantized  map 2 X  

O4 (7) = F round [H g] 21rm 21r 21rm 

The values S (0, (v)) are known from the  DFT of the signal and we can  compute 
the  approximated frequency  warped  signal by means of the inverse DFT: 

Figure 11.4 Frequency  warping by means of FFT: schematic  diagram. 

The  diagram of the frequency  warping  algorithm  via FFT is shown in Fig.  11.4. If 
the warping map is an increasing  function,  one  can introduce  the equalization  factor 

_ I  

as in (11.2)  simply by multiplying S (0, (F)) by the factor dg I before 
W= Slrm 

processing  with the IFFT block. The  FFT algorithm for warping is ratheyefficient, 
with  a  complexity  proportional to  Nlog N. However, it  has some  drawbacks. The 
quantization of the  map  introduces  distortion in the desired  frequency spectrum, 
given by repetitions of the  same value in phase  and  magnitude at  near  frequencies. 
These  sum  almost coherently and  are perceived as  beating  components  that have a 
slow amplitude decay. In frequency  warping  signals  one  must  pay attention  to  the 
fact that  the warped version of a  finite  length  signal is not necessarily finite  length. 
In  the  FFT-warping  algorithm,  components  that should lie outside  the analysis 
interval  are folded back into  this causing  some echo artifacts.  Furthermore, even if 
the original  warping map is one-to-one, the  quantized  map is not  and  the warping 
effect cannot  be  undone  without losses. The influence of the  artifacts  introduced by 
the  FFT-warping  algorithms may  be  reduced by zero-padding the original  signal in 
order to  obtain a larger value of N and,  at  the same  time,  a  smaller  quantization 
step for 8, at the expense of an increased computational  cost. 
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Dispersive Delay  Lines 

In  order to derive alternate  algorithms for frequency  warping [Bro65,0J72], consider 
the  DTFT (11.2) of the scaled frequency warped version of a  causal  signal s (n )  : 

(11.3) 

The last  formula is obtained by considering the  DTFT of the signal s (n ) ,  replacing 

w with 8(w) and  multiplying by G. The warped  signal Zfw(k) is obtained from 

the inverse DTFT of gfW(u) : 

Defining the sequences X,(k) as follows, 

we can  put (11.4) in  the form 

W 

(11.4) 

(11.5) 

(11.6) 
n=O 

If  we find a way of generating  the sequences Xn(k), then we have  a new algorithm 
for frequency  warping, which consists of multiplying  these sequences by the signal 
samples and  adding  the  result. From (11.5) we have an easy way for accomplishing 
this since 

A,(w) := DTFT[X,](w) = An-l(w)e-je('"), (11.7) 

with 

Notice that  the  term e-je(u') has  magnitude 1 and corresponds to  an allpass  filter. 
The sequence &(IC)  may  be  generated  as the impulse  response of the filter G. The 
sequence Xn(k)  is obtained by filtering X,-1 ( k )  through  the allpass  filter e - j e ( w ) .  
This  can  be realized in the  structure of Fig. 11.5 for computing  the sequences Xn(k) 
as  the impulse  responses of a  chain of filters. In  order to perform  warping it suffices 
to multiply  each of the  outputs by the corresponding  signal  sample  and sum  these 
terms  together.  The  structure is essentially a delay line in which the  elementary 
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dispersive delay line 

Figure 11.5 Dispersive  delay  line for generating the sequences &(/c). 

delays  are  replaced by allpass  filters.  Each of these  filters  introduces  a  frequency 
dependent  group delay 

de 
dw 

7G(W) = - 

The  result is reminiscent of propagation of light in dispersive media  where  speed 
depends  on frequency.  For this reason this  structure is called a dispersive delay line. 
What  happens if we input a generic  signal y(k) to  the dispersive delay line? The 
outputs &(/c) are  computed  as  the convolution of the  input  signal by the sequences 
Xn(k):  

As a special  case, for k = 0 and choosing as  input  the  signal s ( k )  = y ( - k ) ,  which 
is the time-reversed  version of y(k), we obtain 

The  last  equation  should  be  compared  with (11.6) to  notice  that  the  summation is 
now over the  argument of X,(T). However, we can define the  transposed sequences 

and  write 

(11.8) 
r 

From (11.5) we have 

Suppose that  the  map O(w) has  odd  parity, is increasing  and  maps T into T .  Then 
we can  perform  in (11.9) the  same  change of variable S1 = O(w)  as in (11.1) to  obtain 
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dispersive delay line 

s(k) ATti reversal F e-jW'(W) e-ie-l(w) ...... 
-aGT 

T k = O  Sf@) T k = O  S,(l) S&) 

Figure 11.6 Computational structure for frequency  warping. 
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As a  result, 

hence the transposed sequences AT(n) have the same  form as  the sequences Ar(n) 
except that  they  are based  on the inverse map &'(U).  Consequently, (11.8) is a 
formula for unwarping the signal.  Furthermore, by exchanging the roles of Q(w)  and 
0-1 ( W ) ,  (11.8) is also a valid algorithm for warping. The corresponding structure 

is shown in Fig.  11.6. The  input signal is time  reversed, then fed to  the E 
filter and  to  the dispersive delay line. The  output of each filter is collected at  time 
k = 0 by means of switches closing at that  instant  to form the scaled frequency 
warped sequence Zfw(n). The  structures in Figures  11.5 and 11.6 still  present  some 
computational  problems.  In  general,  the  transfer  functions involved are  not  rational. 
Furthermore, an infinite  number of filters is needed for computing the transform. 
One  can show that  the only  one-to-one map implementable by a rational  transfer 
function is given by the  phase of the first-order  allpass filter 

A ( z )  = 
z-l - b 
1 - bz - l '  (11.10) 

where -1 < b < 1. By varying the real parameter b in the allowed range,  one  obtains 
the family of Laguerre  curves shown in Fig. 11.7. The curves  with  a  negative value 
of the  parameter  are  the inverses of those  with a positive value, i.e., the inverse 
mapping O-l(w) corresponds to a sign  reversal of the  parameter.  One can show 

that for causal  signals the derivative  can  be  replaced by the filter 

The  structure of Fig.  11.6  includes a time  reversal block and switches closing at 
time zero. It is clear that for a finite-length N signal  one  can equivalently form the 
signal s (N - n)  and close the switches at  time k = N .  Furthermore, by inspection 
of the  structure,  the required  number M of allpass  filters is approximately given by 
N times the maximum  group delay, i.e., 
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A larger  number of sections  would  contribute  little or nothing  to  the  output signal. 

The  main  advantage of the time-domain  algorithm for warping is that  the family 
of warping  curves is smooth  and does not  introduce  artifacts  as opposed to  the  FFT- 
based  algorithm  illustrated  in  the  above.  Furthermore,  the effect can  be  undone  and 
structures for unwarping  signals  are  obtained by the identical  structure for warping 
provided that we reverse the sign of the  parameter. In fact,  the frequency  warping 
algorithm  corresponds to  the  computation of an expansion  over  an  orthogonal basis 
giving rise to  the Laguerre  transform. Next we provide a simple MATLAB function 
implementing the  structure of Fig. 11.6. The following  M-file 11.1 gives a simple 
implementation of the  Laguerre  transform. 

i 

W 

Figure 11.7 The family of Laguerre  warping  maps. 

M-file 11.1 (lagt .m) 
func t ion   y=lagt   (x ,  b , M )  
% computes M terms of the  Laguerre  transform y of the   input  x 
% with  Laguerre  parameter b 
N=length(x) ; 

% f i l t e r  by n o r m a l i z i n g   f i l t e r  lambda-0 
yy=f i l t e r  (sqr t   ( l -b-2)  , [l, b] ,x) ; 
y(I)=yy(N) ; % r e t a i n   t h e   l a s t  sample  only 
f o r  k=2:M 

x=x(N:-I: l) ; % t ime  reverse   input  

f i l t e r   t h e   p r e v i o u s   o u t p u t  by a l l p a s s  
y y = f i l t e r ( C b , l l  ,Cl,bl , yy> ;  
y(k)=yy(N) ; % r e t a i n   t h e  last sample  only 

end 
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11.2.4 Short-time Warping and Real-time Implementation 

The frequency  warping  algorithm  based  on the  Laguerre  transform  illustrated in 
section 11.2.3 is not ideally suited  to  real-time  implementation. Besides the com- 
putational  cost, which  is of the order of N 2 ,  each output  sample  depends  on every 
input  sample.  Another  drawback is that on a long  signal  the  frequency-dependent 
delays cumulate  to  introduce large delay differences between  high and low frequen- 
cies. As a  result,  the  time  organization of the  input signal is destroyed by frequency 
warping.  This  can also be seen  from the  computational  structure in Fig.  11.6,  where 
subsignals  pertaining to different frequency  regions of the  spectrum  travel  with dif- 
ferent  speeds  along  t,he dispersive delay line. At  sampling  time  some of these signals 
have  reached the  end of the  line, whilst other  are left behind. For example,  con- 
sider the Laguerre  transform of a  signal s (n )  windowed  by a length N window h(n)  
shifted  on  the  interval r M ,  ...,rM + N - 1. According to (11.6) we obtain 

n=rM n=O 

where 

x"'(.) = h(n)s(n f T M ) .  

The DTFT of (11.11) yields 

From this we can see that  the  spectral  contribution of the  signal  supported on 
r M ,  ..., r M  + N - 1 is delayed, in the warped  signal, by the  term e - jMe(w) ,  which 
introduces a largely dispersed  group  delay M T G  ( W ) .  Approximations of the  warping 
algorithm  are possible in which  windowing is applied in order  to  compute a short- 
time  Laguerre  transform (STLT) and, at the same  time,  large  frequency-dependent 
delay terms  are replaced by constant delays. In order  to derive the  STLT  algorithm, 
consider  a window w ( n )  satisfying  the perfect overlap-add  condition 

+cc 
r L )  = 1, (11.13) 

r=-cc 

where L 5 N is an  integer.  This  condition  says  that  the  superposition of shiftled 
windows adds  up  to one. If Zfw(n)  denotes the Laguerre  transform (11.6) of the 
signal s ( n ) ,  then we have identically: 

+m +cc +cc 
Zfw(k) = C ~ ( k  - r L ) Z j w ( k )  = c C s(n)w(k - rL)Xn(k) .  (11.14) 

r=-cc r=-m n=O 



450 11 Time  and  Fkequency  Warping  Musical  Signals 

By taking  the  DTFT of both sides of (11.14) one  can show that 

On  the  other  hand, from  (11.12) a delay compensated version of g r i ( w )  is 

j j y i ( U )  = e-Jr(Lw-Mo(m))gyi((w) = e - j r L w n , ( w ) ~ ( ' ) ( 8 ( w ) )  (11.16) 

which is the  DTFT of the sequence 

N - l  

$ i (k )  = c h(n)s(n + ?-M)X,(k - ?-L). (11.17) 
n = O  

This  equation defines the  short-time Laguerre  transform  (STLT) of the signal s (n ) .  
In  order to select the  proper integer M we need to  study  the  term X ( r ) ( O ( w ) ) .  One 
can show that 

We would like to  approximate  the  integral in (11.15) by Ao(w)X( ' ) (O(w)) .  Suppose 
that H ( w )  is an unwarped version of W ( w ) ,  i.e., that 

dB-' ( W )  

dw 
H ( w )  = ~ W ( O - ' ( w ) )  = IAT(w)12 W(O- ' (w) ) .  (11.19) 

By performing  in (11.18) the change of variable 0 = O(w) + O(Q - W )  we obtain 

Since W ( w )  is a lowpass  function,  only  the  terms for Q M w contribute  to  the  last 
integral.  Therefore,  from (11.16) and (11.20) we conclude that  the superposition of 
delay  compensated  versions of gY i (w)  can  be  approximated  as follows: 

(11.21) 

Equation (11.21) should  be  compared  with  (11.15). A linear  approximation of O(a) 
is 

e(Q) = e'(o)a + o ( 4  = l+ba + o ( a 3 )  . (11.22) 
l - b  

One  can show that  this is a fairly  good  approximation for la( < FT. In  this 
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Figure 11.8 Short-time  warping:  different  length of warped  signals from low to high 
frequencies (top to bottom). 

frequency  range, if  we select 

M = -  l - b  
l f b  

L (11.23) 

then 

i.e., the overlap-add of STLT components well approximates  the Laguerre  transform. 
In  other words, an approximate scheme for computing  the Laguerre  transform con- 
sists of taking  the Laguerre  transform of overlapping  signal  frames windowed by the 
unwarped window h(n) and overlap-adding the  result, as shown in Fig. 11.9.  This 
method allows for a real-time  implementation of frequency  warping  via the Laguerre 
transform. It relies on  the linear  approximation  (11.22) of the  phase of the allpass, 
valid for the low-frequency range. An important issue is the choice of the window 
W(.). Many classical windows, e.g., rectangular,  triangular,  etc., satisfy  condition 
(11.13). However, (11.21) is a close approximation of the Laguerre  transform only 
if the window sidelobes are sufficiently attenuated.  Furthermore,  the unwarped ver- 
sion (11.19) of the window can be  computed via  a  Laguerre  transform  with the 
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A c Prototype window 

1 ILT (pre-compute) 

/I c Unwarped window 

Figure 11.9 Block  diagram of the approximate  algorithm for  frequency  warping  via 
overlap-add of the STLT  components. The block  LT  denotes the Laguerre  transform and 
ILT its inverse. 

normalizing  filter AT(w)  removed. In principle h(n) has infinite  length. However, 
the inverse  Laguerre  transform of a lowpass window w ( n )  has  essential  length 

In  order to avoid artifacts in the multiplication of the signal by the window we are 
interested in windows whose Laguerre  transform  essentially is a dilated or stretched 
version of the window itself. This  property  turns  out  to  be  approximately well 
satisfied by the Hanning window 

The choice of the length NW is arbitrary.  Furthermore,  the  Hanning window sat- 
isfies (11.13) for any L integer  submultiple of N W .  Long windows tend  to  better 
approximate  pure frequency  warping. However, both response  time  and  compu- 
tational complexity  increase  with the  length of the window. Moreover, the time- 
organization  destruction effect  is more  audible using extremely long windows. The 
integer L controls the overlap NW - L of the  output  warped frames.  When  warping 
with a positive value of the  parameter b one  should select a considerable  overlap, 
e.g., NW = 5L, in  order to avoid amplitude  distortion of the high-frequency compo- 
nents, which,  in this  case,  are  more  concentrated  in  the  Laguerre  domain, as shown 
in  Fig. 11.8. Finally, the integer M fixing the  input frames  overlap is obtained by 
rounding  the  right-hand side of (11.23). Next we provide  a  simple M-file 11.2 im- 
plementing  frequency  warping by means of STLT  overlap-add. The function gives 
a simple  implementation of frequency  warping  via short-time  Laguerre transform.' 

'The  function  lugtun  is  the  same as lagt  reported in section 11.2.3, except that  the line 
yy=filter(sqrt(l-b^2),[l,b],x); is replaced by the line yy=x; in order to compute  the  non-normalized 
Laguerre  transform. 
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M-file 11.2 (winlagt .m) 
function  sfw=winlagt(s,b,Nw,L) 
% Frequency  warping  via  STLT  of  the  signal S with  parameter b, 

w=L*(l-cos(2*pi*(O:Nw-l)/Nw))/Nw; % normalized  Hanning  window 
N=ceil(Nw*(l-b)/(l+b)); % length  of  unwarped  window h 
M=round(L*(l-b)/(l+b)); % time-domain  window  shift 
h=lagtun(w,-b,N);  h=h(:) % unwarped  window 
Ls=length(s) ; % pad  signal  with  zeros 
K=ceil(  (Ls-N) /M) ; to  fit  an  entire  number 
s=s( :) ; s=[s ; zeros(N+K\ast  M-Ls, l)] ; % of  windows 
Ti=l; To=l; 1 initialize I/O pointers 
Q=ceil(N*(l+abs(b))/(l-abs(b))); % length  of  Laguerre  transform 
sfw=zeros (Q, l) ; % initialize  output  signal 
for  k=l:K 

output  window  length  NW and time-shift L 

yy=lagt(s(Ti:Ti+N-l).*h,b,Q); % Short-time  Laguerre  transf. 
sfw(To:end)=sfw(To:end)+yy; % overlap-add  STLT 
Ti=Ti+M;To=To+L; % advance 1/0 signal  pointers 
sfw=[sfw;  zeros(L,l)l ; % zero  pad  for  overlap-add 
end 

11.2.5 Time-varying Frequency  Warping 

Suppose that each  frequency-dependent delay element in the  structure of Fig. 11.5 
has  its own phase  characteristics Ok(w) and suppose that we remove the scaling 
filter. Accordingly, the  outputs of the  structure  are  the sequences 

= Q ( k )  * a2(k)  * ... * a n ( k )  

with $,,(/c) = 6 ( k ) ,  obtained by convolving the impulse  responses a,(k) of the 
allpass  filters 

Hence the z-transforms of the sequences +,(/c) are 



454 11 Time  and  Frequency  Warping  Musical  Signals 

is the sign-reversed  cumulative  phase of the first n delay elements. By multiplying 
each  signal  sample s (n )  by the corresponding  sequence cpn(lc) we obtain  the signal 

n=O 

whose DTFT is 

n=O 

Note that  this is an  important generalization of (11.3) in which the phase  terms 
are  not  integer multiples of each other.  In  the special  case where all the delays are 
equal we have O,(w) = O ( W )  and @,(W) = nO(w). If  we suppose that  the delays 
are  equal in runs of N ,  then signals of finite  length N ,  supported on the intervals 
(r - 1)N, ...,rN - 1 are frequency  warped  according to distinct  characteristics. For 
the  same  reason, signal  samples falling in these  intervals are differently warped. 
Portions of the signal falling in two  adjacent  intervals  are  warped in a mixed way. 
More  generally,  one  can have a different delay for each  signal  sample. This  results in 
a time-varying  frequency  warping  [EC99, ECOO]. From  a musical point of view one 
is often  interested in slow and oscillatory  variations of the  Laguerre  parameter,  as 
we  will discuss in section 11.3. It is possible to derive  a  computational  structure for 
time-varying  warping  analogous to  that reported  in  Fig. 11.6. This is obtained by 
considering the sequences &(IC) whose z-transforms  satisfy  the following recurrence: 

where 

and bo = 0. This  set of sequences  plays the same  role as  the transposed sequences 
(11.9) in the  Laguerre  expansion. However, the sequences p n  (IC) and $,(IC) are not 
orthogonal,  rather,  they  are  biorthogonal,  i.e., 

k=O 

Consequently, our  time-varying  frequency  warping scheme is not  a  unitary  trans- 
form of the signal,  hence it  does  not verify the energy  preservation  property (11.1). 
However, one  can show that  this is a  complete  representation of signals. Hence the 
time-varying  frequency  warping is an effect that can  be  undone  without  storing the 
original  signal. The modified structure for computing  time-varying  frequency warp- 
ing is reported  in  Fig. 11.10. In  order to preserve the  same direction of warping as 
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in the fixed parameter Laguerre  transform, the sign of the  parameter sequence must 
be  reversed, which is equivalent to exchanging the roles of Bn(w) and B;'(w). The 
inverse structure  can  be derived in terms of a tapped dispersive delay lined based 
on a n ( w )  with the warped  signal  samples used as  tap weights. Next we provide a 
simple M-file 11.3 implementing the  structure of Fig. 11.10. The function gives a 
simple  implementation of the variable parameter generalized Laguerre  transform. 

Figure 11.10 Structure for computing time-varying  frequency warping via  generalized 
Laguerre transform with  variable parameter. 

M-file 11.3 (1agtbvar.m) 
function  y=lagtbvar(x,b,M) 
% computes  coefficients y of  biorthogonal  Laguerre  expansion of x 
using  variable  parameters b(k) where  b  is  a  length M 

N=length(x) ; 
yy=x(N:-l:l); % time  reverse  input .. 

y=zeros(i,M); 
yy=filter(i, [l, b(l)]  ,yy); % filter 
y(l)=yy(N) ; % retain 
% filter  by  H-I(z)(unscaled,  b  to  -b) 
yy=filter(CO,ll, [l, b(2)I ,yy>; 
y(2>=yy(N>*(1-b(l>*b(2)); % retain 
for  k=3:M 

% filter  by  H-(k-l) (2) (unscaled,  b  to 
yy=filter(Cb(k-2)  ,l], [l., b(k)l  ,yy); 
y(k)=yy(N)*(i-b(k-l)*b(k)); % retain 
end 

Time-varying  frequency  warping has a fast 

by  psi-0 (2) 
the  last  sample 

the  last  sample 

-b) 

the  last  sample 

array 

only 

only  and  scale 

only  and  scale 

approximate  algorithm whose block 
diagram is reported  in  Fig. 11.11. The scheme is similar to  the overlap-add  method 
derived for the Laguerre  transform  and is shown in Fig.  11.9. However, due to  the 
time-varying aspect,  the inverse time-varying  warping of the  prototype window must 
be  computed for each input frame. 



456 11 Tame  and  Frequency  Warping  Musical  Signals 7-7 b(n) 

C Prototype window 

ITVFW 

i 
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Figure 11.11 Block diagram of the approximate  algorithm for  time-varying  frequency 
warping. The blocks TVFW  and  ITVFW respectively  denote  time-varying  frequency  warp- 
ing and  its inverse. 

11.3 Musical Uses of Warping 

In  this section we describe  a few applications of warping  in music. As already  pointed 
out, many  aspects  and  properties of warping musical signals are still to  be explored 
and  many  results of this section  may be deemed as experiment'al.  Applications 
that will be discussed range  from  accurate pitch-shifting of inharmonic  sources  and 
inharmonization of harmonic  sources, to feature  and  transient  extraction,  vibrato 
editing  and  morphing. 

11.3.1 Pitch  Shifting  Inharmonic  Sounds 

The sounds  from a large class of instruments  are  inherently  inharmonic.  The spac- 
ing of the frequencies of the  partials is not  uniform.  In  piano  sounds, in the low 
register, the displacement of the  partials from the harmonics becomes more and 
more  apparent  as we move towards  the lower end of the keyboard.  In  Fig.  11.12 
we report  data ( X  marks)  extracted from a low-pitch piano  tone (M 27 Hz). These 
represent the differences between the frequency of a partial  and  that of the  next one. 
If the sound were harmonic,  one  should observe a flat distribution of points aligned 
on  the  pitch frequency. On  the contrary,  one  observes that  the spacing between the 
partials increases  with the  order of the overtones. The distribution of the  partials 
can  be closely matched to  the derivative of a Laguerre  curve.  This  can  be  obtained 
by means of an optimization of the  parameter b in  (11.10). It turns  out  that  the 
absolute value of the  optimum Laguerre parameter decreases as we move from lower 
to higher  tones. This  means  that  the warping  curve becomes more and more  linear, 
as  can  be seen from  Fig.  11.7. By frequency  warping the original  piano  tone  with the 
inverse of the fitted  Laguerre map one  transforms the originally  inharmonic partials 
into a set of harmonic  partials. As a  result of warping the  fundamental frequency, 
the pitch of the resulting  tone will be higher. Vice versa, by warping by a  Laguerre 
map with  a  small  positive value of the  parameter one  decreases  pitch and increases 
the degree of inharmonicity.  This gives us a method for pitch  shifting  piano  tones 
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Figure 11.12 Inharmonicity  characteristics of a 27 Hz piano  tone: data are marked by x 
and  the solid  curve  represents the optimum  Laguerre  difference  curve fitting the  data. 

that is particularly  accurate in matching  the  inharmonicity of lower tones. Given 
a  piano  tone  one  can  determine the value and  the sign of the warping  parameter 
in  order to transform it  to a lower or higher  tone. Specifically,suppose that, the 
fundamental  frequency is f o  and  that  the desired  frequency is f o .  In  terms of the 
normalized  frequency W ,  with  a  sampling rate f s ,  we have, respectively, WO = 

and 20 = y. As remarked in section 11.2.2 the new normalized fundamental 
frequency  after  warping is 2 0  = 8-'(wo). One  can show that 

?. 

hence we can  determine  the required value of b as follows: 

tan 9 - tan 2 
tan 2 + tan $j ' h =  (11.24) 

For inharmonic  sounds,  pitch  shifting by frequency  warping is more  accurate  than 
conventional  algorithms based on proportional  scaling of fundamental  frequency  and 
overtones. In  fact,  the warping  characteristics  can  be  ultimately  justified by means 
of a physical model of stiff strings  or  membranes [VS94, TEC971. It is quite  striking 
that  the Laguerre  characteristics  match  those of piano  tones for a large  range. 
Therefore one  obtains  accurate pitch-shifting and  the  inharmonicity law by pure 
frequency  warping.  Otherwise  one  should  resort to a combination of conventional 
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Figure 11.13 Block  diagram of inharmonic  sounds  pitch  shifter. 

pitch-shifting  and  warping.  The  block  diagram of a  pitch  shifter for inharmonic 
sounds  based  on  the  Laguerre  transform is shown in Fig. 11.13. Frequency  warping 
can  also  be  used in conjunction  with  proportional  pitch-shifting  algorithms to pitch- 
shift harmonic  signals.  These  techniques  usually yield a  rational  alteration of the 
pitch  and  one needs to improve their  resolution. Also, ratios  other  than simple 
ratios  with  small  integers in both  numerator  and  denominator  are costly from  a 
computational  point of view.  By  frequency  warping the proportionally  pitch-shifted 
signal  with a small  absolute value of the  warping  parameter one can  introduce  a 
small  incremental  pitch-shifting  operation, which,  when added  to  the  rational  pitch- 
shifting  operation, provides a pitch closer or equal to  the desired pitch. At the  same 
time,  the  inharmonicity  introduced is not  perceptually  relevant  due to  the small 
value of the  warping  parameter. 

11.3.2 Inharmonizer 

Among the new effects introduced by frequency  warping there is the inharmonizer. 
This effect  is obtained by frequency  warping an  original  harmonic  sound  with  a 
large  absolute value (-0.5) of the  parameter.  The  resulting  sound is enriched by 
inharmonic  partials,  maps of the original  harmonic  partials,  as  discussed in section 
11.2.2. Notice that  both  pitch  and  duration of the  original  sound  are  altered by 
warping. In fact,  frequency  warping  stretches or shrinks  the  width of the  peaks 
centered  on  the  partial frequencies. As a  result,  the  amplitude envelopes of the 
partials  are  altered. In the first approximation  they  are simply  time-scaled. In order 
to  restore  the  original  pitch  and  duration one  can  resort to resampling  techniques. 
At conventional  sampling  rates (20-44 kHz) the  fundamental frequency of a large 
class of sounds from natural  instruments falls into  the low frequency portion of 
the axis. In that region the warping  map is approximately  linear  with coefficients 
which are  the  derivative of the  map in W = 0. This is also the  amount by  which the 
duration of the signal is scaled.  This  makes  it possible to achieve  pitch and  duration 
rescaling by a single resampling  operation.  In  many cases the inharmonizer effect 
introduces  interesting  detuning of the higher partials,  transforming, for example,  a 
trumpet  sound  into a bell-like sound  or a guitar  sound  into  a piano-like sound. 
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The inharmonizer  can  also be used in physical model  synthesis, e.g., as a Karplus- 
Strong  post-processing block. or embedded in the delay line,  in  order to model 
inharmonicity  due to dispersive  propagation in stiff media. 

11.3.3 Comb Filtering+Warping  and  Extraction of 
Excitation Signals in Inharmonic Sounds 

As previously pointed out, by frequency  warping the original  piano  tone  with the 
inverse of the  fitted  Laguerre map, one  transforms  the originally  inharmonic partials 
into a set of harmonic  partials.  This  property  can  be  exploited  in  order to  extract 
the hammer noise from piano  sounds.  In  fact,  the  audible effect of the  hammer noise 
lies in areas of the frequency spectrum  that  are  not masked by the  partials, i.e., in 
between the partials. It is easy to build a  comb filter based on the harmonics of the 
transformed  piano  sound.  In  fact, given a  narrow-band lowpass filter with  frequency 
response H ( w ) ,  the frequency  response H ( w P ) ,  where P is the period of the signal 
expressed  in  number of samples is a comb  filter adjusted  to  the harmonics. This 
filter is obtained by inserting P - 1 zeros in  the filter coefficients. Likewise, if G(w) 
is a  high-pass  filter, the filter G(wP) will select all the frequency  bands that lie 
in between the harmonics. In order to obtain  the  piano  hammer noise it suffices 
to unwarp  the signal in order to regularize the  partials  into harmonics,  determine 
the  transformed  pitch, filter with G(wP) and  apply frequency  warping to re-obtain 
the  inharmonic  distribution. In the present  case it is  more convenient to prewarp 
the filters rather  than  the si.gnals. However, in a  more  general setting where the 
inharmonic  signal  component,s  are  analyzed by means of pitch-synchronous wavelets 
[Eva93, Eva941, which include  downsampling  operations, it  can  be shown that  it is 
more convenient to warp  the  signal  [EC97,  EC98a,  EC98bI. The block diagram of 
a tuned warped comb filter i:s shown in  Fig. 11.14. 

pitch 
detector  pitch 

8 4  

Figure 11.14 Block  diagram of tuned warped  comb structure for extracting partials or 
excitation noise from inharmonic  sounds. 
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11.3.4 Vibrato, Glissando,  Trill  and  Flatterzunge 

Vibrato  can  be  generated by means of time-varying  frequency  warping, by using an 
oscillating  sequence of parameters b with low amplitude  and frequency. For small 
values of the warping parameter,  the warping  curve only slightly  deviates from 
the linear map  and  the  harmonic  structure of the signal is essentially  preserved, 
while pitch-shifting is the only perceptually  relevant effect. This is especially true 
when the  parameter law is oscillatory so that  the harmonics  fluctuate  around  their 
original  frequency. This allows us to introduce  dynamic  pitch  fluctuations in natural 
or  synthetic  sounds, which can  be  directly  controlled by the warping parameter 
sequence  according to  equation (11.24). In  particular,  one  can use a sinusoidal LFO 
as a  control  parameter  generator to insert very natural  vibrato.  Both  the frequency 
and  amplitude of the oscillator  can  be  changed at will, i.e., to synchronize the effect 
to  the  amplitude envelope of the signal  or to include random  fluctuations. Trill and 
rapid  fluctuations of the pitch  can  be  obtained by means of a square wave LFO. By 
mixing  pitch-modulated  versions of the  sound  with  the original  signal  one  can obtain 
effects similar to  phasing, flanging and chorusing. By frequency  warping a flute 
sound  using random noise or  random  amplitude  square wave as  parameter sequences 
one  obtains  interesting effects typical of Flatterzunge. As another  example, glissando 
can  be  inserted by means of an increasing  or  decreasing  sequence of parameters. A 
general  structure  based on mixed independent  time-varying  warping  channels for 
computing the above effects is shown in Fig. 11.15. In much the  same way, one 
can  edit  sounds  containing  vibrato  or  any  pitch  modulation in order to reduce  or 
remove this effect. It suffices to  extract  the pitch  fluctuation law from the sound by 
means of a  pitch  detection  algorithm or by tracking the  partials in the  spectrogram 
of the sound.  From  this law one  can  obtain  the law of variation of the  parameter b 
and by applying  the  time-varying frequency  warping  algorithm  with a reversed sign 
sequence of parameters, one  can  counteract  the  pitch  modulation effect [ECOO]. 

11.3.5 Morphing 

Accurate  spectral  morphing requires arbitrary  maps of the frequency  axis in order 
to  transform  the  partials of one  sound  into  the  partials of another  sound.  The FFT 
warping  algorithm  illustrated in section 11.2.3 can  be employed with  simplicity to 
perform this  task. However, since invertibility is not an issue, versions of the La- 
guerre  transform  based  on higher  order  allpass  filters  can  be employed as well. In 
order to determine the  suitable warping map  one  can use a  peak-picking  algorithm 
in the frequency  domain to detect  the  partials of both  the original and desired 
sound. Simple  morphing  examples  can  be  computed using the  structure shown in 
Fig. 11.16. A set of points on an initial-final  frequency  plane is determined, which 
can  be  interpolated to produce  a  smooth warping  curve. As an example  one  can elim- 
inate  the even harmonics in a voiced sound by mapping  these  into  odd  harmonics. 
Realistic  morphing  also  requires  amplitude  scaling of the partials.  This corresponds 
to a simple  filtering operation  on  the signal.  Morphing  can  also  be  performed as a 
dynamic  operation by means of time-varying  frequency  warping using a  sequence 
of maps. 
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Figure 11.15 Block  diagram for computing vibrato, trill, chorus-like,  phasing-like or 
flange-like  effects. For Flatterzunge we add random  noise to  the LFOs. For glissando the 
LFOs are replaced  by  envelope  generators. 
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Figure 11.16 Simple  diagram for computing  morphing  via  frequency  warping. 
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11.4 Conclusion 

In  this  chapter we introduced a class of digital  audio effects based on frequency 
warping  techniques of recent  interest  in  musical  applications. The deformation of 
the frequency  axis,  whether static or  dynamic,  introduces a new point of view and 
new tools for processing  sounds. This  transformation allows us to insert  or  edit 
vibrato,  trill,  Flatterzunge  and glissando, adding controlled  expression to  static 
sounds.  Harmonic  sounds  can  be  mapped  into  inharmonic  sounds,  introducing fine 
partial  detuning  to color them. Frequency  warping  also  provides  a  concerned  or 
model-based method for pitch-shifting  inherently  inharmonic  sounds  such as piano 
and  drums  sounds. Mixing  independent  time-varying  warping  channels achieves 
interesting  generalizations of flanging,  chorusing and  phasing effects. An  efficient 
algorithm  based  on the  short-time Laguerre  transform  makes  frequency  warping 
computable  in  real-time. Since frequency  warping is at present  fairly  unexploited  in 
musical  contexts we encourage  musicians and  sound engineers to experiment  with 
this  appealing  technique. 
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Chapter 12 

Control of Digital  Audio 
Effects 

T. Todoroff 

12.1 Introduction 

The control of parameters of sound  processing  algorithms is an  important issue, 
which cannot  be overlooked. However cleverly programmed, an algorithm in itself 
has  rarely been a useful tool in the  hands of a musician, a sound engineer or  a 
composer ... unless he also  happens to be  a  computer  programmer  and  has  the 
ability to design his own control  strategies. 

Control, in the  broad meaning of the word,  encompasses  every possible method 
available to  the user for accessing the various parameters of a digital  audio effect. It 
embraces  all traditional  computer user interfaces, from command-line  instructions 
typed  on a  computer  keyboard to complex window-based GUIs  (Graphical User 
Interface)  controlled  with the mouse.  Control  also includes specially designed mu- 
sical interfaces,  mainly  MIDI  (Musical Instrument Digital Instrument) triggering 
devices mimicking various  aspects of traditional  instruments  and widely commer- 
cialized by the music industry: organ-like or piano-like keyboards, drum  pads,  string 
and wind instrument  controllers, as well as common studio controllers like rotary 
potentiometers,  faders  and  push-buttons.  And if all this does  not give enough pos- 
sibilities, there is a whole range of more  or less experimental devices that have been 
designed to fulfill more specific needs. They include the  radio  baton, electromag- 
netic  and  ultrasound  localization  systems, power gloves, complete  virtual  reality 
environments, video image  analysis  systems and  just  about every possible sensor. 

Features  extracted from a sound  may  also  be used to control  parameters. The two 
most commonly found  feature  extractors, envelope and pitch followers, were already 
widely used in older  analogue  equipment like modular  synthesizers,  vocoders or gui- 
tar controllers. But  partial tracking,  spectral envelope tracking,  centroid  tracking, 
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voiced/unvoiced and silence/sound  detection  can  also prove very useful. Often the 
feature  extractors  are so deeply  integrated  into  some  audio effects that they  cannot 
be  separated. Consider  some of the effects described in the previous  chapters: non- 
linear  dynamics  processors,  vocoders,  pitch-synchronous  processes,  hybridization, 
etc. 

Finally,  one  can design control  algorithms whose only task is to send  parameter 
values to  the sound  processing  algorithm.  Stochastic  functions, cellular automata, 
genetic  algorithms,  physical models or  any time-varying  function  might  be used. In 
this case, the control  algorithm  in turn  has  to  be controlled by the user.  This opens 
up  an endless list of potentially  interesting  combinations. 

But, first, we will have a look at  the general  context which guides  all  control 
approaches  and discuss the  important  mapping issues. They  address  the search  for 
intuitive  and effective ways to  translate user intentions  into  parameter values needed 
for sound  processing  algorithms.  Control is such a broad  topic that we have to limit 
the scope of this  chapter  and  try  to give a brief overview. We  will therefore put  an 
emphasis  on  real-time  systems  and on gestural  control. 

12.2 General  Control  Issues 

Control is not only about technology, there is a strong  human side involved. Control 
of our  actions in daily life relies on  many  concurrent processes where feedback 
loops  play an  important  part. We use the many  signals coming from the body 
to  continuously adjust  the way we control  our muscles. One  cannot  speak  properly 
without  hearing one’s voice, hence the  great difficulties deaf people face when trying 
to learn how to speak. We use sensory  information that gives us  hints  about position 
of jaw,  tongue, lips,  etc. But  it is interesting to note that most training  strategies 
developed for deaf people  make use of visual feedback to compensate for the missing 
sense,  showing the  importance of feedback and  demonstrating  at  the  same  time  that 
one  can  learn to implement alternative feedback mechanisms. The  learning process 
plays  a  leading role as we can  gradually use our  past experiences to predict the 
effects signals  sent to  the muscles will have.  And as more  basic feedback patterns 
become  subconscious (we almost never think consciously about how we articulate 
when talking in our  native  language nor about how we are walking), we can  devote 
more  attention to controlling the  subtle  variations. We have to keep this in mind 
when  designing  control  interfaces for Digital Audio Effects. Figure 12.1 shows a 
simplified view of the various feedback mechanisms  applied to playing a computer 
instrument. 

With such  complex processes taking place, it is little wonder that we accept  as 
normal the fact that  traditional performers  learn  their instruments for many  years 
before performing  in  front of an audience.  On the  other  hand,  strangely  enough, 
we expect  computer interfaces to give us access to  the full expressive power of an 
instrument  after only a few hours  or  days of training.  Understanding  this discrep- 
ancy, we should  accept  some trade-off and choose between implementing  either an 
easy-to-play instrument  or a more difficult one,  where training will be  rewarded by 
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Figure 12.1 Schematic  control  feedback loop. 

wider expressive capabilities. The  best choice depends on the  context. While it is 
normal for a performer to  practise his instrument before a  concert,  one  should  not 
expect  a  visitor of an interactive  sound  installation to  train for several  days before 
being allowed in. 

Therefore, the most important  thing  to keep in mind when designing a user in- 
terface for a specific audio effect  is to  think  about  the  end user. It may  sound  trivial 
but,  as  it facilitates  their  only link with the underlying  algorithm, the chosen inter- 
face should  not only implement an effective way of controlling the  sound processing, 
but should  also focus on understanding  and fulfilling the needs of the intended  user. 
This  means evaluating his acquired knowledge and  practice  and building on it. It is 
therefore  easier to design art interface when emulating an acoustical  instrument or 
an existing  analog effect than when devising  a  totally new one. The large  number of 
digital  audio products sold in hardware boxes which feature  almost  identical  control 
buttons  as  their  analog  ancestors  illustrates  this. 

As a consequence, different control  strategies  should  be  applied to  the same 
sound-processing  algorithm [Tod95] depending  on  whether it will be used by a 
sound  engineer for a  post-production  task, a musician during a live performance,  a 
composer in his studio, a  dancer on stage or an audience  visiting a sound  installation. 

12.3 Mapping Issues 

Mapping is a way to transform  one  representation  into  another. If  we look again at 
Fig. 12.1, we see two  categories of mapping: 
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0 Input  mapping  translates user’s  actions  into  parameter values needed to drive 
the sound  processing  algorithms. This is the  most commonly  accepted  meaning 
of the word “mapping”. 

0 Output  mapping does the reverse,  representing the algorithms  parameters 
in  a way that makes  sense to  the user. This  aspect of mapping is obviously 
most  often  related to visual feedback, but  it could also  be used to give a 
tactile  or  haptic feedback. For instance,  the resistance of a  gestural  interface 
could  increase  proportionally to one parameter.  This can  be  compared to what 
happens when a musician pulls the  string of an  instrument:  the  further he pulls 
it away from the body of the  instrument,  the higher the resistance to pulling 
it  further increases. 

Therefore,  some  forms of mapping  are needed whatever  type of control is used (GUI, 
gestural  controllers,  feature  extraction or  algorithmic  control). The more it  takes 
perceptive  aspects  into  account,  the  better  it will  fulfill its role in making the control 
loops work intuitively  and effectively. 

In  the case of traditional  instruments,  it seems that  the mapping  between ges- 
tural  parameters  and  sound  parameters is usually  direct and simple: the position 
of the finger on the piano  directly  maps to  the frequency of the note played as  the 
velocity of the finger hitting  the key maps to  the loudness. 

The number of parameters a  performer is able to control  simultaneously is lim- 
ited.  Therefore  instruments, like the  piano, which offer a  large  polyphony, do  not 
allow as much control of note envelope parameters  as monophonic instruments do. 
Some instruments, like a violin, offer both polyphony and a high degree of contin- 
uous  control.  But  the  latter is not fully used when played in  a  polyphonic manner. 

Mapping  consists of projecting a N-dimensional  space of control parameters 
onto  the  M-dimensional  space of the algorithm’s  variables, where N is generally 
larger than M .  Even  though  mapping is not only linked with  real-time  processing 
nor  with  the use of gestural  controllers,  it is obvious that  it has  the most acute 
implications in that  context.  What  parameter change  should be associated  with  a 
given gestural  input?  What kind of gestural  interface is best  suited to control  a 
given algorithm?  There is no  immediate  answer to these  questions. It depends on 
the user’s  experiences and preferences and  on his artistic vision, as  mapping usually 
integrates implicit  or  explicit  rules that define relationships between parameters. We 
will nevertheless review two important  aspects of mapping:  assignation and scaling. 

12.3.1 Assignation 

One  can  split  the various ways of assigning the space of control  parameters to  the 
space of the  algorithms variables into four categories: 

One-to-one  assignation: an example is the  tuning of a  filter, where a  frequency 
control  is  used to  modify the center  frequency of a  filter.  Another is the posi- 
tional  mapping of the  note on a  synthesizer  keyboard. 
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0 One-to-M  assignation: an instance of this is the case when a  MIDI velocity 
message from  a  keyboard (giving information  about how fast  a  keyboard key 
was depressed) is used to control  the volume of a  sound,  its brightness (for 
instance  modifying the cut-off frequency of a lowpass filter),  its  attack  time, 
etc. An interesting  example is the  constraint-based  spatialization  approach 
[PD98], where changing the position of an instrument in space  also moves 
several others depending  on previously defined constraints. 

0 N-to-one  assignation:  Still using an example involving a keyboard  control,  a 
filter cutting frequency  might  be  controlled both by the velocity value, for 
individual  notes, and by a  control wheel to increase  or  decrease the overall 
brightness.  Additionally, it could also be controlled by a foot  pedal  or by a 
breath controller. 

0 N-to- M  assignation: We  will give the GUI  example of the SYTER interpo- 
lation  screen in Fig.  12.3, where 2-D mouse movements are used to control 16 
parameters. 

12.3.2 Scaling 

Once we have assigned a. control  input to  an algorithm  parameter, we still  have to 
decide if and how we will scale the value given by that  input  to control effectively 
the chosen parameter.  The sound processing algorithms  usually use internal vari- 
ables  ranging from -1  to 1. This was the  rule  with DSP (Digital Signal Processors) 
chips which use a fixed-point number  representation.  This is  now changing  with 
the availability of cheap andl powerful floating-point DSPs and with an increasing 
number of programs  running on the  main computer’s  microprocessor. However, this 
does  not  change the fact tha,t a  “gain” value used by the  algorithm relies on an in- 
ternal linear  representation  ranging from 0 to  the  maximum. As the user perceives 
it according to a  logarithmic  scale,  expressed in dB, a  scaling  (in  fact a one-to-one 
mapping)  must  be  applied to transform  the values entered by the user in dB to 
the linear  representation needed by the  algorithm.  The reverse is also true: when 
displaying an internal volume on a level meter that makes sense to  the user, the 
internal  linear value must  be  transformed  into a logarithmic value. We can  express 
this by y = F ( p )  or p = F p l ( y ) ,  where p is a  perceptive value in dB or in Hz and y 
is the  internal value in the  range -1 < y < 1. Depending  on the  type of paramet,er 
one  needs to control, F ( p )  and F-‘(y) can take different forms.  Sometimes an offset 
b and a  gain  factor a are useful according to y = .(p + b) and  the inverse operation 
p =  g - b b .  

Logarithmic scaling. Perception usually follows what is known as Steven’s 
law: we are more  sensitive to relative  changes, 9, than  to absolute  changes of 
the internal values. Changing  the  attack  time of a  sound from 100 to 200 ms is 
very noticeable,  but  changing it from 10000 ms to 10100 ms will not be heard.  The 
absolute  change is 100 ms in both cases, but  there is a 100 percent  increase in the 
first  one and only a 1 percent  increase in the second one.  In  assigning  a  linear scaling 
to a MIDI fader, which offers only 128  steps  from 0 to 127, to  an  attack  time  that 
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you want to  go up  to  one  minute,  the  minimum  time  increment is - ms= 472 
ms. This does  not give enough precision in the lower end  and wastes precious steps 
in the  upper  end. Using a logarithmic  scale,  one achieves the  same relative precision 
all the way through  the  run of the  fader.  This may  be  expressed by the formula 
y = a b 9  and  the inverse  operation by plog, E - c. We  know for instance that 
the  perception of pitch follows such  a  scale,  with the frequency  doubling for each 
octave  made  out of 12 half tones. If  we then want to  map incoming  MIDI  notes to 
frequencies, knowing that note  number 69 corresponds to a A at 440 Hz, we could 
use the following values: a = 440, b = 2, c = -69 and d = 12. If  we want to  map a 
MIDI  potentiometer to a  gain  with 1 dB  steps, where  MIDI value 127  corresponds 
to 0 dB  and tjo the  internal value of 1, we could use a = 1, b = 10, c = -127 and 
d = 20. The complementary  equation  can  be used to drive a level meter from the 
internal  linear volume value. 

Approximations. The computations of log and  exp  functions might  be too 
computer  intensive  when the processing is done on fixed point DSPs. Curves  might 
be  calculated  out of real time, when ranges of the  parameters  are  entered by the  user, 
and  put  into  tables.  Those  tables  are  then  read in real time, eventually  computing 
the missing  points  with  simple  linear  interpolation.  Another  solution, used in TC 
Elect,ronic effect units [Nie99], is to let the host  processor  compute off-line the 
coefficients of a third  order polynomial (y = ax3 + bx2 + cx + d) t,hat  best fits the 
desired  scaling. The  DSP  can  then effectively perform the polynomial  calculation 
in  real-time.  When  there is no  previous knowledge about  what kind of law applies 
best, one  may  always  provide a system like a table,  with  the  input value on  the 2 
axis and  the  output value on  the y axis. The user then  draws  the most appropriate 
curve by trial  and  error. 

12.4 GUI Design and  Control  Strategies 

12.4.1 General GUI Issues 

One  could  say that every strategy  that proves useful for a particular user in a specific 
context is valid in that special  case. But it is important  to remember several general 
issues that have proven to play an  important role in any GUI design [MeiSl, pp. 57- 
621 : 

0 Visibility: it allows the user to see what  he  can  do  with a given tool. 

0 Transparency: the user  does  not see what  has been intentionally  hidden from 
him (what  the  computer  system is really doing),  but he is given a way to 
visualize the  task being  performed  according to  the mental  image he has  built 
UP. 

0 Foresee ability:  the  system performs the  task  that  the user naively expects  it to 
do, building up on his previous knowledge, often  with the help of metaphors, 
like a piano  keyboard  or a fader. 
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0 Consistency: the interface is foreseeable in every context  within  the  program 
and from  one  application to  another. 

0 Integrity:  the interface  protects the precious data even if the user makes a 
mistake; there should be a way to cancel or  undo  certain  actions. 

0 Concision: it is a very important element, both  at  the control level (short-cuts, 
pop-up  menus,  default values, etc.)  and at  the screen layout level (especially 
the useful information). 

Screen appearance:  the screens  have to look good,  be clear and well ordered; 
brightness,  color,  textures, flickering should be used mostly for their  meaning 
than only for aesthetic  reasons. 

Adaptability:  the user may,  without  the need to program, configure the  inter- 
face to  suit his needs and his level of knowledge. 

0 Guiding: every user sometimes  needs  answers to certain  questions  such as 
“how can I quit  this  program?”; if the interface is not  self-explanatory, an 
on-line manual or contextual  help  may  be useful. 

12.4.2 A Small Case Study 

Let  us  imagine that a  sound  engineer,  familiar  with  analog  compressors, is presented 
with a neat GUI comprising five potentiometers  clearly  labeled  gain,  threshold, 
ratio,  attack  and release (see Fig.  12.2). He may move the  potentiometers  with  the 
mouse and values indicated  are given in the  proper  units  (dB,  dB, -, ms, ms). It is 
obvious that most of the issues raised before are answered: visibility, transparency, 
foresee ability, concision and screen  appearance.  Integrity is not really an issue 
here,  though  one may add ways to name  and save parameter configurations for 
later recall. Consistency  within the  application is already  evident,  but if a noise 
gate  or  an  expander or a bunch of other  audio effects are proposed  with the  same 
type of interface and self-explanatory  names,  consistency between applications will 
also be met.  The screen appearance in Fig.  12.2 is very clear and,  as  an  additional 
help, the transfer  function is also shown graphically.’ A  certain level of adaptability 
is achieved by allowing the user to modify the knee type  and  to  activate a  side-chain. 
If the  potentiometers  cannot  be moved during the  computation of the sound result, 
a score function that enables the user to define the evolution of the  parameter’s 
values over time before computation would be a welcome addition. 

Another  important category of visual  interfaces relies on a  representation where 
time is mapped to  the II: axis and frequency to  the y axis. The first of this  kind, 
with a discrete  frequency  axis, was the  UPIC [Loh86]. It used the time-frequency 
representation only as a  control  interface to literally  “draw” a composition. Closer 
to t,he  sonogram,  AudioSculpt is a  program where several  tools allow the user to 
modify a graphical  representation of the signal over time,  obtained by FFT analysis, 

lhttp://wwW.digidesign.com 
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Figure 12.2 Plug-in compressor  for a screen-based  mixing  program. 

before  proceeding to  the inverse FFT  and  to synthesize the transformed  sound. Some 
important issues about  that category of interfaces  are  discussed in [Arf99]. 

12.4.3 Specific Real-time Control Issues 

If the sound is computed  in  real  time, the ease of use of this  audio effect  will be 
improved as the user will be  able to fine-tune  parameter values while hearing  the 
resulting  sound  change  accordingly. He  will be  given  one of the feedback  channels 
described  in  section 12.2. 

Modern  MIDI  sequencers  and  Direct-to-Disk  recording  programs2  running on 
multiple  platforms,  are  good  examples of the  implementation of these  principle  and 
third  party plug-ins  often following most of the same  rules.  These  environments  also 
allow the user to customize  his  virtual  studio  without  too much hassle. But even 
then  something  important is missing:  in the real world the user  could  have  twisted 
two of those  potentiometers  simultaneously  or  jumped  from  one to  the  other almost 
instantaneously,  using  his  kinesthetic knowledge of their  position.  This is one of the 
big differences between a musical instrument  and a screen-based  GUI.  One  writes 
with  one  hand,  but  one  usually  plays music  with both  hands,  often quickly  changing 
hand  positions.  Standard  computer  interfaces only  acknowledge the use of two hands 
to enter  text  on a typewriter-styled  keyboard. We see that, even though  translating 
the  studio  metaphor  to  the  GUI makes a digital  audio effect easy to  understand 
and  to  operate,  it  does  not  translate  the  playing modes. 

Simultaneous  access to all  parameters  with  the  help of MIDI  faders would restore 

'http://www.digidesign.corn. http://www.ernagic.de, http://vvv.steinberg.net 
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the highly praised studio  habits  and allow the user to make  faster  adjustments. Also, 
adding  automation would expand  the possibilities of the  digital  audio effect beyond 
those of its  analog  counterpart.  This example shows that new issues have to be 
addressed on top of the general  computer  interface issues, because the way an effect 
sounds  depends heavily on  the control given to  the user. Different ways to access the 
parameters lead the user into different paths  and experience has shown that even 
minor  changes to  the user interface  can  dramatically  raise  or lower the creative use 
of a  digital  audio effect. 

One  should  also  point 0u.t that  it is not always a good idea to stick to  the  studio 
metaphor,  as  an overly conservative  approach  might  unnecessarily  limit the power 
of an algorithm. As an example of this, we have seen many  composers starting  to use 
a band-pass filter plug-in3 only when a 2-D control window allows them  to change 
both  the center  frequency and  the  bandwidth in one single gesture, by moving the 
cursor  with the mouse along the z and y axis. It suddenly  became  more than  just 
a  filter though  the underlying  algorithm  had  not changed at  all. 

12.4.4 GUI Mapping Issues 

This  latter example  introduces the  important notion of mapping that is discussed in 
section 12.3. Mapping usually consists in projecting  a  space of control  parameters 
into  the  space of the  algorithm's variables. Unlike the  bandpass filter example given 
above,  those two spaces have often different dimensions. An interesting  graphical 
solution was proposed in l984 by Daniel  Teruggi (SYTER SYstkme TEmps Rhel, 
[A1184,  A1185, Dut91, Ges98, Ter91, Ter94, Ter981) which was a very user-friendly 
real-time  digital  signal  processing  workstation  built  on  their previous experience 
[AM81]. The  INTERPOL window (see Fig.  12.3) allowed the user to size and po- 
sition  numbered circles in a. 2-D plane.  Each circle was assigned a  set of up  to 16 
parameters controlling the ongoing sound processing. Whenever the user clicked in- 
side  one of those circles, the corresponding  set of parameters was instantly recalled 
and  they could  be used as presets. But  it was also  a metaphor for a  gravitational 
system, where larger  objects have a further  ranging influence. By moving the cur- 
sor  along the screen,  one was able to continuously interpolate between the select'ed 
parameters of the presets.  When  reaching an interesting  sounding  point,  the user 
could also  create  a new circle with that very set of parameters, changing the whole 
distribution of values across the 2-D plane at  the same  time. It is a powerful empir- 
ical way to define, by trial  and  error,  the  domain of a digital  audio effect one wishes 
to explore. 

These  ideas have been further developed for 3-D space  [TTL97, TT981 on  the 
NeXT-ISPW  (IRCAM Signal Processing  Workstation).  Figure  12.4 shows several 
spheres  associated to  sets of parameters. Additionally, the user could record tra- 
jectories in the space  and recall them  on  the fly. They could be  scaled, played 
at  various  speeds and reversed. As the  same interface was designed to spatialize 
sounds,  it became an interesting  tool to experiment  with  spatio-timbral  correla- 

'http://www.ina.fr/grm/ 
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tions.  These  examples show some  form of adaptability of the interface: the control 
space is defined by the user. 

m . 1  lwLES ECTLRE CRITURE I M f R p a  REBI.2 
1 5 9 1  

Figure 12.3 "Interpol"  control  screen of SYTER. 

Figure 12.4 3-D interpolation  control  screen. 
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12.4.5 GUI Programming  Languages 

Going  one step  further  in  adaptability, we find the graphical  programming  envi- 
ronment.  They  are  usually  based  on the modular  analogue  synthesizer or on the 
studio  metaphor.  A  library of modules  may  be  combined to create complex  patches 
including  both  control  paths  (usually  asynchronous,  depending  on  the user  actions) 
and  audio  paths  (usually at the sampling  frequency or downsampled by an integer 
factor).  The  oldest  program of this  kind is MAXTM,  originally  developed by Miller 
Puckette at IRCAM.  Signal  processing  modules were added  later  [Pucgla,  PucSlb]. 
Several  offsprings [Zic97] have followed  QMAX, PD  and  MAX/MSP),  running on 
several  computer  platforms.  Figure 12.5 shows a simple  patch  performing  additive 
synthesis  with 4 sine  oscillators.  One  can see the signal  processing  modules,  ending 
with a "-", the number  boxes for entering  values,  toggle  buttons, a preset  box  and a 
virtual oscilloscope.  Tables,  sliders,  multisliders,  meters,  drawing windows and en- 
velope editors  are  also  available,  as well as many data control  and  signal  processing 
modules. 

This  kind of environment  takes much more  time to master,  but  the user has 
complete  freedom  in  designing the audio effects and  controls he  wants.  It is also 
an  open  environment  where  one  can  program new modules in C. This  has led to a 
large offer of third  party  modules  performing many  different  functions: data control, 
signal  processing,  visualization  and  drivers for various  hardware. 

Fnp. P l a r  Amp. Fnp. P l a r  h p ,  Fnp. Pbrsc h p .  Fnp. Pbrse Amp. 
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Figure 12.5 A simple patch. 
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12.5 Algorithmic  Control 

12.5.1 Abstract Models 

Many different abstract models have been  proposed for sound  synthesis  (generating 
and  distorting  sound waveforms) and control. We  will only look at  the  later ones. 
The goal is generally to control  a  multitude of sound  events globally. Xenakis used 
stochastic  models  early  on in [Xen92, m-Xen951 to evoke sound  environments that 
marked  his  youth.  Applications of the  same  strategies have been used by many 
authors  to control  granular  synthesis, where a  multiple of independent  grains have 
to  be  generated.  A  refinement is the use of tendency  masks that describe  a  time 
evolution of minimum  and  maximum values that constrain  the  stochastic  output. 
Cellular Automata [Bey891 have been used to  control the  same  algorithms in an 
attempt  to recreate an organic  evolution over time.  Genetic  Algorithms  are less 
straightforward in that  the  time evolution is not  obvious, but  they seem to be good 
candidates  to  control  the  morphing between two different states. Any mathematical 
model  could in fact  be used and  the serial  approach used by the school of Vienna 
composers  may be considered  one of them.  The only question  should be whether 
they  control  the  sound processing  algorithm in an interesting way. 

12.5.2  Physical  Models 

One way to  answer the concerns about  the  auditory  perception of those  underlying 
models is to use archetypical  ones.  There is a good chance that, if they  are based 
on well-known energy  distribution schemes,  they will be  heard  as  such. Some ap- 
proaches use models of bouncing  balls, fortune wheels, etc.  to  generate  streams of 
MIDI  events to control  synthesizers and  samplers. Cordis  Anima  [CLF93] is a pro- 
gram which allows physical  models of sound  generators to be  controlled by physical 
models  represented by mass,  spring  and  damping elements.  These  may in turn be 
controlled by force feedback interfaces [CLFSO]. One  can  actually  consider that some 
uses of stochastic  functions fall into  this  category  and so do  pendulum,  bouncing, 
rotation,  acceleration-deceleration, aggregation-dispersion,  etc. 

12.6 Control  Based on Sound  Features 
The sound  in itself can  be used to control  digital  audio effects. But before using 
it for that purpose,  one  has to  extract  the desired  information from its complex 
structure.  These  extraction  methods should  not only rely on the measure of physical 
parameters.  They  must also take perception  theories into  account [Tro99]. If  we go . 
back to Fig.  12.1, we see that some  kind of pre-processing is already  done by the 
ear, followed by complex  recognition processes performed by the  brain. As much as 
scaling is important for visualizing  internal parameters of algorithms,  sound data 
representation  has to be  based  on  the concept of Just Noticeable Differences (JNDs). 
Models of hearing  have  been  established  and  they  can  help us extract  features which 
have a perceptual  meaning. 
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12.6.1 Feature  Extraction 

Many  feature  extraction  algorithms have been discussed in  the previous  chapters. 
The most common ones in practical use are: 

0 Pitch tracking: allows the  computation of the  fundamental frequency of a 
monophonic  sound input.  The first  methods were developed for speech pro- 
cessing [RS78]. The voice  is a particularly difficult signal, as  the pitch  might 
show rapid  and  constant changes  [Puc95]. On  top of that,  the onset of a  note 
can have an  instantaneous  pitch several half-tones away from the  note  on 
which it stabilizes. Then  there is the problem of vibrato.  Other  instruments 
like piano,  flute  or  clarinet  are  easier to follow, as  the first  harmonic is present 
and one  can rely on a tempered scale. Some systems  are  able to perform poly- 
phonic  pitch  extraction  in  certain  contexts [PAZ98], but  the problem is far 
from being solved for all situations, specially when it  has  to work in real  time. 
Because of the difficulties of recognizing chords  after  identifying  individual 
notes,  certain  researchers choose pattern  matching techniques  on a semi-tone 
intensity  map derived from spectrum analysis,  with  a database of chord-type 
templates [Fuj99]. 

0 Amplitude  tracking:  also called envelope follower, is a program that  extracts 
the power of an audio  signal,  usually  computing  its  rms value. Extra  param- 
eters allow adjustment of raise  and fall times.  This  information may  be used 
to trigger  sound effects on  and off by defining absolute  or  relative  thresholds. 

0 Centroid  tracking: this  information gives the evolution of the  gravity  center 
of the  spectrum  obtained from the FFT analysis (see section  9.4.2). The FFT 
is computed for each frame of about 50 ms  duration, with a Hanning window 
and  with a 50% overlap. For the typical  sampling rate of 44100 Hz  we choose 
N = 2048. The frame  duration is hence 46 ms  and  the hop size is 1024 samples 
or 23 ms. 

0 Voice/silence and voiced/unvoiced tracking: are  features originally used in 
vocoders to switch the  carrier on or off and  to decide  whether to use the  inter- 
nal  glottal pulse generator  or the noise generator for consonants.  The  latter 
often has a  Boolean output,  but  there may also  be  some  kind of percentage 
of noisiness for voiced consonants.  Detection  usually  consists of counting the 
number of zero-crossings of the audio  signal in various  frequency  bands. 

0 Partial tracking: each of the  partials  (not necessarily harmonic) of an audio 
signal is extracted, generally by FFT-based  methods. 

0 Rhythm tracking:  a less common, but musically useful feature is the  rhyth- 
mical structure  and  tempo. Tracking it is a complex task, often  requiring the 
use of artificial intelligence techniques. 
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12.6.2 Examples of Controlling Digital Audio Effects 

Several  examples  have  been  shown in the previous chapters, where  features  extracted 
from  a  sound  control the processing of the  same  sound:  dynamic processing, denois- 
ing,  etc.  But  one  can define many different processing  tools  from the same basic 
building blocks. For  instance,  a voice/silence detector  can  control a time  stretching 
program  in  order to  avoid time  stretching of silence parts [TruSO]. 

Another  category of control involves the use of features  extracted from one  sound 
to control  another  one.  Modulation, vocoding or  more generally  cross-synthesis 
and  hybridization have  been  described in previous  chapters.  In  a  concert,  par- 
tials  extracted  from  groups of instruments  can  be classified according to perception 
theories,  individually modified and resynthesized or used to control other sounds 
[m-Fin95,  TSS82, TDF951. 

In  the  same  spirit,  tracked  parameters may  also  be used to control music in 
interactive  dance  performances.  Figure  12.6 shows how a MSP  module called “rms-” 
generates an  output signal  from the RMS value of an incoming  audio  signal, using 
minimum and  maximum values as well as low and high thresholds  with  associated 
slopes  (performing a combination of a  downwards  expander  and  a  compressor in 
this  example).  With  associated  time-parameters such as attack, decay and  hold, 
the  module will react  on specific energy levels and  articulations. The right part 
of the same  picture shows a schematic view of four  such  modules, each with its 
own set of parameters, processing the  sound from a single contact  microphone. 
This kind of setting was used in the dance  performance  “In Between” [m-NoiOO] to 
control the playback volumes of several  sound files and  the volume of the  sounds 
picked up by the microphone  itself.  Adding effects and  spatialization over a  group 
of 8 loudspeakers,  the  dancer can  control  a complex sound  environment simply by 
touching a dedicated  surface. 

Another  important use of feature  extraction is score following [PL92,  Puc95, 
PAZ981, where the  computer  tries to follow the performer, only by “listening” to  the 
sound  he  produces. It is done  by  ma.tching the  pxtracted pitches  with a previously 
entered  score.  This frees the performer  from  having to follow the computer and 
allows him an increased level of expressivity. 

12.7 Gestural  Interfaces 

Gestural interfaces  complement  all the  other control methods  already described in 
this  chapter. We pointed  out earlier that even with an ideal GUI,  something is 
missing when it comes down to transforming a digital  audio effect into a  playable 
instrument.  The various  gestural  interfaces  available  today  bridge  this  gap. The idea 
of an  instrument  has considerably evolved since the times where only  acoustical 
ones  existed.  One  does  not have to excite  a  vibrating  body  anymore in order to 
make  sound,  but  the  kinesthetic  and  haptic  aspects  remain  important. A very large 
variety of interfaces  [Par97, Wan971 have  been built. Several authors have made 
classifications of categories of gestures [CLFSO, Mu1981. Cadoz  divides them  into 
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Figure 12.6 rms- detection module  with its transfer function and a schematic  example 
for an interactive dance  performance. 

excitation,  modulation  and  selecting  gestures.  Often  the  question  arises of which  is 
the best  transducer for a specific musical function [WVIROO]. 

We  will divide  gestural  controllers  into  four  main  categories:  gestural  interfaces 
played by touching  or  holding the  instrument, interfaces  with haptic feedback, in- 
terfaces worn on  the  body  and interfaces that may  be played without  any physical 
contact.  First, we will have a look at  the importance of the advent of MIDI. 

12.7.1 MIDI Standard 

The MIDI standard specifies both  the  hardware interface and  the  data transmis- 
sion protocol. The hardware  MIDI  serial  interface  operates at 31.25 kbauds,  asyn- 
chronous,  with a start  bit, 8 data  bits  and a stop  bit.  The interface uses a 5 mA cur- 
rent  loop  with  optoelectronic  detectors at the receiver end to  avoid risks of ground 
loops. The protocol is a definition of status bytes, defining the  action,  that may be 
followed  by one or more data bytes, defining the values for that action [MIDI]. The 
very existence of such  a standard MIDI  interface has  done a lot for the proliferation 
of gestural  interfaces, as any of them may easily be  connected to almost every digital 
audio device or  program. The range of commercially available MIDI  controllers is 
still  expanding.  Keyboards,  guitar  controllers,  breath  controllers, percussion mod- 
ules, drum  kits  and fader boxes have been joined by more exotic  controllers from 
big manufacturers, like the Roland  D-BeamTM  infrared  system, or  the  Korg Kaoss 
PadTM  tactile 2-D surface, showing a growing need for continuous  controllers. More 
specific controllers like the  Matthews  Radio  baton,  the EMS  SoundBeam or  the 



480 12 Control of Digital Audio Effects 

Theremin [SmiOO] can  be  bought  in MIDIfied versions. 
NoTAM MIDIconverter,  STEIM  SensorLabTM, Infusion  Systems  I-CubeTM  or 

IRCAM AtoMIC" are some of those  more  universal  systems that  translate  data 
from a whole range of sensor  systems to  MIDI, allowing artists to customize  their 
interfaces. They  are perfect for people who make  interactive  performances  or  sound 
installations as they  accept a  large  range of sensors and  can  be used without a 
lot of technical knowledge. Using some  cheap and easily available  microprocessor 
development  tools, every sensor may be  transformed  into  a  MIDI  controller  and 
there  are  many possibilities:  pressure, flexion, position,  speed,  acceleration,  and 
conductivity  sensors, hall-effect, magnetic,  electrostatic  and  capacitive  detectors, 
light cells, anemometers,  etc. 

The vast majority of gestural controllers have adopted  the MIDI standard. Most 
of the computer-based  interfaces  are  able to exchange data with  other  MIDI pro- 
grams, being thereby  able to send out MIDI  information when equipped  with the 
right  hardware  and software. 

12.7.2 Playing by  Touching  and Holding the Instrument 

Keyboards 

The piano-like keyboard  has  without  doubts been the most used controller in the 
history of electronic instruments  and  digital synthesizers.  Many  MIDI status bytes 
messages  have  been  devoted to  the needs of keyboard players: besides  triggering 
notes  (Note  On/Note  Off),  keyboards usually  send  information about  the speed at  
which a key has been  depressed  (Note On Velocity), and often  information  about  the 
speed a t  which it  has  been released (Note Off Velocity).  Information is sometimes 
sent  about  the pressure the player exerts  after  the  note  has been  depressed,  either 
globally  (Aftertouch)  or  independently for each key (Polyphonic  Aftertouch).  A 
wheel is usually  available for controlling the frequency (PitchBend)  and  another 
for the control of vibrato or  tremolo  (Modulation,  part of a list of 127 available 
Continuous  Controllers). 

Besides traditional  keyboard design,  some  atypical  ones offer a different layout, 
allowing playing of microtonal music. Moog proposed the Multiply-Touch-Sensitive 
Keyboards  (MTS) [MR90], sensing the (x, y) position of the finger on each key with 
resistive films, the up-down  position of the key ( 2  axis)  with a capacitive  system  and 
the aftertouch  with  a  resistive film. In [FAOO] a continuous  monitoring of the keys 
vertical  position is performed by an optical  system.  In  order to resolve the problem 
of the high data  rate, which cannot  be  transmitted  through MIDI, data is embedded 
in  standard  SPDIF or ADAT audio  streams.  Compared to  aftertouch, which only 
begins  sending data once the key  is completely  depressed,  these  two  systems  provide 
information  during  the whole run of the key. With  Stahnke's Bosendorfer 290 SE 
prototype [MRgO], the  Yamaha Diskclavier is a category  in  itself, it consists of an 
acoustic  grand  piano  fitted  with sensors that monitor  the depressed keys and send 
the related  information to MIDI. Actuators  under each key make it in turn possible 
to play the piano by sending  MIDI messages. Jean-Claude Risset developed MAX 
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objects to  both monitor ancl play the  piano [RD96] and several of his interactive 
compositions  made use of them [m-Ris]. Some force-feedback techniques  have  also 
been  implemented and will be  described in a  forthcoming  section. 

Percussion Interfaces 

The first percussion  interfaces were acoustic drums  fitted with  pickups. An envelope 
follower with  a  threshold was used to define a  trigger level and  the  intensity of the 
picked-up sound  controlled various synthesis parameters such as  attack  time, filter 
cut-off frequency, amplitude,  etc. Specific drum-like  interfaces,  without  resonating 
bodies, were later  introduced  and offered by all  main  instrument  manufacturers. 
The  next  step was the  introduction of control  surfaces that not only reacted to 
the force with which they were hit,  but also to  the position and  to  the pressure 
after  the  hit. Buchla's Thunder is a good example. The fact that MIDI data may 
easily be mapped to various parameters makes it a very versatile instrument.  The 
Korg  Kaoss Pad" tactile 2-D surface may also  be used as a percussion instrument, 
reacting to  the position being hit. 

String Instruments 

String  instruments may  also be  transformed  into MIDI  controllers. The most com- 
monly used technique is to fit the instrument  with  multiphonic  magnetic pickups 
(one for each string) followed by a  pitch  tracking device that transforms the sensed 
frequencies into MIDI notes  and  pitchbend information. The difficulty lies in tle- 
tecting  fast  enough  rapid changes in  pitch. Some interfaces use a different approach: 
the stick is covered by a sensitive  surface that senses the finger's positions  and the 
pickups are merely used to measure the  amplitude of the  string's  vibrations. In  some 
cases, the strings completely disappeared leaving only tactile  sensors and switches 
to  track  the  guitarist's  gestures.  The MIDI throughput is still  a  limitation  and  faster 
interfaces are needed to  transmit  the whole subtlety of a  guitarist's  playing.  Another 
solution is to send  the  audio signal from the pickups  directly to  the computer  and 
have the pitch  detection  algorithm  running on the  computer where the controlled 
sound is generated. Several techniques have also been proposed to track  the bow 
position  relative to  the instrument  and  its pressure  on the  strings. 

Wind Instruments 

Two different approaches prevail: one is to replace the acoustic  instrument by an 
interface  measuring breath force and/or  bite pressure  on the reed and by providing 
sensors that track the fingering of the simulated instrument.  The  other  approach 
is to analyze the sound of a real  acoustic instrument,  and  extract  the  gesture from 
the sound.  Both  systems  may  be combined by fitting  sensors  on an acoustic wind 
instrument. 
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Hyperinstruments and Gesture Extraction 

The concept, defined by Tod  Machover,  consists of expanding  the playing  modes 
of traditional  acoustic  instruments. Techniques usually combine feature  extraction 
from audio  data  as well as specific sensors  fitted to  the instrument  [MC89,  m-Mac]. 
Ot,her  researchers  focus  on the  extraction of gesture  parameters det,ected solely 
from the sound of an acoustical  instrument allowing the performer to play his in- 
strument normally,  without  any  added  sensor [Wes79]. Starting from the knowledge 
of the playing  modes, the features of sound  generation,  and  constraints of a given 
instrument,  it is somehow possible to guess what  kind of gesture  has produced the 
analyzed sound.  This  educated guess  may then  be used to control  parameters of a 
digital  audio effect. The principles are similar to some  techniques used in speech 
recognition,  where  formant  extraction is performed by looking at  the possible con- 
figurations of the vocal tract knowing their  constraints.  This could improve the 
concept of hyperinstruments  one  step  further. 

Batons 

The first batons were built  with the analogy of the  conductor in mind [BouSO]. Their 
goal was to have  t’he  computer-generated  sounds follow the conductor  just like the 
other  performers  in  the  orchestra.  It should  therefore  be  able to  track  beats,  extract 
the  tempo,  detect  accents, nuances. This comes down to a type of pattern recogni- 
tion  system which has  to recognize and decode the complex gestures of a conductor. 
Different systems were used. The MIDI Baton by David Kean [KG89, KW911 used 
a conductive contact ball attached  with a  spring wire inside the conductive tube 
serving as  baton. Whenever the direction of the  baton changes  suddenly, an electric 
contact between the ball and  the inner tube is made  and  detected.  The  tempo is 
tracked and converted  into MIDI clock messages. The AirDrum,  manufactured by 
Palmtree  Instruments,  has a 2-D accelerometer and a rotation  detection. As an ex- 
tension, [IT991 has proposed  not only to  track  the  tip of the  baton,  but also  body 
and  hand movements with  the help of magnetic  motion  trackers. The  data is then 
processed  with the help of neural  networks. 

Even though  the  Matthews  and Boie Radio  baton was developed in the  late 
1980s mainly  from a conductor’s  perspective, its design steadily  improved and is 
now mostly used as  an  instrument [BM97]. It  features  two  sticks,  one for each hand, 
with  small coil antennas  at  the  end, each transmitting on a separate frequency of 
around 50 kHz. The body of the  drum hides an  array of five flat receiving antennas, 
two  on the left and  right sides, t,wo on the  upper  and lower sides and one in the 
middle. An (x, y ,  z )  position is computed, for each  stick,  from the five intensity 
levels. The  instrument  may  be used as a triggering device by setting a  vertical 
threshold,  or  serve  as  a  double 3-D controller. A modified version of the  system 
could also  theoretically  be used on stage,  with  large flat antennas  under a  dance 
floor to  track moving  dancers.  Often,  one  stick is dedicated to triggering  events 
depending  on the position,  and  the second stick is used to move within a timber 
space. Arfib [ADOO] uses the radio  baton to control  a  digital version of the intriguing 
photosonic instrument.  The musical piece “The Nagual” [m-Mai97] is designed as 
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a duet between a  percussionist  playing a set of metal  objects  and a radio-drum 
player  controlling  computer-generated  sounds. The computer  produces  sounds that 
are derived by filtering  white noise. The role of the computer-performer is to  shape 
the  sounds in such a way that they  tend to be  similar to those of the physical objects 
and  to complement the musical gestures  performed by the percussionist.  To  reach 
this goal, the computer-performer uses a  radio  drum  that simultaneously  drives the 
tuning frequencies and  the quality  factors as well as  the  amplitudes of two banks of 
eight filters  each. 

Another successful and commercially available baton controller is The Buchla 
Lightning 11. Each of the two batons is fitted  with  a  modulated  infrared LED and 
tracked  with a photodiode  array in the receiving station,  up  to six  meters away. 
The  MIT MediaLab  Digital Baton [MP971 detects the 2-D position of the edge of a 
baton, also  fitted  with an infrared  photodiode,  with  the  help of an infrared  camera. 
In  order  to  compensate for the delay introduced by any  camera-based  system  (only 
25 or 30 frames  per  second), an additional  three-axis  accelerometer helps tracking 
fast  gestures. Five force-sensitive resistors  included in the  baton also  measure hand 
and finger pressure. It was used in the  “Brain  Opera” [m-Mac]. 

Flat Tracking Devices 

A driver for standard Wacom tablets is available as  an external MAX module 
[WWF97]. It allows the use of those  tablets  as  input devices to simulate  the playing 
modes of existing  instruments  or  navigation in a timberspace. A Wacom tablet  may 
for instance  be used to control bowed string  instruments [SDWROO] in  Max/MSP. 
The proposed  mapping is as follows: y position + bow position,  derivative of x 
position -+ bow velocity, z position + bow pressure,  tilt angle in the x axis + 
string played and  tilt angle in the y axis + amount of bow hair. 

Several  proposals have been made to measure the (x, y) position  continuously 
and pressure  independently for each finger. The Continuum [HAS921 is a poly- 
phonic  controller that tracks  independent ( x ,  g) position and  pressure. Several pro- 
totypes were made, using various technologies. Tactex  recently  proposed the  MTC 
ExpressTM,  a  commercial  product  based on a  grid of interleaved  optic fibers enclosed 
in a special  fabric, that is able to  track position and pressure of up  to five fingers. 
Though  there  are only 72 crossing points,  centroid  computation permits precise 
position  detection, up  to 100 dpi  and 256 levels of pressure.  At this  moment, t,he 
sensing  surface is still  small  (15 by 10 cm),  but  larger models should follow. 

Other Interfaces 

So many  original  hands-on  controllers  have been designed that we can  only  cite  a 
few, chosen for their diversity. 

0 A  non-contact  optical  tracking device is the VideoHarp [RM90] which is a light 
sensitive device that allows the  tracking of fingers in a  flat, hollow, rectangular 
frame. 
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0 “The  Meta-Instrument” [Lau98] is a man-machine interface for control of 
algorithms for sound  synthesis  or  multimedia  applications in real  time. It 
consists of two  hand  and  forearm controllers and  two  foot  pedals. 

0 The aXiO MIDI controller [Car941  is a long stick-like instrument that  stands 
on the  ground  and  rests over the left shoulder of the performer. The right  hand 
controls a chord  keyboard while the left hand  rests on a palmrest, equipped 
with  several  switches and a touch  strip,  sitting on top of a 3 degrees of freedom 
joystick. 

0 The Sentograph [VU951 is a kind of push-button sensitive to z, y and z po- 
sition. It is not a very precise device in the sense that  it is quite difficult to 
control  each of those  three freedom degrees independently. But  the idea is to 
capture a global gesture, intuitively and emotionally, rather  than very pre- 
cisely. It is part of the wider project for the development of a sort of control 
cockpit  with  a  topography that may  be  constantly  re-adjusted  depending on 
the controlling  needs  [VUK96, UV991. 

0 The Gmebaphone  [CGL98] is an interface designed to control the  spatializa- 
tion of tape music during a  concert. Touch-sensitive faders  with visual position 
feedback are used to send the music to groups of loudspeakers placed on stage 
and  around  the  audience. 

0 A very original  approach uses the individual  magnetic  resonating frequencies 
of objects to locate  them in space. Up to 30 wireless magnetically coupled 
resonant  tags may be  tracked in the same  control  space  without affecting 
each other [HP99]. Such tags may  be attached  to each finger of a performer, 
or  included in various objects  that  can  be moved on  a  surface,  a  bit like pieces 
on a chess game. The system  returns  the  center frequency,  resonance  width and 
integrating coupling amplitude for each tag.  The  latter provides an indication 
of the  tag’s  distance from the reader  and  their  mutual  orientation, enabling 
continuous  non-contact  control.  Tactile  parameters  may  also  be  acquired by 
making the resonance  frequency parametric  with pressure. 

12.7.3 Force-feedback Interfaces 

Recognizing the  importance force-feedback plays  when  performing an acoustic in- 
strument, some  researchers  have  investigated ways to  transmit  haptic information 
to  the performer of a digital  instrument.  The main  aim is to offer a more natural 
style of interaction  between the player and his instrument. Several  researchers  have 
focused on trying  to  recreate  the feeling of playing  a  real  piano by simulating  the 
changes  in the key’s resistance  along  its  vertical path. Gillespie [Gi194] proposed 
use of a  finite state machine as  the couplings  between the key, t,he  keybed and  the 
hammer changes  dynamically when depressing  one key. The vBow [NicOO] provides 
haptic feedback for the bow of an electronic violin. Others have tried to expand  the 
concept to  totally new instruments. Long-term  research has been led a t  ACROE 
in the development of missing tools.  One  problem was the lack of suitable  motors 
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able to generate  enough force-feedback while remaining of reasonable size [CLFSO]. 
The other  problem  is to find a method  to model the link between the interface and 
the sound  generating  program.  The answer lies in a total  integration between both, 
thanks  to physical models of sound  generation. 

An interesting  interface was created in an  attempt  to let  blind  users access 
window-based computers. The  Pantograph  [Ram95a, Ram95bl is a sort of force- 
feedback mouse with which one  can feel the window’s limits  and get  directed to 
locations where to  drop files. Though  not specifically designed for musical use,  one 
can easily imagine musical adpplications, like finding  relations between resistance 
and  the concept of musical tension,  or  having  the  interface  returning  spontaneously 
back to  an equilibrium  position.  In the  meantime a force-feedback mouse is on the 
market  place. Further  haptic interfaces for musical applications  can  be  found in 
[Bon94,  Cha93,  Chu96, RHOO]. 

12.7.4 Interfaces Worn on  the Body 

Rather  than using an  instrument,  another  approach consists of measuring  body 
parameters directly, like body  temperature, skin  electrical  resistance, eye activity 
through  EOG  (Electrooculogram),  brain  activity  through  EEG (Electroencephalo- 
gram), muscle potentials  or  EMG  (Electromyogram),  heart  activity  with  ECG  (Elec- 
trocardiogram). Many bioelectric musical recordings and performances were pro- 
duced in the 1960s and  the 1970s, under  the generic name of biofeedback [RosSO]. 
The BioMuse [KL90] measures bodily electrical  activity (EEG,  EOG  and  EMG)  and 
transforms  them  into MIDI  d;sta  after  filtering,  frequency  analysis,  signal  recognition 
and signal  comparison. The BioMuse comes with a series of electrodes  mounted  on 
Velcro bands, a  small  battery-powered  patchbox that may  be worn on a belt,  and 
the signal  processing  unit that receives the amplified signals from the  patchbox, 
performs the processing and sends out  analog  and MIDI data.  The MiniBioMuse 
[Nag981 is a much smaller and cheaper  alternative,  but  with less inputs. 

Other  systems mea,sure  relative  or  absolute  positions of body  pa,rt,s. The best 
known device of this kind is the  “Data  Glove”, which measures finger flexions and 
hand  position. Laetitia Sonami has been performing for years wit,h such a glove 
designed at  STEIM  and Sonology. It  adds  an  ultrasound sensor to measure  relative 
distance between both  hands  and Hall effect sensors on the finger tips  to precisely 
measure  small  distances between the fingers and  the  thumb.  The Exos  Dexterous 
Hand  Master  has been used by Tod Machover and  instead of relying on flexion sen- 
sors,  it  directly measures  angles of each finger’s phalanx  with much better precision, 
but with the  disadvantage of a  cumbersome  mechanical  add-on. Michel Waisvisz was 
certainly  the pioneer in usin.g hand  controllers. His system,  the  “Hands” [KreSO], 
was used in numerous  performances. It differs from the  others in that  it is not  a 
measure of finger flexions. It is a rather complex instrument  made of two  part,s, 
attached to each hand,  that he plays by pushing buttons. Special software  has been 
developed for the  instrument. A real-time  sample  recorder  and player with  numer- 
ous parameters  are dynamically assigned to  the  Hands. We find all  categories of 
gestures:  some switches serve as selectors to change the context,  others to trigger 
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sounds,  whilst the  latter  modulate  them. 
Feet also convey useful information  about  dancers’ movements. The Dancing 

Shoes  [PHH99] is a pair of sneakers,  each  sensing  16 different tactile  and  free-gesture 
parameters.  They rely on a mix of various technologies. Three force-sensitive resis- 
tors  are  located in the forward  sole,  a  piezoelectric foil measures the dynamic  pres- 
sure at the heel and two  back-to-back  bend  sensors  measure the sole’s bi-directional 
bend. A vertical  gyroscope  responds to twists  and spins. A 2-axis low-G accelerome- 
ter picks up  tilt  and general foot dynamics.  A  3-axis  high-G piezoelectric accelerome- 
ter gives directional  response to rapid kicks and  jumps. A  3-axis  magnetometer gives 
orientation  with  respect to  the local earth’s  magnetic field. On  top of this, a 40 kHz 
sonar receives pings  from up  to four ultrasound sources that may be  located at  dif- 
ferent  positions around  the  stage to measure  absolute  position. All sensor values are 
sent,  independently for each  shoe, 50 times  per second with low-power transmitters. 
A special C++ MIDI  mapping  library was written  to deal  with this high amount 
of information. 

Complete data  suits have also been made for immersive  virtual  reality envi- 
ronments,  but  do  not seem to have been used for musical control, possibly be- 
cause of their price. The wireless DIEM  Digital  Dance  System offers an  alternative 
[SJ98, Sie991. It allows up  to 14  analog  sensors to  be  put on a dancer  or  actor 
who wears the interface  and  transmitter  on a  belt  and  can move freely while the 
receiver converts  those  signals into MIDI format. In “Movement Study” [m-Sie97], 
the dancer  wears flexion sensors  on  her  ankles,  knees, elbows and  index fingers. In- 
stead of being  fitted in a suit, a  solution that was tried  without success was that  as 
the  suit moved relative to  the body  joints  with the dancer’s  movements, the sensors 
are  directly  attached to  the body  with a,dhesive tape.  Laurie Anderson used a much 
simpler  technology in her drum  suit: piezoelectric sensors  detected when they were 
being hit,  as in most  MIDI drum  kits. 

The NoTAM Control  Suit is a  MIDI  controller  suit for use in real-time  per- 
formance of computer  music. The suit  has eight strips of semi-conducting  plastic 
material  mounted  on  the  chest  and  arms,  and  16  contacts  on  the back of the  hands, 
in  the collar and at the hips. Contacts  on  the finger tips  transfer voltage to these 
sensors. The plastic  strips  produce  analog signals  depending on where they  are 
touched,  whereas the  16  contach  are simple on/off switches. NoTAMs own MIDI- 
converter is mounted  on the belt and converts the control  signals to MIDI. The piece 
“Yo” by  Rolf Wallin uses the control  suit  connected to  an IMW (IRCAM Musical 
Workstation) which is programmed  with  a  number of algorithms for granulation 
and filtering of sampled vocal sounds. 

12.7.5 Controllers  without  Physical  Contact 

Going  one  step  further,  the position of the body  might  be used without the need for 
the  performer to wear any  special devices. These  are obviously the  best solutions 
for sound  installations  but  they  also offer a greater freedom for dancers. 

The “Theremin” was invented in 1919 by a  Russian  physicist  named Leon There- 
min [SmiOO], originally  designed as  an  alarm device. Two antennas  are connected 
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to a sound  producing  electrical  circuit.  One  antenna  signal  controls the frequency 
of an oscillator,  and  the  other  antenna signal  controls the  amplitude envelope. As 
a  hand  approaches  the  vertical  antenna, the pitch  gets  higher  and  approaching  the 
horizontal antenna reduces the  amplitude. As there is no physical contact  with  the 
instrument, playing the  theremin requires precise skills. Theremins  have been built 
by several  companies over the  past decades and every decade delivers new successors 
based on innovative technologies. 

The “Gesture Wall” [PG971 uses electric field sensors to measure  the position 
and movement of the player’s hands  and  body in front of a projection  screen. The 
projected video and musical sounds  are changed accordingly. The performer stands 
on  a  plate, which is applied to a radio  frequency  signal. This signal couples through 
the performer’s  shoes and is broadcast  through  the body to a set of four  pickup 
antennas  located  around  the screen. The  antenna signals  change  with the  distance 
of the performer from the respective antenna. 

The EMS SoundbeamTM uses ultrasound in a reflective way: pulses of a  frequency 
close to 50 kHz are regularly  sent  through an electrostatic  transducer which also 
serves as a receiver. When an object  or a human  body is standing in the emission 
cone, part of the pulse is reflected which is in turn detected by the  transducer. 
As, for given temperature  and  humidity values, the speed of sound c is known, the 
distance D is proportional to  the delay At between the  time at  which the pulse 
was sent and  the  time  it is received: D = ; c a t .  This  distance  information  as well 
as  the presence or absence of reflection can  then  be  mapped to MIDI messages 
following the definition of zones, either to trigger  notes  or to modulate  sounds. -4 
more precise version has been built to monitor  almost  imperceptible  movements of 
dancers [TodOO] within the ultrasound  beam. It is used,  amongst  other  things, bo 
control the buffer pointer of a real-time  granulation  algorithm [m-NoiOO]. 

D-Beam Twin Tower [Tar97, TMS981 expands  this  idea by fitting  four IR re- 
ceivers around one transmitter,  thereby  not only measuring the position, but also 
the  shape  and angle of the h,and. 

Systems like STEIM BigEye, David Rokeby Very Nervous System [Win98], or 
EyesWeb (shown in Fig.  12.7)  can  directly process an incoming video signal of 
a performer, a dancer  or  an  actor on stage. An interesting  development of the 
latter is the  extraction of barycenters  and of expressivity  features  [CRT99, CCPOO, 
CCRVOO]. 

Litefoot [GF98] is a 1.8 m square surface, 10 centimeters  high,  with a surface 
of plywood recessed with holes to accommodate  a  matrix of 44 x 44 (1936) optical 
sensors. It can track feet in two modes,  equally  responsive. In  the reflective mode, 
the footsteps  are  detected by the proximity of an object  causing  a reflection of 
light back to  the sensor that  emitted  it.  It works best when the  dancer’s shoes have 
reflective soles. In  the shadow  mode, the floor is flooded with  light and  the  footsteps 
stop  that light from entering; the sensors. 

The principle used in the MIT Laserwall [PHSROO] is the scanning  laser  range- 
finder, whereby a  laser beam,  modulated at  f M  = 25 MHz, is detected by an 
avalanche IR. photodiode  after reflection from the performer’s  hands. The received 
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Figure 12.7 The EyesWeb  graphical  programming  interfaces. 

signal is multiplied by the modulating waveform in  phase  and  in  quadrature, giving 
two  amplitudes  from which the phase a can  be  computed.  This  phase is directly 
proportional to  the distance  between the laser and  the reflecting  object: R = & $-, 
where c is the speed of light  and where a is  expressed in rad. As the laser  scans 
the space, which is done by a  rotating  mirror of known angular  position 0 over 
time,  the  system gives the polar  coordinates (R, 0)  of every  reflecting  object  in the 
detection  space. Microwave motion  detectors  are  added to detect the position of the 
performer when approaching the wall,  before he enters the laser  space. 

12.8 Conclusion 

Being the only  link  between the user and  the  algorithm,  the  control layer is essential 
to unleash the power of any  digital  audio  effect. We have  seen throughout  this  chap- 
ter,  with  many  examples,  that  there is no  single  answer to  the  problem of mapping. 
At the  end, it all comes down to finding a musically useful correspondence  between 
the various  accesses given to  the user and  the  parameters of the digital  audio effect. 
As mapping  usually  creates  implicit  or  explicit  rules  constraining the simultaneous 
variations of several  parameters,  it obviously  becomes an artistic choice. And it is 
no  wonder that  certain tools are favored  in  some aesthetic circles. The proliferation 
of certain  algorithms  under  various  disguises is one  answer to  the different  needs. 



12.8 Conclusion 

Allowing the user to choose or  to customize  his  control  environment,  exploiting 
fruitfully the flexibility of a  virtual  architecture, is a better one. We have seen that 
many  concurrent processes may  be part of a complete  control structure. In fact, 
every  control strategy includes these  elements in various degrees: 

0 GUIs offer various  user/performer access and information. 

0 Algorithmic  control allows global control over a  large  number of parameters. 

0 Feature  extraction  maps specific aspects of a complex sound structure. 

0 Gestural  interfaces allow control of gestures  ranging  from the  traditional in- 
strumental playing  modes to dance  movements,  with a steadily growing nunl- 
ber of controllers. 

It is obviously impossible for the programmer of a  DAFx  algorithm to  spend  time 
providing  those  many different control layers. Fortunately, it is not  needed. With 
increasingly  standardized  real-time  interfaces and protocols  (MIDI, TCP/IP, USB, 
Firewire) as well as inter-applications  exchange  protocols, he only needs to open 
up his program  to allow others access to  the  parameters  the way they like. He 
does  not have to give away his sources  or unveil the precious tricks that make his 
program  sound  good. All he should do is to provide an external access and sufficient 
information about  it.  This also  counts for non-real-time  programs where MIDI files, 
SDIF files (Sound  Description  Interchange Format) [WDK99, WS99, BBSOO, SWOO] 
or well structured  and  documented  text files may allow exchange of information 
between programs  running  on  various  platforms  under different operating  systems. 
His program could then be successfully used for the DAFx fields that apply: 

0 Sound design for studio  applications. 

0 Electro-acoustic  composition. 

0 Expanding the possibility of an acoustical  instrument (hyperinstrument, score 
following), thereby allowing the performer to acquire  more  control of digital 
audio effects applied to his instrument. 

0 Creating a new instrument:  the key elements are expressivity,  breathing life 
into electronically  generated  or  transformed  sounds. The addition of real-time 
gestural  control  often  transforms a rather simple algorithm  into a powerful 
performance instrument mainly  because of the  added expressivity. 

0 Interactive  dance  performances: the movements of the  dancers  might  be used 
to trigger/transform/spatialize sounds  and music. 

0 Interactive  sound  installations: defining how it will react to  the visitors. 

An easy and effective way to achieve this is  by writing  external  modules  or plug-ins 
for various  environments, following the design rules standard  to these  applications. 
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And other developers will continue their work of devising better GUIs,  propos- 
ing  more  elegantly  formalized  algorithmic  environments,  developing  more effective 
feature  extraction  methods  and providing  improved  gesture  controllers. This coop- 
erative  approach  prevents everyone from  reinventing the wheel and ensures that 
users  may choose their favorite working environment and  gestural controllers,  capi- 
talizing  on  all the knowledge and experience  they  have  gathered over the  years,  but 
still  using the most  up-to-date  DAFx  algorithms. 
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Chapter 13 

Bitstream Signal Processing 

M. Sandler, U. Zolzer 

13.1 Introduction 

The motivation for Bitstream Signal  Processing (BSP) Sigma  Delta  Modulation 
(SDM) has become the predominant  means of converting between analog  and  digital 
domains for audio. There  are various  reasons for this, principal  among them initially 
at least, was the low cost of SDM Digital-to-analog  Converters  (DACs)  providing 
a  quality  equivalent to Nyquist-rate DACs (based on resistor  ladders or current 
sources).  There  are also  good sonic arguments for the use of SDM data converters, 
currently  mirrored in the  debate of 96 kHz and 192 kHz sampling  rates, which is that 
the benign and slow rate of roll-off of the anti-aliasing  filters  does  not  compromise 
the phase  response. Either way, SDM converters at both  the  front  end  and  the back 
end of audio  systems  are here to  stay for the foreseeable future. So let us look at the 
conventional  approach to audio  signal processing where the converters are SDM, 
leaving  aside for now the precise details of how SDM works. Referring to Fig. 13.1, 
we see that  the analog sign,al coming in is converted to single-bit stream  at a rate 
many  times the Nyquist rate (typically 64 times, i.e. the  sampling is a t  64x48000 
Hz).  Because the processing is performed in what we shall call PCM  format, i.e 16 
or  more  bits at the Nyquist rate,  there is a need to down-sample the  bitstream. 
This is done using a special filter known as a  Decimation filter - the combination 
of the blocks labelled 0 and  LPF in Fig. 13.1. 

Then  the processing is performed as conventional DSP  dictates, for example 
using programmable  microprocessor  with  a  Harvard or Super-Harvard  architecture, 
such as those  from  Motorola,  Texas  Instruments or Analog Devices. It is performed 
at  the Nyquist rate, fs - the sampling  frequency - on b bit  signal  samples. Then  to 
convert it back to analog  form, for monitoring  or final rendition, we again use SDM, 
this  time  in a  DAC. However, although  the SDM DAC itself is very simple, it needs 
to  run  at  the high,  super-Nyquist rate (e.g. 64x48000 HZ again).  This  means  that 

499 



500 13 Bitstream  Signal Processing 

__,’ encoder 
-. 

decoder .--._ 

Figure 13.1 Basic structure of DSP  system based on Sigma Delta interfaces to  the analog 
world. SDM=Sigma  Delta Modulation representation; LPF = lowpass filter; boxes with 0 
are  sample  rate decrease and increase respectively, by a factor 0, the over-sampling ratio. 

the  PCM  format  signal  our processing has  produced  must  have  its  sampling  rate 
increased,  using  a  special filter known as an  interpolation filter - the combination 
of the blocks labelled “LPF”  and “0” in  the figure. So overall, we have  simple 
analog-digital  and  digital-analog  portals in our  system,  but we have the  expense of 
the decimation  and  interpolation  filters on top of this. If the  PCM processing in 
between  these is simple,  there is likely to be a processing  penalty, in the sense that 
the  DSP  MIPS  are  dominated by the  interpolation  and  decimation  filters. 

Thus  a  question  arises. Would it  not  be simpler (not  to mention  more  elegant) 
if  we could  perform  the processing  directly  on the SDM bitstream  that comes out 
of the SDM  ADC,  and  write  it  directly  to  the SDM DAC - cut  out  the middle 
man?  This is shown in Fig. 13.2 where it is clear that we no  longer  use the  sample 
rate  decrease  (decimator)  and  increase  (interpolator)  filters  and  thus have  saved 
processing. 

1 bit @ few  bits @ 1 bit @ 

analog 

SDM @ 0.fs 
to processing 

1 bit SD SDM- 
analog loop (1 bit DAC) 

Figure 13.2 Basic structure of DSP  system based on Sigma Delta coding and  bitstream 
signal processing. The provision for the result of the  operation being  more than 1 bit wide 
is made explicit - the  SD loop. 

Probably  it is reasoning of this  sort  that  persuaded  researchers at Sony and 
Philips to investigate how beneficial it would be  to work entirely in the SDM signal 
domain.  They have  produced  proposals  and  indeed  products,  based  on  the  con- 
cept that signals  should  be  stored, processed and generally manipulated in SDM 
bitstream  format.  This  they have called Direct  Stream  Digital,  and  it is this  rep- 
resentation  that  underpins  the new Super Audio  CD format. Because Sony and 
Philips  propose  not  only selling music in the  Super  Audio  format,  but  to configure 
the complete  processing  chain so that  it is based on it,  that  shapes  the  remainder 
of this  section. We  will look  first at the  general principles of SDM in both ADCs 
and DACs, and will then look at two of the  most common  signal  processing tasks, 
IIR and FIR filters, that  can  be accomplished in SDM format. 
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13.2 Sigma Delta Modulation 
Conventional data converters,  both ADCs (Analog-to-Digital  Converters) and DACs 
(Digital-to-Analog  Converters), use no (or mild)  over-sampling and  as such  convert 
signals at  or  just over the Nyquist sampling  limit. A general structure for a Nyquist 
ADC is shown in  Fig. 13.3 and  that of a  Nyquist DAC is shown in  Fig. 13.4. 
Typically, then, for a 20 kHz bandwidth,  the  sampling  and conversion will take 
place at  a rate of, say, 44.1 kHz for CD quality. 

b  bits 

analog 
signal  in ADC 

Figure 13.3 Nyquist-rate ADC. 

b bits 
lowpass 

elliptic 
DAC filter analog 

signal  out 

Figure 13.4 Nyquist-rate DAG. 

A generic over-sampling  ADC structure is shown in Fig. 13.5, where the key point 
to note is that  the core  ADC will typically  produce fewer bits  per  sample than  the 
final digital  output.  The  extra  bits in the  output  are regained by the decimation  filter 
which reduces the sampling rate back down to (or close to)  the Nyquist rate.  The 
reason  this works is that  the quantization  error power of a core ADC is determined 
solely by the number of bits it uses. However, with  over-sampling, this power is 
spread  more  thinly through1 the  spectrum, so that  the noise power per Hz is reduced 
and  in-band  SNR is improved.  Because the decimation filter is used to  extract only 
the wanted  baseband  signal it is possible to recover the  additional bits. The SNR 
improvement is 3 dB for every doubling of sampling rate (over and  above  Nyquist), 
or  an  extra  bit for a 4 times  over-sampling, 2 extra  bits for 16 times  over-sampling, 
etc.  Over-sampling like this is a  simple way to  trade amplitude  resolution for time 
resolution,  but if non-linear techniques are used,  improved  gains  can be made.  Figure 
13.6 presents  a generic over-sampling DAC. The principal  reason for choosing such 
a structure is to ease the ,specification of the reconstruction  filter, which is analog 
and in Nyquist DACs may  introduce  unwanted  phase  distortion. The purpose of 
the  interpolation filter is to increase the sampling rate of the incoming  digital  signal 
prior to conversion. The signal at  the  output of that block should  approximate 

L.fs L.fs fs I 
b  bits b blts 

digital 4 - H  Hold H signal  in  lowpass 
Sample’ 

simple 

filter 
digital 

signal out 

Figure 13.5 Over-sampling ADC. 
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closely the digital  signal that would have been obtained  had  the  analog signal been 
sampled at the higher rate  rather  than  the Nyquist rate. 

fs, L.fs 
b  bits  b  bits 

digital 
signal  in 

interpolation lowpass 
filter DAC filter 

(L times) (simple) 

analog 
signal out 

Figure 13.6 Over-sampling DAC. 

Together,  interpolation  filters  and  decimation  filters  are known as multirate 
filters  [SR73, CR831. This is because  they operate at more than one  sampling fre- 
quency. It is by operating  these non-linear  SDM  systems  in excess of the Nyquist 
sampling rate  that  they  are able to perform in a quasi-linear manner. Sigma  Delta 
Modulation  works by converting a signal into a sequence of pulses, whose short- 
term average follows that of the  modulating signal [CT91,  NST97J.  In  this  case,  the 
pulses are of fixed duration,  and  their  number is proportional to  the signal ampli- 
tude: it is thus sometimes  referred to as Pulse  Density  Modulation (PDM)  and  has 
much in  common  with  error diffusion techniques, as used in  image  half-toning. An 
example of the pulse stream  that  results from SDM is shown in Fig.  13.7,  and  a 
generic structure for a SDM is shown  in  Fig.  13.8.  Note that  the number of levels 
that  a SDM  pulse stream can attain is determined by the number of discrete levels 
of its  internal  quantizer. For a single bit  quantizer,  there  are two levels, normally 
denoted  as +l and -1. Note that often it is clearer and/or more convenient to label 
the negative  pulse value as 0, so that pulse values are 1 and 0. 

SDM is closely related to  delta  modulation in which a single bit  commands a 
decoder either  to increase or decrease its  output level - thus  it is capable of tracking 
the  input. However, SDM both simplifies the decoder and encoder by including an 
integrator  in  the  encoder’s feed-forwa.rd path.  The development of SDM is gener- 
ally  attributed  to  Cutler  [Cut52, Cut541, whose paper  actually deals  with an error 
diffusion approach. The  structure now known as Sigma  Delta  Modulator is due to 
Inose et al. [IYM62, IY63] who  first reported  it  in  the early  1960s. 

13.2.1 A Simple  Linearized  Model of SDM 

The non-linearity  within  the SDM block diagram  makes precise analysis  somewhat 
intractable,  though  there have been some excellent publications  on  exact  non-linear 
analysis of SDMs  [FC91].  This  approach leads to  accurate  but  restricted  results, so 
it is common to model the SDM by a linearized  method in which the  quantizer is 
replaced by an additive noise source.  Figure  13.9 shows the linearized  model. 

Overall, the  output, O ( z )  is a combination of the quantization  error, q(n) and 
the fedback error, I ( x )  - O ( z ) ,  given by 

O ( Z )  G(z)  . (I(z) - O ( Z ) )  + & ( x ) .  (13.1) 
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Figure 13.7 First-order Sigma Delta Modulation of 1 kHz sine wave, 50 times over- 
sampled. 

Figure 13.8 Sigma Delta  Modulator. 

Figure 13.9 Linearized model of Sigma Delta  Modulator  suitable for analysis. 

Setting Q ( z )  = 0 we find the  output  as a  function of the input only, and leads to 
the Signal  Transfer  Function (STF) 

(13.2) 
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Setting  the  input I ( z )  = 0 we find the Noise Transfer  Function (NTF) 

(13.3) 

Note that  this makes  no  assumptions  about  the  probability  density function of 
q(n) or  indeed the  nature of the quantizer  or the  amount of over-sampling. As the 
number of bits  or levels in the quantizer  increases so the analysis proves increasingly 
accurate.  The  same i s  true  as  the over-sampling increases. 

In  most cases, the design of a SDM will start from this simple  form, which 
enables a first  set of system  parameters to be  obtained.  What  then follows  is an 
extensive  process of simulating,  testing  and  modifying  until the system  performs 
adequately well for the intended  application. It is still a topic of research  interest to 
be  able  to  produce SDM models which are  amenable to single  pass design strategies 
for which no  simulate-test cycles are needed. 

Figure 13.10 First-order  Sigma  Delta  Modulator. 

13.2.2 A First-order SDM System 

In  its simplest  form, G ( z )  is an  integrator, which has high gain at low frequencies 
so that  STF(z) M 1, whereas the NTF at low frequencies will be  small, so that  the 
quantization  error (manifested as noise) is greatly  suppressed. A first-order SDM is 
shown  in  Fig. 13.10. This is demonstrated in Fig. 13.11, which presents  the  spectra 
for the signal of Fig.  13.10. The noise suppression at baseband is clear and we can 
see that, in spite of only  a single bit  representation of each  sample, the modulated 
representation  provides a good signal-to-noise ratio over a useful bandwidth. A 
simple Matlab  simulation of this  system is shown in M-file 13.1. 

M-file 13.1 (fo-sdm.m) 
% First-order SDM 
c1ear;clf; 
N=10000; n=[O:N-l] ; 
signa1=0.6*sin(lOO*n*2*pi/N); 
q=O;node3=0; 

% main loop 
for i=O:N-l, 
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q=(node3>0) ; 
nodel=signal(i+l)-2*(q-O.5); 
node2=nodel+node3; 
node3=node2; 
y(i+l)=q; 
end 

% plots 
time1=8:0.001:8.999;time2=8:0.001:8.099; 
freqi=O:i:499;freq2=0:0.01:49.99; 
figure (1) ; 
subplot (2 , 1,l) ; 
plot(tirne2,signal(8000:8099)); 
xlabel(’(a)  One  cycle of signal : Time  in  seconds’); 
subplot  (2,1,2) ; 
stem(tirne2,y(8000:8099), ’b’); 
xlabel(’(b)  Modulated  signal : Time  in  seconds’); 

[P , F] =spectrum(y  ,2048,1024, [l ,1000) ; 
figure (2) ; 
subplot(2,1,1); 
plot(F,20*loglO(P(: ,l)+O.OOOOl)); 
xlabel(’a)  Power  Spectrum (Hz) up  to  half-sampling  frequency’); 
subplot(2,1,2); 
plot(F(1:205),20*loglO(P(1:205,1))); 
xlabel( ’b) Narrow-band  Power  Spectrum (Hz) ’1 ; 

13.2.3 Second and Higher Order SDM Systems 

Higher order  SDMs use cascaded integrators in the loop filter, which increase the 
noise suppression at  low frequencies. The order of the filter is used to describe the 
order of the  modulator, e.g. a  third-order  filter is used in a third-order  modulator. 
A second-order SDM is shown in  Fig. 13.12. 

The effect of increasing  order  is  demonstrated  in Fig. 13.13 for a second-order 
modulator, with the same input signal and over-sampling rate (500) as Fig. 13.11. 
We can  see greater baseband  resolution and/or a wider usable  bandwidth.  For  all 
SDMs this is at the cost of amplifying noise at  high frequencies. A simple Matlab 
simulation of this  system is shown in M-file 13.2. 

M-file 13.2 (so-sdm.m) 
1 Second-order  SDM 
clear,clf; 
N=I0000; 
n= [O : N-l] ; 
signal=0.6*sin(iO*n*2*pi/N); 
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Figure 13.11 Power spectral analysis of first-order SDM for 500 times over-sampled signal 
Note the good  signal  resolution at low frequencies in (a) magnified in (b). 

Figure  13.12 Second-order Sigma Delta Modulator. 

% main loop 
f o r  i=O:N-l, 
q= (node5>0) ; 
nodel=signal(i+l)-2*(q-0.5); 
node2=node2+nodel; 
node3=node2-2*(q-0.5); 
node4=node3+node5; 
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% q=(node5>0) ; 
node5=node4; 
y(i+l)=q; 
end 

x plots 
f igure(1) ; 
subplot  (4,1,1> ; 
plot(n(N/2:N-l)  ,signal(N/2:N-l)); 
subplot (4 , 1,2) 
plot(n(N/2:N-l)  ,y(N/2:N-I),  ’y’); 
subplot  (4,1,3) ; 
plot  (n(N/2 : N/2+199) , signal  (N/2 : N/2+199) ) ; 
subplot  (4,l  ,4) 
stem(n(N/2:N/2+199)  ,y(N/2:N/2+199),  ’y’) ; 

[P  ,F]  =spectrum(y ,2048,1024, [l ,1000) ; 
figure(2); 
subplot (2, l, 1) ; 
plot(F,20*loglO(P(: , l ) ) ) ;  
xlabel(’a)  Power  Spectrum (Hz) up t o  half-sampling  frequency’); 
subplot(2,1,2); 
plot(F(l:205)  ,20*logl0(P(1:205,1)~); 
xlabel(’b)  Narrow-band  Power  Spectrum (Hz)’); 

The generic structure of Fig.  13.7  is  often known as an interpolative SDM. Many 
alternative topologies exist,  but  perhaps  the most  popular is the so-called multiple 
feedback structure.  This is shown in Fig.  13.14. The  great  advantage of this  structure 
is that  it is tolerant to coeficient  and  data  path  quantization because the filter is 
constructed from a cascade of integrators. 

13.3 BSP Filtering Concepts 

Since the early 1990s a  small but significant flurry of work has  appeared, dealing 
with a variety of signal processing algorithms  implemented to  process a SDM bit- 
stream signal. Topics covered include: FIR filtering  [WG90, Won921, second-order 
IIR filtering  [JL93,  JLC93, Qiu931, adaptive filtering  [RKT92, QM93], high qual- 
ity sinusoidal  oscillators [LR.J93a, LRJ93b],  signal  mixing [Ma192], dynamic  range 
compression and expansion  [Qiu92],  phase/frequency  modulation [RC941 and de- 
modulation [BC94, Ga1941. Useful introductions to sigma-delta  signal  processing 
have appeared  [M091, Ma192,  Dia941 and present a wide range of the  potential 
applications. 
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Figure  13.13 Power spectral analysis of second-order SDM for same input as Fig. 13.11. 
Note the improved  signal  resolution at baseband  compared to the first-order modulator. 

Figure  13.14 Alternative, multiloop SDM structure. 

13.3.1 Addition and Multiplication of Bitstream Signals 

In  many  audio  applications  it is necessary to  add  or  substract two bitstream signals 
or to multiply a bitstream signal by a constant  parameter for gain  manipulation. 
The  output signal  should  be  a bitstream signal. A bitstream  adder was proposed 
in [OM901 and is shown in Fig. 13.15. Two over-sampled one-bit  signals x1(n) and 
x2(n) are  added,  producing a two-bit  result  with the  sum  and  the  carry  bit.  The 
sum  bit is stored  and  added to  the following input  bits  and  the  carry  bit forms 
the  output  bitstream.  It  can  be shown [OM90], that for low frequencies the  carry 
output signal  represents the  addition of the two input signals. The  output signal 
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Figure 13.15 Summation of bitstream signals [OM901 

can  be  represented by its  z-transform  according  to 

Y ( z )  = X I ( Z )  + X , ( Z )  - NTF(z)  -SUM(z). (13.4) 

( l - Z - 1 )  

The  equation  represents a first-order  sigma-delta  modulator,  where  the  sum  signal 
corresponds to  the  quantization  error. For low frequencies the  term  representing  the 
error signal is reduced by the noise transfer  function  NTF. It is possible to perform 
subtraction by inverting  the  required  input  bitstream  signal. 

Several possible multiplication  schemes for bitstream processing are discussed in 
[M091, Ma192,  Dia941. A basic building  block for filtering applications was proposed 
in [JL93] as  a  sigma-delta  aktenuator, which is shown in Fig. 13.16. A bitstream 
signal ~ ( n )  at the over-sampled rate is multiplied by a multibit coefficient al .  The 
multiplier  can  be efficiently realized by a 2-input  multiplexer  which selects either 
a1 or -al .  The following SD modulator  to  return a one-bit  output is a simplified 
second-order modulator [JL93] with low complexity. 

a, 

Figure 13.16 Multiplication of a bitstream signal by a sigma-delta attenuator [JL93]. 

13.3.2 SD IIR Filters 

Equalizers for audio  applicat,ions  are  mainly  based  on  first-  and  second-order  filters 
as discussed in Chapter 2. A first-order SD IIR filter was introduced in [JL93] and is 
shown in Fig. 13.17. It is based  on the above  described SD attenuator.  The  transfer 
function  can  be  shown [TsiOO] to be  given by 

(13.5) 

For realizing higher  order filters a cascade of first-  and second-order  filters is 
used. A second-order SD IIR filter was also proposed in [JL93].  The block  diagram 



510 13 Bitstream Signal Processing 

Figure 13.17 First-order SD IIR filter [JL93]. 

is shown in Fig.  13.18.  The  number of SD modulators is equal to  the order of the 
IIR filter in order  to keep the number  noise  sources  as low as possible. The second- 
order SD IIR filter is based on an  integrator based IIR  filter. According to [JL93] 
the  transfer  function is given by 

Figure 13.18 Second-order SD IIR filter [JL93] 

The  application of established  IIR filter topologies for over-sampling SD IIR 
filters is straight  forward. However, the inclusion of SD modulators  to  maintain  a 
bitstream  output  signal  has  to  be  investigated carefully. 

13.3.3 SD  FIR  Filters 

FIR filters for bitstream processing  have  been  discussed in several publications 
[PL73,  WG90, Won92, KSSA961. Two  methods for building  FIR  digital  filters  are 
treated in [WG90, Won921 where either  the impulse  response or  the  input  signal or 
both  are  encoded using  sigma-delta  modulation.  Realization issues for a VLSI im- 
plementation of a sigma-delta  bitstream  FIR filter are discussed in [KSSA96]. The 
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resulting  FIR filter  topology is shown in Fig. 13.19. The  input signal is a  bitstream 
signal  with  one-bit  representation and  the coefficients are in multibit  representa- 
tion. The multipliers are  again realized as 2-input  multiplexers which select the 
coefficients bi or -bi. The number  and values of the coefficients are identical to 
the  prototype design for the Nyquist  sampling rate fs. The  interpolation by over- 
sampling  factor R of the impulse  response is achieved by replacing the z-l operator 
by z - ~ .  This  approach allows the design of the filter coefficients bo, b l ,  . . . , b N - 1  at 
the  sampling  rate fs using well-known design techniques. 

Figure 13.19 SD bitstream FIR filter  [WG90,  Won92,  KSSASG]. 

13.4 Conclusion 

We have reviewed the basics of SDM and shown how it generates a single bit  rep- 
resentation of audio  signals.  Subsequently we provide an introduction to  the ways 
in which direct bitstream processing of these  signals  can  be  performed. 

Techniques like these  are only really suitable for real-time  hardware  implemen- 
tation where cost  savings  may be made by reducing  chip  count/size. For example, 
one  might  imagine  a  next  generation of on-stage effects processors  built around such 
devices. They have already been used in prototype mixing consoles. When imple- 
mented  carefully the processing and  the final sound  can be every  bit as good as 
by more conventional  means. Whether or not  these processing techniques become 
mainstream  or  not  depends less on how good  they are  and more on  the  market 
success of the DSD format - only time will tell us the answer. 
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Glossary 

ADT 

Aliasing 

AT constant 

Attack time AT 

Audio  effect 

Auto pan 

Brassage 
Chorus 

Click 

Clipping 

Comb  filter 

Automatic Double Tracking: A time-based  signal  pro- 
cessor that simulates the effect of playing  a part,  then 
overdubbing  a second part  to give a  thicker  sound. 
Frequency components  above half the  sampling frequency 
of a  sampled  signal that  are folded back into  the  audio 
spectrum (0-20 kHz). 
Time needed for a  signal to  reach 63 percent  (-4dB) of its 
final amplitude. After three  time  constants  it will have 
reached 95 percent  (-0.4dB) of its final amplitude. 
Time for a  signal to rise from 10 percent to 90 percent 
from its final amplitude. 
A modification of a  sound by use of a signal  processing 
technique. It is sometimes called Audio-FX. 
TIS  change a signal's spatial position in the  stereo field 
via  some  modulation  source. 
French for time shuffling. 
Detuning effect where the original  signal is mixed with  a 
pitch  modulated copy of the original  signal. Pitch mod- 
ulation is achieved by a random  variation of the  length 
of a delay line. 
A slight sharp noise, usually due  to a discontinuity of 
the signal or to some computation  error.  In some  forms 
of' musical production,  such  as  techno  or live sampling, 
the clicks become such an  important musical relevance, 
that they  are even emphasized. 
Severe distortion of the signal  because the  amplitude is 
la,rger than  the processing  system  can  handle. 
Filter effect occurring if the original  signal is mixed with 
a delayed version of the original  signal. The effect pro- 
duces  notches  in the frequency  domain at  regular fre- 
quency  intervals. 
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Compressor 

Controller 

Convolution 

Cross-synthesis 

Decay rate 

Decay time 

De-emphasis 
De-esser 

Denoising 
Dispersion 

Distance rendering 

Distortion 

Dithering 

Doppler effect 

A  compressor is used for reducing the dynamics of an 
audio signal.  Quiet parts or low levels of a  signal are 
not modified but high levels or loud parts  are reduced 
according to a static curve. 
A device used to modify one  or  several parameters of an 
effect. 
Mathematical  algorithm which is based  on an  input sig- 
nal  and  another  short signal (for example, an impulse 
response) and leads to  an  output signal. 
This effect takes  two  sound  inputs  and  generates a third 
one which is a combination of the  two  input  sounds.  The 
general  idea is to combine  two  sounds by spectrally  shap- 
ing the first sound by the second  one and preserving the 
pitch of the first  sound. 
The  time  rate at which a signal  decreases in amplitude. 
Usually  expressed in decibel per  second (dB/s). 
Time for a signal to decrease  from 90 percent to 10 per- 
cent  from its  initial  amplitude. 
See pre-emphasis 
A de-esser is a signal  processing device for processing 
speech and vocals and is used to suppress high frequency 
sibilance. 
To  decrease the noise within  a  sound. 
Spreading  a  sound in time by a frequency-dependent 
time delay. 
The distance of a sound  source is largely  controllable by 
insertion of artificial wall reflections or  reverberant  room 
responses. 
A modification of the signal that is usually objection- 
able.  When  a  signal is processed by a  nonlinear  system, 
some  components  appear  that were not  part of the orig- 
inal  signal. They  are called distortion  products. Some 
musical instruments such as  the electric guitar  take  ad- 
vantage of distortions to enlarge and vary their  timbre. 
This modifies the  sound color by introducing  nonlinear 
distortion  products of the  input signal.  Related effects 
are Overdrive,  Fuzz,  Blender,  Screamer. 
Adding a low-level noise to  the signal before quantiza- 
tion. It improves the signal  quality by decorrelating  the 
quantification  error  and the signal. 
The Doppler effect raises the pitch of a sound  source 
approaching  the listener and lowers the pitch of a sound 
source departing  the  listener. 
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Dropout 

Dubbing 

Ducking 

Echo 
Equalizer 

Exciter 

Expander 

Fade-in 

Fade-out 
Feedback 

Flanger 

Flatterzunge 

Flutter 

Foley 

Formant  changing 

A temporary loss of audio  information. This is a  typical 
problem of magnetic-tape-based  storage  and processing 
systems. 
In  general  a “dry”  sound is a sound that  has not been 
processed by any  means. It qualifies originally sounds 
that were recorded in an anechoic room.  In  our appli- 
cation  the  phrase  “dry signal”  denotes the sound before 
processing. See also wet. 
Adding further  material to  an existing  recording. Also 
known as overdubbing. 
A ,system for controlling the level of one  audio  signal  with 
another. For example,  background music can  be  made to 
“duck” whenever there is a voiceover [Whi99]. 
Several delayed versions of the original  signal. 
Filter  system to  shape  the overall sound spectrum. Cer- 
t a h  frequency  ranges  can  be  either  increased  or cut. A 
parametric equalizer allows individual setting of boost  or 
cut, center  frequency,  bandwidth and filter type. 
Signal processor that emphasizes  or  de-emphasizes cer- 
tah frequencies in order to change a signal’s  timbre. 
Expanders  operate on low level signals and increase the 
dynamics of these low level signals. 
Gradually  increasing the amplitude of a  signal from si- 
lence. 
Gradually  decreasing the  amplitude of a  signal to silence. 
To send some of an effect’s output signal back to  the 
input. Also called regeneration. 
Sound effect occurring if the original  signal is mixed with 
a delayed copy (less than 15 msec) of the original  signal. 
The delay time is cont,inuously varied with a. low fre- 
quency sinusoid of 1 Hz. 
A  sound effect which is produced by rolling the  tongue, 
blowing air  through  the  mouth  and performing  a  rapid 
fluttering  motion of the  tongue. 
Variations due  to  short-term speed  variations at rela- 
tively rapid  rates (above 6 Hz) [Met93]. See wow. 
Imitation of real  sounds for cinema  applications. See also 
sound  effect. 
This effect produces a “Donald Duck” voice without  any 
alteration of the  fundamental frequency. It can be used 
for performing an  alteration of a sound whenever there 
is a formant  structure. 
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Freezing 

Frequency shifter 

Frequency  warping 
FX 

Gaussian  noise 

Glissando 

Glitch 

Granulation 

Halaphon 

Harmonizer 
Impulse response 

Inharmonizer 

Jitter 

Leslie 

Leveler 

(1) Selecting  a  fragment of sound  and playing it  as a 
loop. The  time seems to be frozen to  the  date when the 
fragment was sampled. (2) Memorizing the  spectrum en- 
velope of a sound at a given time in order to apply  this 
envelope onto  another  sound [Ha195, pp. 59-60]. 
A signal processor that  translates all the frequency com- 
ponents of the signal by the same  amount fi -+ fi + A f .  
A alteration of the linearity of the frequency  axis. 
Shortcut for effects. 
A random noise whose instantaneous  amplitudes  occur 
according to  the Gaussian  distribution. 
Linear transition from  one  pitch to  another.  This implies 
that  the frequencies corresponding to  the pitches  vary 
according to a  logarithmic law. See portamento. 
An unwanted short-term  corruption of a  signal,  or  the 
unexplained,  short-term malfunction of a piece of equip- 
ment. See click. 
Extracting  short segments  from the  input signal and re- 
arranging  them  to synthesize complex new sounds. 
A 4-channel sound  projection  system that was devel- 
oped in 1971 by Hans Peter Haller and  Peter Lawo. 
Four  amplitude envelope oscillators  with different wave- 
forms  driving  four amplitude  modulators allowed com- 
plex sound  projection  patterns at various  speeds. An 
8-channel version was used in 1973 for the  production 
of “Explosante fixe” by Pierre Boulez and a  10-channel 
version for the  production of (‘Prometeo” by Luigi Nono. 
The methods for spatialization  proposed by John Chown- 
ing could also  be  implemented [Ha195, pp. 77-90]. 
A trademark of Eventide for a pitch  shifter. 
The response of a  system which is  fed  by an impulse 
signal. 
This effect  is obtained by frequency  warping an origi- 
nal  harmonic  sound. The resulting  sound is enriched by 
inharmonic  partials. 
Degradation of a signal by sampling  it at irregular  sam- 
pling  intervals. It can  be  interpreted  as a  modulation 
process  where the  audio signal  equals the carrier and  the 
jitter signal  equals the  modulation source. 
This effect was initially  produced by rotating micro- 
phones  or rotating loudspeakers. It can  be  approximated 
by a combination of tremolo  and doppler effect. 
A  dynamic processor that maintains  (or  “levels”)  the 
amount of one  audio  signal  based  upon  the level of a 
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LFO 
Limiter 

Live sampling 

Masking 

Modulation 

Morphing 

Morphophone 

Multi-effects 

Mute 
Noise gate 

Normalize 

second audio  signal. Normally, the second signal is from 
an ambient noise sensing  microphone. For example, a 
restaurant is a typical  application where it is desired to 
maintain  paging  and  background music a specified loud- 
ness above the  ambient noise. The leveler monitors the 
background noise, dynamically  increasing and decreasing 
the  main  audio signal as necessary to maintain a con- 
stant loudness differential between the two. Also called 
SPL controller [BohOO]. 
Low Frequency Oscillator. See modulation. 
Signal  processor that lets  the  input signal  pass through 
when its level is lower than a defined threshold  and lim- 
its the  output signal to a fixed level when the limiter 
threshold is exceeded. 
A musical style that relies on the replay of sounds or frag- 
ments of them  that  are sampled  during the performance 
from other performers  or  sound  sources. 
Phenomenon whereby one  sound  obscures  another, usu- 
a1l.y one weaker and higher in frequency [Alt90]. 
Process of altering  a  parameter, usually through some 
automatic or programmed  means  such  as an LFO. See 
vibrato and tremolo. 
(1) Imposing a feature of one  sound  onto  another. (2) A 
transition from one  sound to  another. (3) Generation of 
an intermediate  sound between two others. (4) Gener- 
ation of one  sound  out of the  characteristics of another 
sounds.  (5)  Transforming  one  sound’s spectrum  into  that 
of another. See spectral mutation. 
A  tape-based multi-delay system  with  a  bandpass filter 
on the  input signal as well as on  each of the 10  playback 
heads. The mixed output can be fed back to  the  input. 
This device was designed by J. Poullin [PouGO] and A. 
Moles [Mo160, p. 731. 
A signal processor containing several different effects in 
a single package. 
Cuts off a  sound  or  reduce  its level considerably. 
Signal processor that lets  the  input signal  pass through 
when its level is higher than a defined threshold. 
To amplify the  sound so much that  its maximum reaches 
the  maximum level before clipping. This  operation  opti- 
mizes the use of the available dynamic  range of the  audio 
format  and reduces the risk of corruption of the signal 
by low level perturbations  that could happen  during a 
further processing or the transmission of the  sound. 



520 Glossary 

Octavider 
Off-line 

Overdubbing 
Overload 

Panorama 

Patch 

Peak  filter 

Phasing 

Phonoggne 

Pink noise 

Pitch 
Pitch scaling 

Pitch shifting 

Pitch transposer 

Producing a signal  one  octave below the  input signal. 
A process is said to  be off-line when it is applied on a 
recorded  signal  instead of on a real-time  signal. Some 
processes are  inherently off-line such as  time  contrac- 
tion.  Others  are  too  computationally intensive to be  per- 
formed in real-time. 
See dubbing. 
To exceed the  operating  capacity of a representation, 
transmission  or  processing  system. 
Composing  a panorama of acoustic  events in the  space 
spanned by loudspeakers. 
Another word for program, left over from the days of 
analog  synthesizers. Also, the process of interconnecting 
various devices. 
Tunable filter which boosts  or  cuts  certain frequency 
bands  with a bell-like frequency  response. 
Effect where phase  shifts of a copy of the original  signal 
and mixing  with the original  signal  cause  phase cancel- 
lations  and  enhancements  that sweep up  and down the 
frequency  axis. 
A special tape recorder  playing a loop at  various  speeds. 
It  “has a circular  arrangement of 12 capstan  to change 
the  tape speed  within the 12 steps of the  tempered  scale”. 
The pinch roller facing each capstan is activated by a 
piano-like keyboard.  This device was designed by P. Scha- 
effer. A further development of this device is called the 
“Phonogkne  universel”. It allows continuous  transposi- 
tion  and/or  time  contraction  and expansion. It relies on 
the  rotating  drum  carrying 4 heads that was proposed by 
Springer [Mo160, p. 731; [Sch73, p. 471; [PouGO,  Bod841. 
Noise which has a continuous  frequency spectrum  and 
where each  frequency band of constant  relative  band- 
width A f / f contains  the  same power. e.g.  each  octave 
has  the  same power. 
Subjective  perception of frequency. 
See pitch shifting. 
Modification of the pitch of a  signal. All the frequency 
components of the signal are multiplied by the same  ra- 
tio. fi + r . fi. Asynchronous  pitch  shifting is achieved 
by varying the  output  sampling  rate [Mas981 (see section 
7.2). 
A  signal processor that duplicates  the  input a t  a defined 
pitch  interval. 
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Portamento 

Post-echo 
Precedence effect 

Pre-echo 
Pre-emphasis 

Print through 

Quantize 

Random noise 

Ratio 

Real-time 

Recirculate 
Regeneration 

Release time RT 

Resonator 

A gliding effect where the  pitch of a sound is changed 
gradually  rather  than  abruptly when a  pitch  modification 
is required. 
See print through. 
In a  stereo  loudspeaker set-up, if  we step  to one side 
of the  central position and listen to a monophonic mu- 
sic program, we locate the  apparent sound  source in the 
same  position as our closest loudspeaker, and  the  appar- 
ent position does not move even if the other  channel is 
significantly louder. 
See print through. 
A system to boost high frequencies of a  sound before 
processing it. A de-emphasis  should be performed before 
playing the  sound back after processing. This  procedure 
attenuates high frequency noise contributed by the pro- 
cessing or  transmission  system. 
The undesirable  process that causes some magnetic in- 
formation  from  a  recorded  analogue tape  to become im- 
printed  onto  an  adjacent layer. This  can produce low- 
level pre- or  post-echoes. 
Coding the amplitude of a signal  with  a given number 
of bits.  Reducing the  number of bits used to represent 
a  signal usually degrades the quality of the signal. This 
effect can  be  attenuated by the use of dithering.  Quan- 
tizing and  dithering occur  usually at  the AD and DA 
stages of an audio  processing  system. 
A noise whose amplitude  cannot be predicted precisely 
at any given time. 
Quotient of two  quantities  having the same  unit.  The 
transposition  ratio is the  quotient of the  output frequen- 
cies to  the  input frequencies when they  are expressed in 
Hz. The compression or expansion ratio is the  quotient 
of the  output  amplitudes  to  the  input  amplitude when 
they  are expressed in dB. 
A process is said to be  real-time when it processes sound 
in the moment when it  appears. A real-time  system is 
fast  enough to perform  all the necessary computations to 
process  one  sample of sound  within a sampling  period. 
See feedback. 
See feedback. 
T.ime for a  signal to decrease  from 90 percent to 10 per- 
cent from its final amplitude. 
Narrow  bandwidth filter that amplifies frequencies around 
a  center frequency. 
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Reverberation 

Rise time 

Robotization 
RT constant 

Sampler 

Scaling 

Shelving filter 

Shuffling 

Sibilance 

Side-chain 

Side-chain input 

Side-chain insert 

Slapback 

Sound  effect 

Speaker emulator 

Natural phenomenon  occurring when sound waves prop- 
agate in an enclosed space. 
Time for a signal to rise from 10 percent to 90 percent 
from its final amplitude. 
Applying a fixed pitch  onto a  sound. 
Time needed for a signal to reach  37  percent  (-9dB) of 
its  initial  amplitude. After 5 time  constants  it will have 
reached 1 percent  (-43dB) of its  initial  amplitude. 
A digital  system for recording and playing back short 
musical  sounds in real-time. It is controlled by a MIDI 
keyboard or controller. 
As applied to continuous  controllers, this  determines how 
far a parameter will vary from the programmed setting 
in  response to a given amount of controller  change. 
Tunable  filter which boosts  or  cuts  the lower/higher  end 
of the audio  spectrum. 
Out of a sequence of time  or frequency  elements of sound, 
producing a new sound  with a new random  order.  The 
time shuffling is called brassage in french. 
High frequency  whistling or lisping sound that affects 
vocal recordings, due  either  to poor  mic  technique, ex- 
cessive equalization  or  exaggerated vocal characteristics 
[ Whi991. 
In a  signal  processing  circuit,  such as one employing a 
VCA, a  secondary  signal path in parallel  with the main 
signal path in which the  condition or parameter of an 
audio signal that will cause a processor to begin work- 
ing is sensed  or  detected.  Typical  applications use the 
side-chain  information to control  the gain of a VCA. 
The circuit  may detect level or  frequency  or both. De- 
vices utilizing  side-chains for control  generally fall into 
the classification of dynamic  controllers [BohOO]. 
The side  chain input is necessary for the “ducking” effect, 
used by disc jockeys to automatically  compress  the music 
when they  are  talking [Whi99]. 
This  insert  can  be used to insert an additional  equalizer 
into  the side  chain, to  turn a standard compressor into 
a de-esser for example  [Whi99]. 
Echo effect where only one  replica of the original  signal 
is produced. 
A  sound that comes as  an  audible  illustration in an audio- 
visual  or  multi-media  production. 
A signal processor designed to  imitate  the effect of run- 
ning a signal through a guitar amplifier cabinet. 
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Spectral mutation 

Spectrum inverter 

Sweetening 

Time-constant 

Time warping 
Transposition 

Tremolo 

Undersampling 

Varispeed 
VCA 

Vibrato 

Vocal  gender  change 
Vocoding 
Wah-wah 

Wet 

Whisperization 
White noise 

Timbral  interpolation between two  sounds,  the source 
sound and  the  target  sound,  in  order  to  produce a third 
sound, the  mutant.  Operates  on  the phase and magni- 
tude  data pair of each frequency  band of the source and 
target  spectra  [PE96]. 
An amplitude  modulator where the  modulating frequency 
is equal to  fs/2. By usual audio  sampling frequencies, 
this effect  is usually  unpleasant  because  most of the en- 
ergy of the signal is located close to  the higher  limit of 
the frequency  range. 
Enhancing the sound of a recording  with  equalization 
and various other signal-processing techniques, usually 
during  editing  and mixing of a production. 
A time required by a quantity  that varies exponentially 
with  time,  but less any  constant  component, to change 
by the  factor 1/e = 0.3679. The  quantity  has reached 99 
percent of its final value after a 5 time-constants. 
An alteration of the  linearity of the  time axis. 
See pitch shifting. 
A slow periodic  amplitude  variation, at  a  typical rate of 
0.5 to 20 Hz. 
Sampling  a  signal a t  a  frequency lower than twice the 
signal  bandwidth.  It  produces  aliasing. 
Pl.aying back a  signal  with  time-varying  speed. 
Voltage Controlled Amplifier. 
A cyclical pitch  variation at a  frequency of a few herz, 
typically 3 to 8 Hz. 
Changing  the gender of a given vocal sound. 
See cross-synthesis. 
A foot-controlled  signal processor containing  a  bandpass 
filter with  variable  center frequency. Moving the pedal 
back and  forth changes the center  frequency of the band- 
pass. 
In. practice  the sound processed by an audio effect  is often 
mixed to  the initial  sound.  In  this  case,  the processed 
sound is called the “wet signal”  whereas the  initial signal 
is called the “dry  signal”.  The  term “wet” was initially 
used to qualify sounds affected by a  lot of reverberation, 
whether  contributed by a  room or by an audio  processor. 
Applying a whisper effect onto a sound. 
A sound whose power spectral  density is essentially in- 
dependent of frequency  (white noise need not  be  random 
noise). 
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wow 

Zigzag 

Zipper noise 

Instantaneous  variation of speed at moderately slow rates. 
See flutter. 
During a zigzag  process, a sound is played at  the nomi- 
nal  speed  but  alternatively  forwards  and  backwards.  The 
reversal points  are  set by the  performer [Wis94, Mir981. 
Audible  steps that occur  when  a  parameter is being var- 
ied in a  digital  audio effect [Whi99]. 
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Acoustic rays, 169, 172 
ADC,  3, 6, 501 

Nyquist,  501 
over-sampling,  501 
sigma-delta, 500 

Additive  synthesis,  379,390,396,403, 

Algorithm,  6, 8, 10, 18-20, 24, 27, 29 
Aliasing distortion,  105, 108, 109 
AM-detector,  85 
Ambisonics,  141, 159, 163-164, 167 
Amplitude, 229 

404 

instantaneous, 404 
time-varying, 242 

Amplitude  envelope, 361-3G2, 366 
Amplitude follower, 82,  85, 88-90 
Amplitude  modulation, 75, 77,87,90, 

Amplitude  panning,  139, 140, 162 
Amplitude  scaler,  84 
Amplitude  tracking, 477 
Analog-to-digital  converter, see ADC 
Analysis, 237, 238,  242-244,  269,  277, 

201,  220 

282, 294 
grid, 269 
hop size, 243, 244, 255, 269,  270, 

277, 282 
window, 239,  244 
zero-phase, 244 

Apparent  distance, 143, 187 
Apparent  position,  138,  141,170,188, 

Apparent source width,  137,  153,  177, 

Architecture  and  music,  145 

190 

187 

Artificial reverberation, 152, 177, 180, 

Attack  time, 95, 98, 99, 101, 102 
Attack  time-constant,  84 
Autocorrelation,  307,350-357,366,367 
Autocorrelation  analysis,  351 
Autocorrelation  features, 366-368 
Autocorrelation  method,  305-308,310, 

Averagers, 83 

Bandpass  signal, 240-242,  247 
Bandwidth, 3, 317 
Baseband  signal, 240-242,  247 
Bidirectional Reflection Distribution 

Function, see BRDF 

183 

350 

Binaural, 151, 153,158-160,165,166, 

Binaural  listening, 153, 158, 165 
Binaural  model, 151, 189 
Binaural  to  transaural conversion,  166 
Bitstream, 499, 500 

187-190 

addition, 508 
FIR filter, 507, 510 
IIR  filter, 509 
multiplication,  508 
signal processing, 500, 507 

Blumlein  law,  138 
BRDF, 174 
Brilliance, 149,  175 
Buffer centering, 382 

Causality, 21 
Cepstrum, 300,301,310-315,319-322, 

326, 334, 347 
complex,  311,  315 

525 
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real,  311, 315 
Cepstrum  analysis, 311, 319, 323, 326 
Channel  vocoder, 300-303,  315-317, 

Characteristic  curve, 95,  111,  112, 117- 

Chorus, 69,  70, 75, 460 
Circulant  matrix, 183 
Clipping,  105,  112,  121, 122 

322 

120,  122,  123,  125,  128 

asymmetrical,  112, 120-125 
center, 353 
hard, 105, 120 

symmetrical,  112, 118-120, 125 
Comb  filter,  166,  172,  177,  178, 459 

FIR, 63, 144 
IIR, 64, 180 
lowpass IIR, 72, 166,  178,  179 
universal,  65 

120,  128 

Soft, 112,  114, 118-120,  123-125 

Compression, 97, 100, 110,  116, 118, 

Compression factor,  97 
Compressor,  97,98,100-102,104,105, 

129 
Cone of confusion, 150 
Control, 465 

algorithmic, 476 
feedback loop, 467 
force-feedback, 484 
gestural interfaces, 478 
GUI, 470 
mapping, 467 
MIDI, 479 
sound  features, 476 

batons, 482 
flat  tracking devices, 483 
force-feedback, 484 
haptic  interfaces, 484 
hyperinstrument, 482 
keyboards, 480 
percussion  interfaces, 481 
string  instruments, 481 
wind instruments, 481 
without  physical contact, 486 
worn on  body, 485 

Controllers 

Convolution, 18, 19, 29, 48-50, 154, 

258, 264, 265, 408 
175, 184-186, 192, 240, 255, 

circular, 264, 274, 302, 303, 321 
fast,  6, 46, 49, 264, 265, 319, 323, 

334 
Cross-correlation,  187, 209, 210 
Cross-synthesis, 285, 315-322, 478 
Csound,  158, 183 

DAC, 3, 6, 501 
Nyquist, 501 
over-sampling, 502 
sigma-delta, 500 

DAFX, 1, 3, 29 
Decorrelation,  152, 188, 189 
Delay, 63-73, 143, 147, 169,  172,  173, 

177, 178, 180-184, 352 
dispersive, 445 
fractional, 66-68 
time-varying, 220 
variable-length,  66, 70, 71, 142 

Delay line modulation,  82,  87, 201, 
203, 220, 221 

Delay matrix, 182 
Demodulation,  82, 88 
Demodulator, 75, 82-85 
Denoising, 291-294 
Detector,  82, 83 

amplitude,  82,  361 
full-wave rectifier,  83, 85 
half-wave rectifier, 83, 85 
instantaneous envelope, 83-85 
pitch, 76 
RMS,  84,  85,  89 
squarer, 83 

Deterministic  component (see Sinusoidal 
component), 377, 396 

DFT, 7, 379 
Difference equation, 22, 23, 26, 29 
Diffusion, 171, 174, 184, 188, 189 
Digital  signals, 3 
Digital  systems, 2, 3, 18-23 
Digital Waveguide Networks, 178 
Digital-to-analog  converter, see DAC 
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Directional  psychoacoustics, 141,161- 

Directivity, 137,  192 
Discrete  Fourier transform, see DFT 
discrete-time, 3, 6,  10, 21 
Dispersion, 266-268 
Distance  rendering, 143-145 
Distortion,  93,113,115-117,120,124- 

126, 128, 129, 131 
Doppler effect, 68, 86,  87, 145-147, 

169 
Dummy head, 154, 186 
Duration,  201,202,204,205,207,216, 

Dynamic  behavior,  98 
Dynamic  range  controller, 95-100 
Dynamics, 99, 102 
Dynamics  processing, 95-105 

164 

217,  227, 229, 232, 233 

Early reflections, 175, 176, 178-180 
Echo,  69 
Enhancer, 131-132 
Envelope detector, 95, 96, 98 
Envelope follower, 95 
Envelopment, 175-177, 185 
Equalizer, 50-54 

Excitation  signal, 305,  317,  328, 336 
Exciter, 128-131 
Expander, 97, 98, 100-102,104 
Expansion, 97, 100 
Externalization,  151,  153,  154,  158,187 

time-varying, 58-59 

Far field, 171 
Fast  Fourier transform, see FFT 

Feature  analysis, 399 
Feature  extraction, 336-369, 477 
Feedback  canceller, 59 
Feedback  Delay  Network, see FDN 
Feedback matrix, 182 

FDN,  178, 180-184, 189 

FFT, 6-8, 10,  12, 15, 16, 238,  240, 
242-244, 246, 251, 252, 254, 
255, 257, 258, 262, 264, 265, 

294, 303, 310, 311, 313,  315, 
268, 269,  272-274, 279, 287, 
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323, 326,  330,  334,  337,  361, 
363,367, 382,  430,  433 

FFT analysis, 244,  255,  263,  269 
FFT filtering, 264, 265, 302 
Filter, 31 

allpass, 32, 38-42, 51, 53, 57, 58, 

arbitrary  resolution, 416 
bandpass, 32, 35, 37,  38, 41, 43, 

44, 47, 55, 56, 58, 240, 244, 
247,301,317,416 

bandreject,  32, 38, 41, 43, 44, 47 
bandwidth, 32, 38, 41, 42,45,  50, 

54, 55, 58 
comb,  172, 177, 178, 180 
complementary, 71 
complex-valued bandpass, 249 
damping  factor, 33-38 
FIR comb, 63-65, 144 
gain, 50, 52, 54, 55,  58 
heterodyne, 246,  248,  255 
highpass, 32, 35, 37, 38, 40,  41, 

IIR comb, 64 
lowpass, 3, 31, 33-38,  40, 43, 47, 

240,  242 
notch, 32, 56, 57, 59 
peak, 50-55,  58 
Q factor, 50, 54, 55, 58 
resonator, 32 
shelving, 50-53, 58 
time-varying, 55-57, 397, 408 
universal  comb, 65-66 
wah-wah,  55 

155, 177-179, 188, 433 

43, 47 

Filter  bank, 72,240-242,244-249,254, 

Filter  bank  summation model, 240,244 
FIR  filter, 45-48,  304, 305, 352,  361 
FIR  system, 26 
Flanger,  69, 75, 88 
Flanging, 460 
Flatter echoes, 63 
Flatterzunge,  90, 460 
Formant  changing, 321-328 
Formant  move,  330,  331, 333, 334 
Formant  preservation, 215,  222 

255,  269, 277, 301, 315 
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Formant  scaling, 227 
Formants, 204, 215, 222, 224, 225 
Frequency, 229, 248 

bin, 240, 244, 255, 261-263, 268, 
272, 277, 282, 284, 365 

carrier, 76, 77, 80 
center, 54,  55,  58, 247, 301 

45,  50,  52,  54, 55 
instantaneous,  247,261,263,269, 

272, 274, 277, 282, 284, 404 
Frequency band, 241, 242, 263, 266, 

300 
Frequency modulation, 80 
Frequency  resolution,  10,337,338,342, 

CUt-Off, 31, 33-35,  37-39,  41-43, 

349, 380, 382, 383, 396, 406, 
433 

Frequency  response, 20,33,37,38,47, 
53-55, 313, 322 

Frequency  scaling, 322, 417 
Frequency  shifting, 276 
Frequency  warping,  154,  441 

findamental frequency, 220,289,308, 

351, 377, 387, 393, 400, 402 

time-varying, 453 

310, 312, 321,337-339,347- 

FUZZ, 116,  117, 120-122, 125,  127 

Gabor  transform, 257 
Gaboret, 251, 257-259, 268, 282, 294 
Gaboret  analysis  and  synthesis, 259 
Gaboret  approach, 257, 258 
Gain  factor,  95, 96,  99, 100, 102,  104, 

Gender  change, 422 
Geometrical  acoustics,  172 
Gestural  interfaces, 478 
Glissando,  228, 460 
Granulation, 229-232 
Group delay, 39-41, 43 
Guide,  392,  393 

128 

Halaphon, 170 
Halftone factor, 349 
Harmonic,  299,336,338,339,347,350, 

357, 362, 363, 366, 367, 377, 

387, 392, 393,400 
Harmonic  distortion, 93-95, 105 
Harmonic  generation, 126 
Harmonic/non-harmonic  content, 366 
Harmonics,  94,  95,  105,  110, 112, 117, 

even order, 120-122, 124, 126 
odd  order,  112,119,121,122,124 

119-122, 124, 126-128, 131 

Harmonizer, 205, 215-217, 423 
Head  model,  151 
Head  shadowing, 156 
Head-Related  Impulse  Responses, see 

Head-Related  Transfer  Functions, see 

Heaviness, 176 
Hidden Markov model,  393, 426, 428 
Hilbert  filter, 78, 79,  86 
Hilbert transform, 78, 79, 83 
Hoarseness, 424 
Holophonic reconstruction,  159 
Holophony, 163,  164 
Home theater, 164 
Homomorphic  signal  processing, 319 
Hop size, 242-245, 252, 255, 269, 270, 

272, 273, 275, 277, 279, 282, 
287, 289, 322, 338, 339, 379, 
382, 401 

HRIR 

HRTF 

HRIR, 150, 154, 155 
HRTF, 150,  151, 153-159, 186 

IDFT, 10 
IFFT,  10,238,243,244,246,251,252, 

254, 257, 264, 265, 268, 269, 
272, 274, 279, 282, 291, 311, 
313, 323, 330, 334, 361, 363, 
367,  403-405,430 

IFFT synthesis, 263, 287 
IID,  150,  151,  153, 176 
IIR  filter, 38, 48, 305, 315-317 
IIR  system, 22 
Image  method, 173, 174 
Impression of distance, 143, 176 
Impulse  response, 18, 20-22, 26, 27, 

Infinite  limiter,  105 
29,46-49, 314 
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Inharmonizer, 458 
Interaural differences, 150-151, 189 
Interaural  intensity differences, see IID 
Interaural  time differences, see ITD 
Interpolation, 67, 242, 255,  261,  269, 

270,  280, 282, 289,  322,  326, 

398, 404,  424,  428 
Inverse  Discrete  Fourier  transform, see 

IDFT 
Inverse  Fast  Fourier transform, see IFFT 
Inverse  filter, 305,  308 
Irradiance, 174 
ITD, 150,  151,  153,  155,  156, 176 

331, 333, 334, 382--384, 397, 

Laguerre  transform, 448 
short-time, 449 

Lambertian diffusor, 174 
Late  reverberance, 176 
Leakage effect, 11 
Leslie effect, see Rotary  loudspeaker 
Level measurement,  95,  98,  99 
Limiter, 97-101, 104,  105 
Limiting,  97,  99,  105,  122, 1.29 
Linear  prediction,  300, 317--319, 356 
Linear  Predictive  Coding, see LPC 
Liveness,  176 
Localization,  138,  141, 149--151, 153, 

154,  157,  161, 169 
Localization blur, 154 
Localization  with  multiple Lsudspeak- 

ers, 160-161 
Long-term  Prediction (LTP), 351-360 
Lossless prototype, 182, 183 
LPC, 303-310,315,317,318,322,336, 

350, 399, 424 
LPC  analysis, 350 
LPC  analysis/synthesis  strwture, 304 
LPC  filter, 305,  306,  310 
LT1 system, 18 

Magnitude, 237,  240,  244, 251, 255, 
269, 272,  285,  287, 291 

random, 291 
Magnitude processing, 247 

Magnitude response, 27,39-41,43,52, 

Magnitude  spectrum, 7, 9,  10, 240, 

Main  lobe, 380, 381, 405,  406,  408 

MATLAB, 1 
Maximum-Length  Sequence, see MLS 
MIDI  controllers, 479 
Mimicking,  365, 366 
Mirror  reflection,  173,  175 
MLS, 154 
Modulation, 75-82,  86-88, 361, 478 

amplitude, 75,  77,  87, 90 
frequency,  80 
phase,  75,  80,  82, 88 

Modulator, 76-82 
amplitude, 77 
frequency and  phase,  80 
ring, 76 
single-side band, 77 

93, 301, 313 

291 

bandwidth, 381 

Moorer’s reverberator, 179 
Morphing, 88, 285,  424, 426, 460 
Multiband effects, 71, 72 
Mutation, 285-287 

Near field, 171 
Noise gate,  97, 98, 102-104,  291,  292 
Nonlinear distortion, see Distortion 
Nonlinear  modeling, 106-109 
Nonlinear  processing, 93-135 
Nonlinear system,  93,  94, 106-108 
Nonlinearity,  94,  108,  109,  120,  124, 

Normal  modes, 171,172,174,180,183, 
133 

184 

Octave  division,  127 
Odd/even  harmonics  ratio, 366, 367 
OLA, 238, 244,  251,  254,  265,  274, 

280, 282,405,407,  408,430 
Oscillator, 246, 247,  404 
Oscillator  bank, 247,  248,  255, 269, 

Overdrive,  93, 116-118, 120 
Overlap  and  Add, see OLA 

279,404, 405 
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Panorama, 138, 142,  145 
Partial  tracking, 477 
Peak  continuation, 348, 377, 390, 392, 

Peak  detection,  383,384,390,431,433 
Peak  filter, 52-54 
Peak  measurement,  98,  99, 102 
Peak  Program  Meter  (PPM),  85 
Peak value, 95 
Pentode, 112 
Perceptive  features, 336 
Perceptual  interface,  176 
Phase, 32, 40, 48, 56,  237,  240, 242, 

244,  245,  247,  248,  251,  254, 

287,  291,  337,  338,  377, 379, 
396,  397,  431, 434 

397, 431,433 

255, 267-269,  272,  284, 285, 

instantaneous, 338, 404 
random, 290, 408 
target, 262, 338,  339 
unwrapped, 262,  263, 270, 274, 

zero,  287 
275, 339 

Phase difference, 270, 272, 277,  338 
Phase  increment, 269, 270, 272, 274, 

Phase  interpolation, 255, 261, 269 
Phase  modulation, 75, 80,  82,  88, 201 
Phase  processing, 247 
Phase  representation, 254 
Phase  response,  27, 39-41, 43, 47, 93 
Phase  spectrum,  8, 240 
Phase  unwrapping, 255, 261,  275 
Phase  vocoder,  238,242-244,254,263, 

269, 275, 348 
Phase vocoder  basics, 238-244 
Phase vocoder implementations, 244- 

263 
Phaser, 56-57, 75,  86 
Phasiness,  188,  190, 432 
Phasing, 460 
Phasogram, 244, 259, 260, 289, 292 
Pinna-head-torso,  150,  154,  155,  158, 

Pitch, 201-207, 209, 211, 212, 214- 

277,  279,  282 

159 

216,  221-224, 229, 232, 233, 

303,  314, 315, 336, 337, 363, 
365, 366, 387, 422 

discretization, 419 
transposition, 418, 419, 422 

Pitch  detector, 76 
Pitch  estimation, 387 
Pitch  extraction, 337-360, 367 
Pitch  lag, 348-350, 352, 354-358 
Pitch  mark, 212,  214, 222-224, 308, 

Pitch over time,  347, 348, 360 
Pitch  period, 212, 222, 224, 308, 312, 

321, 347,  348,  350, 351, 354, 
366 

Pitch  scaling, see Pitch  shifting 
Pitch  shifter, 217, 220 
Pitch  shifting,  126,147,201,202,215- 

310 

225, 229, 233, 276-282, 337, 
456 

tion, 330-336 

477 

Pitch  shifting  with  formant preserva- 

Pitch  tracking,  336,337,343,347,360, 

Pitch  transposer, 217, 220, 221 
Pitch-synchronous  Overlap  and  Add, 

see PSOLA 
Precedence effect, 138,  141, 142, 145, 

159, 160, 168, 176, 190,  191 
Prediction  error, 304,  305, 307-309, 

Prediction  error  filter, 305 
Prediction  filter, 304 
Prediction  order, 304 
Presence,  175 
Processing 

350-352,356,  357 

block,  6, 24, 27,  29 
sample-by-sample,  6, 24, 27, 29 

PSOLA, 211-213,  222-225, 227,  231 
PSOLA  analysis, 212 
PSOLA  pitch  shifting, 225 
PSOLA  time  stretching, 213 

Quantization, 6 

Radiance,  174 
Ray  tracing,  173,  185 
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Rectification 
full-wave, 126, 127 
half-wave, 126,  127 

Reflection function,  173 
Region attributes, 402 
Release  time,  95, 98, 99, 101, 102 
Release time-constant,  84 
Resampling, 201,  217, 218, 222-225, 

233, 277, 279,  280, 333, 336 
Residual  analysis,  396,  397 
Residual  approximation,  397,399,407 
Residual  component (see also  Stochas- 

tic  component),  37!1,391,396, 
400, 401,403,407 

Residual  synthesis,  407, 408 
Resynthesis, see Synthesis 
Reverberation,  137,144,145,149,152, 

Rhythm  tracking, 477 
Richness of harmonics,  362, 363, 369 
RMS,  84, 85, 89 
RMS  measurement, 98, 100 
RMS value, 95,301,315-317,361,364, 

365 
Robotization, 287-289 
Room  acoustics,  172, 174-176 
Room  presence,  175 
Room-within-the-room  model, 149,160, 

Root Mean Square, see RMS 
Rotary  loudspeaker, 86-88 
Running  reverberance,  175,  176,  186 

169-180, 184,  185 

167 

Sampling, 3, 6 
Sampling frequency, 3 
Sampling  interval, 3, 19 
Sampling rate, 3 
Sampling  theorem, 3 
Score following, 478 
Segmentation, 402 
Shelving  filter, 51-52 
Short-time Fourier transform, 239-241, 

Side chain, 95, 130-132 
Sigma  Delta  Modulation, 499,501,502 

243, 375, 376, 379 

ADC, 500 

DAC,  499, 500 
first-order modulator, 504 
linearized  model, 504 
second-order modulator, 506 

Signal flow graph, 2, 18, 19, 22, 23 
Single reflection, 143, 144 
Single-side band, see SSB modulation 
Sinusoidal  analysis, 387, 390 
Sinusoidal  component  (see also Deter- 

ministic  component),  377,400, 
401,  403,  416-418,420, 424 

Sinusoidal  model,  376,  383,  391 
Sinusoidal  plus  residual  model, 376, 

377, 379, 397, 399 
Sinusoidal subtraction, 379, 396, 397 
Sinusoidal  synthesie, 403, 408 
Sinusoidal track, 376, 431 
Slapback,  69 
Slope  factor,  97 
SMS, 375,426,427,429 

SOLA time  stretching, 208,  210 
Sonic perspective,  145 
Sound level meter, 85 
Sound  particle,  174 
Sound  radiation  simulation, 191-192 
Sound trajectories, 147-149 
Soundhack,  158 
Source  signal,  300, 301,  312-315 
Source-filter model, 299, 310, 314 
Source-filter representation, 336 
Source-filter separation, 300-315 
Source-filter transformations, 315-336 
Space  rendering, 143 
Spaciousness, see Spatial impression 
Spatial effects, 137-200 
Spatial impression, 151, 176, 187, 191 
Spatialisateur,  145,  149,  158 
Spatialization,  146, 149, 151, 153, 159, 

Spectral  Centroid, 362 
Spectral  centroid, 366, 477 
Spectral  correction, 322, 323 
Spectral envelope, 201, 202, 222, 224, 

SOLA, 208-210,  218 

160, 165, 167-170, 191 

231,  299-304,  307-315, 317, 
319, 321-324, 326, 328, 330, 
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331, 333, 334,  336, 350 
Spectral  interpolation, 328-330 
Spectral  models, 375 
Spectral  shape  (see also Spectral  en- 

velope),  401,  402,  418,  420, 
422,  428, 429 

Spectral  subtraction, 291 
Spectrogram,  15,57,59,244,259,260, 

289, 292, 342,  343 
Spectrum, 238,  246,  268,  291 

short-time, 242, 244, 251 
time-varying,  238, 240 

Spectrum  analysis 
short-time,  15 

Speech  recognizer,  426, 428 
SSB modulation,  86,  88 
SSB modulator, 86 
Stability, 21 
Stable/transient  components  separa- 

Static  function,  95, 97, 99 
Statistical  features, 369 
Stautner-Puckette FDN, 180 
Stereo  enhancement, 186 
Stereo  image, 434 
Stereo  panning,  139,  141,  161 
Stochastic  component/part (see also 

Subharmonic  generation, 126 
Subtractive  synthesis, 403 
Sum of sinusoids, 246, 255, 269, 277 
Surround  sound,  141, 164 
Sweet spot,  164, 170 
Synchronous  Overlap  and  Add, see SOLA 
Synthesis,  237,238,242,244,247,255, 

263, 269, 270, 272, 277,  288 
grid, 269 
hop size, 243,  244, 269, 272, 273, 

275, 277, 287 
window,  244, 274 

tion, 282-285 

Residual  component),  377,396 

Synthesis  filter,  303-305,307-309,317, 
336 

Tangent  law,  139,  140 
Tape  saturation,  128 
Tapped delay  line,  157,  178,  179 

Taylor series expansion,  108 
Threshold,  95,  97,  99, 102, 104, 105, 

118, 120 
Timbre  preservation,  418 
Time  compression, 202, 203, 205, 208, 

Time  expansion,  202, 203,  205, 208, 

Time  resolution,  380, 396, 406,  433 
Time  scaling, see Time  stretching, 205, 

206, 208, 209, 211, 218, 224, 
233, 429 

213, 217,  220 

213, 217,  220 

Time shuffling, 226-229 
Time  stretching, 201, 205-214, 217, 

277, 336, 337, 402 
218, 222,223, 225, 229, 268- 

adaptive, 368 
Time  warping, 440 
Time-constant,  83 

attack, 84 
release,  84 

Time-frequency  filtering, 263-266 
Time-frequency grid, 243 
Time-frequency processing, 237-297 
Time-frequency representation,  15,237, 

251, 254, 255, 257, 258, 263, 
267, 268, 282, 285, 287, 288, 
290, 299, 301, 336, 342 

Time-frequency  scaling, 268, 269 
Trajectories, 390, 391,  393,  397 
Transaural,  159, 160, 165, 186, 187 
Transaural  listening,  165 
Transaural  spatialization, 160 
Transaural  stereo, 165-167 
Transfer  function, 20-22, 24, 26, 34, 

Transformation, 237,  238, 269,  274 
Transients, 432 
Transparent  amplification,  142 
Transposition,  203,204,207,215-217, 

228, 322, 326 
Tremolo, 75, 77, 78, 90, 420 
Trill, 460 
Triode, 111-113, 120, 121 
Tube, see Valve 
Tube  distortion, 122 

36, 39-41, 43, 46, 51, 52, 54 
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Tube  simulation, 122, 123 
Two-way  mismatch, 387, 388 

Unit  impulse,  18, 26 

Valve, 109-112,114-116,120,121,128 
Valve amplifier, 106, 110-113, 115 
Valve amplifier circuits,  113 
Valve basics, 111 
Valve simulation, 109-116 
Variable  speed replay, 202-206, 217 
Varispeed,  203 
Vector  Base  Amplitude Panning  (VBAP), 

Vector  Base Panning  (VBP), 162 
Vibrato,  68, 75, 82, 86-88,  402, 420, 

429,  460 
Virtual  room,  149, 159, 167 
Virtual sound source,  138-l40,  143, 

Vocoder, 85, see Vocoding 
Vocoding, 299, 315-321,478 
Voice conversion, 426 
Voice/silence, 477 
Voice/unvoiced detection, 366 
Voiced/unvoiced,  345, 366, 367, 369, 

Volterra series expansion,  106 
VU-meter,  85 

162 

148, 151,  162, 163, 167-170 

477 

Wah-wah,  55, 75 
Warmth,  149,  175 
Warping, 322, 326, 328, 440 
Waterfall  representation,  15,  16,  115, 

116,  119,  120, 122, 124, 126, 
129-132 

Wave-Field  Synthesis,  164 
Waveguide reverberator, 178 
Waveshaping,  363, 365, 366 
Whisperization, 290-291 
Whitening, 319, 321, 322 
Window, 240,  244, 251, 252, 254, 258, 

260, 268, 273, 279, 433 
Blackman, 11, 47,  275 
Blackman-Harris,  381, 406,  408 
functions,  10, 11 

Gaussian, 275, 310 
Hamming,  12, 47, 275, 307, 310 
Hanning, 275, 302, 310 
rectangular, 265 
size, 379, 381, 382 
sliding, 238-240,  254 
triangular, 407,  408 
type, 379, 381,  382 
zero-padded, 251, 274 

Window length, 242, 290 
Window period, 273 
Windowing, 251, 252, 257, 258,  274 

Z-transform, 21-23, 26,  27,  46 
Zero crossing, 126 
Zero-padding,  10, 382, 383, 433 
Zero-phase,  314, 382 
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