

DAFX - Digital Audio Effects

DAFX - Digital Audio Effects

Udo Zolzer, Editor
University of the Federad Armed Forces, Hamburg, Germany
Xavier Amatriain
Pompeu Fabra University, Barcelona, Spain
Daniel Arfib
CNRS - Laboratoire de Mkcanique et d’Acoustique, Marseille, France
Jordi Bonada
Pompeu Fabra University, Barcelona, Spain
Giovanni De Poli
University of Padova, Italy
Pierre Dutilleux
Liibeck, Germany
Gianpaolo Evangelista
Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland
Florian Keiler
University of the Federal Armed Forces, Hamburg, Germany
Alex Loscos
Pompeu Fabra University, Barcelona, Spain
Davide Rocchesso
University of Verona, Italy
Mark Sandler
Queen Mary, University of London, United Kingdom
Xavier Serra
Pompeu Fabra University, Barcelona, Spain
Todor Todoroff
Brussels, Belgium

0
JOHN WILEY & SONS, LTD

Copyright 0 2 0 0 2 by John Wiley & Sons, Ltd
Baffins Lane, Chichester,
West Sussex, P O 19 lUD, England

National 01243 779777
International (t 4 4) 1243 779777
e-mail (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on http://www.wiley.co.uk
or http://www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except under the terms of the Copyright Designs and Patents Act 1988 or
under the terms of a licence issued by the Copyright Licensing Agency, 90 Tottenham Court Road,
London, W1P OLP, UK, without the permission in writing of the Publisher, with the exception
of any material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use by the purchaser of the publication.

Neither the authors nor John Wiley & Sons, Ltd accept any responsibility or liability for loss or
damage occasioned to any person or property through using the material, instructions, methods
or ideas contained herein, or acting or refraining from acting as a result of such use. The authors
and Publisher expressly disclaim all implied warranties, including merchantability of fitness for
any particular purpose. There will be no duty on the authors of Publisher to correct any errors or
defects in the software.

Designations used by companies to distinguish their products are often claimed as trademarks.
In all instances where John Wiley & Sons, Ltd is aware of a claim, the product names appear in
initial capital or capital letters. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

WILEY-VCH Verlag GmbH
Pappelallee 3, D-69469 Weinheim, Germany

John Wiley & Sons Australia, Ltd, 33 Park Road, Milton,
Queensland 4064, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road
Rexdale, Ontario, M9W 1L1, Canada

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01,
Jin Xing Distripark, Singapore 129809

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 471 49078 4

Produced from PostScript files supplied by the author.
Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn.
This book is printed on acid-free paper responsibly manufactured from sustainable forestry,
in which a t least two trees are planted for each one used for paper production.

Contents

Preface xiv

List of Contributors xvi

1 Introduction 1

U . Zolzer
1.1 Digital Audio Effects DAFX with MATLAB 1

1.2 Fundamentals of Digital Signal Processing 2

1.2.1 Digital Signals . 3

1.2.2 Spectrum Analysis of Digital Signals 6

1.2.3 Digital Systems . 18
1.3 Conclusion . 29

Bibliography . 29

2 Filters

P . Dutilleux. U . ZoJzer
2.1 Introduction .
2.2 Basic Filters .

2.2.1 Lowpass Filter Topologies .
2.2.2 Parametric AP, LP, HP. BP and BR Filters
2.2.3 FIR Filters .
2.2.4 Convolution .

2.3 Equalizers .
2.3.1 Shelving Filters .

2.4 Time-varying Filters .
2.3.2 Peak Filters .

31
33
33
38

45
48

50
51

52
55

vi Contents

2.4.1 Wah-wah Filter .
2.4.2 Phases .
2.4.3 Time-varying Equalizers .

2.5 Conclusion .
Sound and Music .
Bibliography .

3 Delays
P . Dutilleux. U . Zolzer
3.1 Introduction .
3.2 Basic Delay Structures .

3.2.1 FIR Comb Filter .
3.2.2 IIR Comb Filter .
3.2.3 Universal Comb Filter .
3.2.4 Fractional Delay Lines .

3.3 Delay-based Audio Effects .
3.3.1 Vibrato .
3.3.2 Flanger, Chorus, Slapback, Echo
3.3.3 Multiband Effects .
3.3.4 Natural Sounding Comb Filter

3.4 Conclusion .
Sound and Music .
Bibliography .

4 Modulators and Demodulators
P . Dutilleux. U . Zolzer
4.1 Introduction .
4.2 Modulators .

4.2.1 Ring Modulator .

4.2.3 Single-Side Band Modulator
4.2.2 Amplitude Modulator .

4.2.4 Frequency and Phase Modulator
4.3 Demodulators .

4.3.1 Detectors .
4.3.2 Averagers .
4.3.3 Amplitude Scalers .

55
56
58
59
59
60

63

63
63
63
64
65

66
68
68
69
71
72

73
73
73

75

75
76
76
77
77
80
82
83

83
84

Contents vii

4.3.4 Typical Applications . 84

4.4 Applications . 85

4.4.1 Vibrato . 86

4.4.2 Stereo Phaser . 86

4.4.3 Rotary Loudspeaker Effect 86

4.4.4 SSB Effects . 88

4.4.5 Simple Morphing: Amplitude Following 88

4.5 Conclusion . 90

Sound and Music . 91

Bibliography . 91

5 Nonlinear Processing 93

P . Dutjlleux. U . Zolzer

5.1 Introduction . 93

5.2 Dynamics Processing . 95

5.2.1 Limiter . 99

5.2.2 Compressor and Expander . 100

5.2.3 Noise Gate . 102

5.2.4 De-esser . 104

5.2.5 Infinite Limiters . 105

5.3 Nonlinear Processors . 106

5.3.1 Basics of Nonlinear Modeling 106

5.3.2 Valve Simulation . 109

5.3.3 Overdrive, Distortion and Fuzz 116

5.3.4 Harmonic and Subharmonic Generation 126

5.3.5 Tape Saturation . 128

5.4 Exciters and Enhancers . 128

5.4.1 Exciters . 128

5.4.2 Enhancers . 131

5.5 Conclusion . 132

Sound and Music . 133

Bibliography . 133

v111 1.. Contents

6 Spatial Effects 137

D . Rocchesso

6.1 Introduction . 137

6.2 Basic Effects . 138

6.2.1 Panorama . 138

6.2.2 Precedence Effect . 141

6.2.3 Distance and Space Rendering 143

6.2.4 Doppler Effect . 145

6.2.5 Sound Trajectories . 147

6.3 3D with Headphones . 149

6.3.1 Localization . 149

6.3.2 Interaural Differences . 151

6.3.3 Externalization . 151

6.3.4 Head-Related Transfer Functions 154

6.4 3D with Loudspeakers . 159

6.4.1 Introduction . 159

6.4.2 Localization with Multiple Speakers 160

6.4.3 3D Panning . 161

6.4.4 Ambisonics and Holophony 163

6.4.5 Transaural Stereo . 165

6.4.6 Room-Within-the-Room Model 167

6.5 Reverberation . 170

6.5.1 Acoustic and Perceptual Foundations 170

6.5.2 Classic Reverberation Tools 177

6.5.3 Feedback Delay Networks . 180

6.5.4 Convolution with Room Impulse Responses 184

6.6 Spatial Enhancements . 186

6.6.1 Stereo Enhancement . 186

6.6.2 Sound Radiation Simulation 191

6.7 Conclusion . 193

Sound and Music . 193

Bibliography . 194

Contents ix

7 Time-segment Processing 201
P . Dutilleux. G . De Poli. U . Zolzer

7.1 Introduction . 201

7.2 Variable Speed Replay . 202

7.3 Time Stretching . 205
7.3.1 Historical Methods - Phonoghe 207

7.3.2 Synchronous Overlap and Add (SOLA) 208

7.3.3 Pitch-synchronous Overlap and Add (PSOLA) 211
7.4 Pitch Shifting . 215

7.4.1 Historical Methods - Harmonizer 216

7.4.2 Pitch Shifting by Time Stretching and Resampling 217

7.4.4 Pitch Shifting by PSOLA and Formant Preservation 222

7.4.3 Pitch Shifting by Delay Line Modulation 220

7.5 Time Shuffling and Granulation . 226

7.5.1 Time Shuffling . 226

7.5.2 Granulation . 229

7.6 Conclusion . 232
Sound and Music . 233
Bibliography . 234

8 Time-frequency Processing 237
D . Arfib. F . Keiler. U . Zolzer

8.1 Introduction . 237

8.2 Phase Vocoder Basics . 238

8.2.1 Filter Bank Summation Model 240

8.2.2 Block-by-Block Analysis/Synthesis Model 242

8.3 Phase Vocoder Implementations . 244

8.3.1 Filter Bank Approach . 246
8.3.2 Direct FFT/IFFT Approach 251

8.3.3 FFT Analysis/Sum of Sinusoids Approach 255

8.3.4 Gaboret Approach . 257

8.3.5 Phase Unwrapping and Instantaneous Frequency 261

8.4 Phase Vocoder Effects . 263
8.4.1 Time-frequency Filtering . 263

8.4.2 Dispersion . 266

X Contents

8.4.3 Time Stretching . 268
8.4.4 Pitch Shifting . 276
8.4.5 Stable/Transient Components Separation 282
8.4.6 Mutation between Two Sounds 285

8.4.7 Robotization . 287
8.4.8 Whisperization . 290
8.4.9 Demising . 291

8.5 Conclusion . 294

Bibliography . 295

9 Source-Filter Processing 299
D . Arfib. F . Keiler. U . Zolzer
9.1 Introduction . 299
9.2 Source-Filter Separation . 300

9.2.1 Channel Vocoder . 301
9.2.2 Linear Predictive Coding (LPC) 303
9.2.3 Cepstrum . 310

9.3 Source-Filter Transformations . 315

9.3.1 Vocoding or Cross-synthesis 315
9.3.2 Formant Changing . 321
9.3.3 Spectral Interpolation . 328
9.3.4 Pitch Shifting with Formant Preservation 330

9.4 Feature Extraction . 336

9.4.1 Pitch Extraction . 337
9.4.2 Other Features . 361

9.5 Conclusion . 370

Bibliography . 370

10 Spectral Processing 373
X . Amatriain. J . Bonada. A . Loscos. X . Serra
10.1 Introduction . 373
10.2 Spectral Models . 375

10.2.1 Sinusoidal Model . 376

10.2.2 Sinusoidal plus Residual Model 376
10.3 Techniques . 379

10.3.1 Analysis . 379

Contents xi

10.3.2 Feature Analysis . 399

10.3.4 Main Analysis-Synthesis Application 409
10.4 FX and Transformations . 415

10.4.1 Filtering with Arbitrary Resolution 416
10.4.2 Partial Dependent Frequency Scaling 417
10.4.3 Pitch Transposition with Timbre Preservation 418
10.4.4 Vibrato and Tremolo . 420
10.4.5 Spectral Sha. pe Shift . 420
10.4.6 Gender Change . 422
10.4.7 Harmonizer . 423
10.4.8 Hoarseness . 424
10.4.9 Morphing . 424

10.5 Content-Dependent Processing . 426
10.5.1 Real-time Singing Voice Conversion 426
10.5.2 Time Scaling . 429

10.6 Conclusion . 435

10.3.3 Synthesis . 403

Bibliography . 435

11 Time and Frequency Warping Musical Signals 439
G . Evangelista
11.1 Introduction . 439
11.2 Warping . 440

11.2.1 Time Warping . 440
11.2.2 Frequency Warping . 441
11.2.3 Algorithms for Warping . 443

11.2.5 Time-varying Frequency Warping 453
11.3 Musical Uses of Warping . 456

11.3.1 Pitch Shifting Inharmonic Sounds 456
11.3.2 Inharmonizer . 458

Excitation Signals in Inharmonic Sounds 459
11.3.4 Vibrato, Glissando, Trill and Flatterzunge 460
11.3.5 Morphing . 460

11.4 Conclusion . 462

11.2.4 Short-time Warping and Real-time Implementation 449

11.3.3 Comb FilteringfWarping and Extraction of

Bibliography . 462

xii Contents

12 Control of Digital Audio Effects 465

T . Todoroff
12.1 Introduction . 465

12.2 General Control Issues . 466

12.3 Mapping Issues . 467

12.3.1 Assignation . 468

12.3.2 Scaling, . 469

12.4 GUI Design and Control Strategies 470

12.4.1 General GUI Issues . 470

12.4.2 A Small Case Study . 471

12.4.3 Specific Real-time Control Issues 472

12.4.4 GUI Mapping Issues . 473

12.4.5 GUI Programming Languages 475
12.5 Algorithmic Control . 476

12.5.1 Abstract Models . 476

12.5.2 Physical Models . 476
12.6 Control Based on Sound Features . 476

12.6.1 Feature Extraction . 477

12.6.2 Examples of Controlling Digital Audio Effects 478
12.7 Gestural Interfaces . 478

12.7.1 MIDI Standard . 479

12.7.2 Playing by Touching and Holding the Instrument 480
12.7.3 Force-feedback Interfaces . 484

12.7.4 Interfaces Worn on the Body 485

12.7.5 Controllers without Physical Contact 486
12.8 Conclusion . 488

Sound and Music . 490

Bibliography . 490

13 Bitstream Signal Processing 499

M . Sandler. U . Zolzer
13.1 Introduction . 499

13.2 Sigma Delta Modulation . 501

13.2.1 A Simple Linearized Model of SDM 502

13.2.2 A First-order SDM System 504

Contents xiii

13.2.3 Second and Higher Order SDM Systems 505
13.3 BSP Filtering Concepts . 507

13.3.1 Addition and Multiplication of Bitstream Signals 508
13.3.2 SD IIR Filters . 509
13.3.3 SD FIR Filters . 510

13.4 Conclusion . 511
Bibliography . 511

Glossary
Bibliography

515
. 524

Index 525

xiv

Preface

DAFX is a synonym for digital audio effects. It is also the name for a European
research project for co-operation and scientific transfer, namely EU-COST-G6
“Digital Audio Effects” (1997-2001). It was initiated by Daniel Arfib (CNRS,
Marseille). In the past couple of years we have had four EU-sponsored international
workshops/conferences on DAFX, namely, in Barcelona (DAFX-98l), Trondheim
(DAFX-9g2), Verona (DAFX-003), and Limerick (DAFX-014). A variety of DAFX
topics have been presented by international participants at these conferences. The
papers can be found on the corresponding web sites.

This book not only reflects these conferences and workshops, it is intended as a
profound collection and presentation of the main fields of digital audio effects. The
contents and structure of the book were prepared by a special book work group and
discussed in several workshops over the past years sponsored by the EU-COST-
G6 project. However, the single chapters are the individual work of the respective
authors.

Chapter 1 gives an introduction to digital signal processing and shows software
implementations with the MATLAB programming tool. Chapter 2 discusses digi-
tal filters for shaping the audio spectrum and focuses on the main building blocks
for this application. Chapter 3 introduces basic structures for delays and delay-
based audio effects. In Chapter 4 modulators and demodulators are introduced and
their applications to digital audio effects are demonstrated. The topic of nonlinear
processing is the focus of Chapter 5. First, we discuss fundamentals of dynamics
processing such as limiters, compressors/expanders and noise gates and then we
introduce the basics of nonlinear processors for valve simulation, distortion, har-
monic generators and exciters. Chapter 6 covers the wide field of spatial effects
starting with basic effects, 3D for headphones and loudspeakers, reverberation and
spatial enhancements. Chapter 7 deals with time-segment processing and introduces
techniques for variable speed replay, time stretching, pitch shifting, shuffling and
granulation. In Chapter 8 we extend the time-domain processing of Chapters 2-7.
We introduce the fundamental techniques for time-frequency processing, demon-
strate several implementation schemes and illustrate the variety of effects possible
in the two-dimensional time-frequency domain. Chapter 9 covers the field of source-
filter processing where the audio signal is modeled as a source signal and a filter.
We introduce three techniques for source-filter separation and show source-filter
transformations leading to audio effects such as cross-synthesis, formant changing,
spectral interpolation and pitch shifting with formant preservation. The end of this
chapter covers feature extraction techniques. Chapter 10 deals with spectral process-
ing where the audio signal is represented by spectral models such as sinusoids plus
a residual signal. Techniques for analysis, higher-level feature analysis and synthesis
are introduced and a variety of new audio effects based on these spectral models

‘http://www.iua.upf.es/dafxgd
2http://www.notam.uio.no/dafx99
3http://profs.sci.univr.it/̂ dafx
4http://www.csis.ul.ie/dafx01

Preface XV

are discussed. Effect applications range from pitch transposition, vibrato, spectral
shape shift, gender change to harmonizer and morphing effects. Chapter 11 deals
with fundamental principles of time and frequency warping techniques for deforming
the time and/or the frequency axis. Applications of these techniques are presented
for pitch shifting inharmonic sounds, inharmonizer, extraction of excitation signals,
morphing and classical effects. Chapter 12 deals with the control of effect processors
ranging from general control techniques to control based on sound features and ges-
tural interfaces. Finally, Chapter 13 illustrates new challenges of bitstream signal
representations, shows the fundamental basics and introduces filtering concepts for
bitstream signal processing. MATLAB implementations in several chapters of the
book illustrate software implementations of DAFX algorithms. The MATLAB files
can be found on the web site h t t p : //www . daf x. de.

I hope the reader will enjoy the presentation of the basic principles of DAFX
in this book and will be motivated to explore DAFX with the help of our software
implementations. The creativity of a DAFX designer can only grow or emerge if
intuition and experimentation are combined with profound knowledge of physical
and musical fundamentals. The implementation of DAFX in software needs some
knowledge of digital signal processing and this is where this book may serve as a
source of ideas and implementation details.

Acknowledgements

I would like to thank the authors for their contributions to the chapters and also the
EU-Cost-G6 delegates from all over Europe for their contributions during several
meetings and especially Nicola Bernadini, Javier Casajus, Markus Erne, Mikael
Fernstrom, Eric Feremans, Emmanuel Favreau, Alois Melka, Jmran Rudi, and Jan
Tro. The book cover is based on a mapping of a time-frequency representation of a
musical piece onto the globe by Jmran Rudi. Jmran has also published a CD-ROM5
for making computer music “DSP-Digital Sound Processing”, which may serve as a
good introduction to sound processing and DAFX. Thanks to Catja Schumann for
her assistance in preparing drawings and formatting, Christopher Duxbury
for proof-reading and Vincent Verfaille for comments and cleaning up the code lines
of Chapters 8 to 10. I also express my gratitude to my staff members Udo Ahlvers,
Manfred Chrobak, Florian Keiler, Harald Schorr, and Jorg Zeller at the UniBw
Hamburg for providing assistance during the course of writing this book. Finally,
I would like to thank Birgit Gruber, Ann-Marie Halligan, Laura Kempster, Susan
Dunsmore, and Zoe Pinnock from John Wiley & Sons, Ltd for their patience and
assistance.

My special thanks are directed to my wife Elke and our daughter Franziska.

Hamburg, March 2002 Udo Zolzer

xvi

List of Contributors
Xavier Amatriain was born in Barcelona in 1973. He studied Telecommunications
Engineering at the UPC (Barcelona) where he graduated in 1999. In the same year
he joined the Music Technology Group in the Audiovisual Institute (Pompeu Fabra
University). He is currently a lecturer at the same university where he teaches
Software Engineering and Audio Signal Processing and is also a PhD candidate.
His past research activities include participation in the MPEG-7 development task
force as well as projects dealing with synthesis control and audio analysis. He is
currently involved in research in the fields of spectral analysis and the development
of new schemes for content-based synthesis and transformations.
Daniel Arfib (born 1949) received his diploma as “inghieur ECP” from the Ecole
Centrale of Paris in 1971 and is a “docteur-inghieur” (1977) and “docteur es sci-
ences” (1983) from the Universitk of Marseille 11. After a few years in education
or industry jobs, he has devoted his work to research, joining the CNRS (National
Center for Scientific Research) in 1978 at the Laboratory of Mechanics and Acous-
tics (LMA) of Marseille (France). His main concern is to provide a combination of
scientific and musical points on views on synthesis, transformation and interpreta-
tion of sounds using the computer as a tool, both as a researcher and a composer. As
the chairman of the COST-G6 action named “Digital Audio Effects” he has been in
the middle of a galaxy of researchers working on this subject. He also has a strong
interest in the gesture and sound relationship, especially concerning creativity in
musical systems.
Jordi Bonada studied Telecommunication Engineering at the Catalunya Polytech-
nic University of Barcelona (Spain) and graduated in 1997. In 1996 he joined the
Music Technology Group of the Audiovisual Institute of the UPF as a researcher
and developer in digital audio analysis and synthesis. Since 1999 he has been a
lecturer at the same university where he teaches Audio Signal Processing and is
also a PhD candidate in Informatics and Digital Communication. He is currently
involved in research in the fields of spectral signal processing, especially in audio
time-scaling and voice synthesis and modeling.
Giovanni De Poli is an Associate Professor of Computer Science at the Depart-
ment of Electronics and Informatics of the University of Padua, where he teaches
“Data Structures and Algorithms” and “Processing Systems for Music”. He is the
Director of the Centro di Sonologia Computazionale (CSC) of the University of
Padua. He is a member of the Executive Committee (ExCom) of the IEEE Com-
puter Society Technical Committee on Computer Generated Music, member of the
Board of Directors of AIM1 (Associazione Italiana di Informatica Musicale), member
of the Board of Directors of CIARM (Centro Interuniversitario di Acustica e Ricerca
Musicale), member of the Scientific Committee of ACROE (Institut National Po-
litechnique Grenoble), and Associate Editor of the International Journal of New
Music Research. His main research interests are in algorithms for sound synthesis
and analysis, models for expressiveness in music, multimedia systems and human-
computer interaction, and the preservation and restoration of audio documents.
He is the author of several scientific international publications, and has served in

List of Contributors xvii

the Scientific Committees of international conferences. He is coeditor of the books
Representations of Music Signals, MIT Press 1991, and Musical Signal Processing,
Swets & Zeitlinger, 1996. Systems and research developed in his lab have been ex-
ploited in collaboration with digital musical instruments industry (GeneralMusic).
He is the owner of patents on digital music instruments.

Pierre Dutilleux graduated in thermal engineering from the Ecole Nationale
Supkrieure des Techniques hdustrielles et des Mines de Douai (ENSTIMD) in 1983
and in information processing from the Ecole Nationale Supkrieure d’Electronique
et de Radioklectricitk de Grenoble (ENSERG) in 1985. He developed audio and
musical applications for the Syter real-time audio processing system designed at
INA-GRM by J.-F. Allouis. After developing a set of audio processing algorithms
as well as implementing the first wavelet analyzer on a digital signal processor, he
got a PhD in acoustics and computer music from the University of Aix-Marseille I1
in 1991 under the direction of J.-C. Risset. From 1991 through 2000 he worked as
a research and development engineer at the ZKM (Center for Art and Media Tech-
nology) in Karlsruhe. There he planned computer and digital audio networks for a
large digital audio studio complex, and he introduced live electronics and physical
modeling as tools for musical production. He contributed to multimedia works with
composers such as K. Furukawa and M. Maiguashca. He designed and realized the
AML (Architecture and Music Laboratory) as an interactive museum installation.
He is a German delegate on the Digital Audio Effects (DAFX) project. He describes
himself as a “digital musical instrument builder”.

Gianpaolo Evangelista received the laurea in physics (summa cum laude) from
the University of Naples, Italy, in 1984 and the MSc and PhD degrees in electrical
engineering from the University of California, Irvine, in 1987 and 1990, respectively.
Since 1998 he has been a Scientific Adjunct with the Laboratory for Audiovisual
Communications, Swiss Federal Institute of Technology, Lausanne, Switzerland, on
leave from the Department of Physical Sciences, University of Naples Federico 11,
which he joined in 1995 as a Research Associate. From 1985 to 1986, he worked at
the Centre d’Etudes de Ma.thematique et Acoustique Musicale (CEMAMu/CNET),
Paris, France, where he contributed to the development of a DSP-based sound syn-
thesis system, and from 1991 to 1994, he was a Research Engineer at the Micrograv-
ity Advanced Research and Support (MARS) Center, Naples, where he was engaged
in research in image processing applied to fluid motion analysis and material sci-
ence. His interests include speech, music, and image processing; coding; wavelets;
and multirate signal processing. Dr Evangelista was a recipient of the Fulbright
fellowship.

Florian Keiler was born in Hamburg, Germany, in 1972. He studied electrical
engineering at the Technical University Hamburg-Harburg. As part of the study
he spent 5 months at the King’s College London in 1998. There he carried out
research on speech coding based on linear predictive coding (LPC). He obtained
his Diplom-Ingenieur degree in 1999. He is currently working on a PhD degree at
the University of the Federal Armed Forces in Hamburg. His main research field is
near lossless and low-delay audio coding for a real-time implementation on a digital
signal processor (DSP). He works also on musical aspects and audio effects related

xviii List of Contributors

to LPC and high-resolution spectral analysis.
Alex Loscos received the BSc and MSc degrees in Telecommunication Engineer-
ing from Catalunya Polytechnic University, Barcelona, Spain, in 1997 and 1999
respectively. He is currently a Ph.D. candidate in Informatics and Digital Commu-
nication at the Pompeu Fabra University (UPF) of Barcelona. In 1997 he joined the
Music Technology Group of the Audiovisual Institute of the UPF as a researcher
and developer. In 1999 he became a member of the Technology Department of the
UPF as lecturer and he is currently teaching and doing research in voice process-
ing/recognition, digital audio analysis/synthesis and transformations, and statistical
digital signal processing and modeling.
Davide Rocchesso received the Laurea in Ingegneria Elettronica and PhD degrees
from the University of Padua, Italy, in 1992 and 1996, respectively. His PhD research
involved the design of structures and algorithms based on feedback delay networks
for sound processing applications. In 1994 and 1995, he was a Visiting Scholar at
the Center for Computer Research in Music and Acoustics (CCRMA), Stanford
University, Stanford, CA. Since 1991, he has been collaborating with the Centro di
Sonologia Computazionale (CSC), University of Padua as a Researcher and Live-
Electronic Designer. Since 1998, he has been with the University of Verona, Italy,
as an Assistant Professor. At the Dipartimento di Informatica of the University
of Verona he coordinates the project “Sounding Object”, funded by the European
Commission within the framework of the Disappearing Computer initiative. His
main interests are in audio signal processing, physical modeling, sound reverberation
and spatialization, multimedia systems, and human-computer interaction.
Mark Sandler (born 1955) is Professor of Signal Processing at Queen Mary, Uni-
versity of London, where he moved in 2001 after 19 years at King’s College London.
He was founder and CEO of Insonify Ltd, an Internet Streaming Audio start-up
for 18 months. Mark received the BSc and PhD degrees from University of Essex,
UK, in 1978 and 1984, respectively. He has published over 200 papers in journals
and conferences. He is a Senior Member of IEEE, a Fellow of IEE and a Fellow of
the Audio Engineering Society. He has worked in Digital Audio for over 20 years
on a wide variety of topics including: Digital Power amplification; Drum Synthesis;
Chaos and Fractals for Analysis and Synthesis; Digital EQ; Wavelet Audio Codecs;
Sigma-Delta Modulation and Direct Stream Digital technologies; Broadcast Qual-
ity Speech Coding; Internet Audio Streaming; automatic music transcription, 3D
sound reproduction; processing in the compression domain, high quality audio com-
pression, non-linear dynamics, and time stretching. Living in London, he has a wife,
Valerie, and 3 children, Rachel, Julian and Abigail, aged 9, 7 and 5 respectively. A
great deal of his spare time is happily taken up playing with the children or playing
cricket.
Xavier Serra (born in 1959) is the Director of the Audiovisual Institute (IUA) and
the head of the Music Technology Group at the Pompeu Fabra University (UPF)
in Barcelona, where he has been Associate Professor since 1994. He holds a Master
degree in Music from Florida State University (1983), a PhD in Computer Music
from Stanford University (1989) and has worked as Chief Engineer in Yamaha Music
Technologies USA, Inc. His research interests are in sound analysis and synthesis for

List of Contributors xix

music and other multimedia applications. Specifically, he is working with spectral
models and their application to synthesis, processing, high quality coding, plus other
music-related problems such as: sound source separation, performance analysis and
content-based retrieval of audio.

Todor Todoroff (born in 1963), is an electrical engineer with a specialization in
telecommunications. He received a First Prize in Electroacoustic Composition at
the Royal Conservatory of Music in Brussels as well as a higher diploma in Elec-
troacoustic Composition at the Royal Conservatory of Music in Mons in the class
of Annette Vande Gorne. After having been a researcher in the field of speech pro-
cessing at the Free University of Brussels, for 5 years he was head of the Computer
Music Research at the Polytechnic Faculty in Mons (Belgium) where he developed
real-time software tools for processing and spatialization of sounds aimed at elec-
troacoustic music composers in collaboration with the Royal Conservatory of Music
in Mons. He collaborated on many occasions with IRCAM where his computer tools
were used by composers Emmanuel Nunes, Luca Francesconi and Joshua Fineberg.
His programs were used in Mons by composers like Leo Kupper, Robert Norman-
deau and Annette Vande Gorne. He continues his research within ARTeM where he
developed a sound spatialization audio matrix and interactive systems for sound in-
stallations and dance performances. He is co-founder and president of ARTeM (Art,
Research, Technology & Music) and FeBeME (Belgian Federation of Electroacous-
tic Music), administrator of NICE and member of the Bureau of ICEM. He is a
Belgian representative of the European COST-G6 Action “Digital Audio Effects”.
His electroacoustic music shows a special interest in multiphony and sound spatial-
ization as well as in research into new forms of sound transformation. He composes
music for concert, film, video, dance, theater and sound installation.

Udo Zolzer was born in Arolsen, Germany, in 1958. He received the Diplom-
Ingenieur degree in electrical engineering from the University of Paderborn in 1985,
the Dr.-Ingenieur degree from the Technical University Hamburg-Harburg (TUHH)
in 1989 and completed a habiZitation in Communications Engineering at the TUHH
in 1997. Since 1999 he has been a Professor and head of the Department of Signal
Processing and Communications at the University of the Federal Armed Forces in
Hamburg, Germany. His research interests are audio and video signal processing
and communication. He has worked as a consultant for several companies in related
fields. He is a member of the AES and the IEEE. In his free time he enjoys listening
to music and playing the guitar and piano.

Chapter l

Introduction

U. Ziilzer

1.1 Digital Audio Effects DAFX with
MATLAB

Audio effects are used by all individuals involved in the generation of musical signals
and start with special playing techniques by musicians, merge to the use of special
microphone techniques and migrate to effect processors for synthesizing, recording,
production and broadcasting of musical signals. This book will cover several cat-
egories of sound or audio effects and their impact on sound modifications. Digital
audio effects - as an acronym we use DAFX - are boxes or software tools with input
audio signals or sounds which are modified according to some sound control pa-
rameters and deliver output signals or sounds (see Fig. 1.1). The input and output
signals are monitored by loudspeakers or headphones and some kind of visual rep-
resentation of the signal such as the time signal, the signal level and its spectrum.
According to acoustical criteria the sound engineer or musician sets his control
parameters for the sound effect he would like to achieve. Both input and output

Figure 1.1 Digital audio effect and its control [Arf99].

1

2 1 Introduction

signals are in digital format and represent analog audio signals. Modification of the
sound characteristic of the input signal is the main goal of digital audio effects. The
settings of the control parameters are often done by sound engineers, musicians or
simply the music listener, but can also be part of the digital audio effect.

The aim of this book is the description of digital audio effects with regard to

physical and acoustical effect: we take a short look at the physical background
and explanation. We describe analog means or devices which generate the
sound effect.

digital signal processing: we give a formal description of the underlying algo-
rithm and show some implementation examples.

musical applications: we point out some applications and give references to
sound examples available on CD or on the WEB.

The physical and acoustical phenomena of digital audio effects will be presented at
the beginning of each effect description, followed by an explanation of the signal
processing techniques to achieve the effect and some musical applications and the
control of effect parameters.

In this introductory chapter we next explain some simple basics of digital signal
processing and then show how to write simulation software for audio effects process-
ing with the MATLAB' simulation tool or freeware simulation tools2. MATLAB
implementations of digital audio effects are a long way from running in real-time
on a personal computer or allowing real-time control of its parameters. Neverthe-
less the programming of signal processing algorithms and in particular sound effect
algorithms with MATLAB is very easy and can be learned very quickly.

1.2 Fundamentals of Digital Signal
Processing

The fundamentals of digital signal processing consist of the description of digital
signals - in the context of this book we use digital audio signals - as a sequence
of numbers with appropriate number representation and the description of digital
systems, which are described by software algorithms to calculate an output sequence
of numbers from an input sequence of numbers. The visual representation of digital
systems is achieved by functional block diagram representation or signal flow graphs.
We will focus on some simple basics as an introduction to the notation and refer
the reader to the literature for an introduction to digital signal processing [ME93,
Orf96, Zo197, MSY98, MitOl].

'http://www.rnathworks.com
2http://www.octave.org

1.2 Fundamentals of Digital Signal Processing 3

t in usec + n + n + t i n p e c +

Figure 1.2 Sampling and quantizing by ADC, digital audio effects and reconstruction by
DAC.

1.2.1 Digital Signals

The digital signal representation of an analog audio signal as a sequence of numbers
is achieved by an analog-to-digital converter ADC. The ADC performs sampling of
the amplitudes of the analog signal x(t) on an equidistant grid along the horizontal
time axis and quantization of the amplitudes to fixed samples represented by num-
bers x(n) along the vertical amplitude axis (see Fig. 1.2). The samples are shown as
vertical lines with dots on t,he top. The analog signal x (t) denotes the signal ampli-
tude over continuous time t in psec. Following the ADC, the digital (discrete-time
and quantized amplitude) signal is represented by a sequence (stream) of samples
~ (n) represented by numbers over the discrete time index n. The time distance be-
tween two consecutive samples is termed sampling interval T (sampling period) and
the reciprocal is the sampling frequency fs = 1/T (sampling rate). The sampling
frequency reflects the number of samples per second in Hertz (Hz). According to the
sampling theorem, it has to be chosen as twice the highest frequency fmax (signal
bandwidth) contained in the analog signal, namely fs > 2 . fmax. If we are forced
to use a fixed sampling frequency fs, we have to make sure that our input signal we
want to sample has a bandwidth according to fmax = fs /2 . If not, we have to reject
higher frequencies by filtering with a lowpass filter which passes all frequencies up
to fmax. The digital signal is then passed to a DAFX box (digital system), which
performs a simple multiplication of each sample by 0.5 to deliver the output signal
y (n) = 0.5-z(n). This signal y (n) is then forwarded to a digital-to-analog converter
DAC, which reconstructs the analog signal y (t) . The output signal y (t) has half the
amplitude of the input signal z(t). The following M-file 1.1 may serve as an example
for plotting digital signals as shown in Fig. 1.2.

4 l Introduction

M-file 1.1 (figurel-02.m)
subplot (2,4 , 1) ;
plot((O:96)*5,y(l:97));
title(’x(t) ’1 ;
axis(CO 500 -0.05 0.051) ;
xlabel(’t in \musec \rightarrow’);
subplot (2 , 4,2) ;
stem((0:24),uI(I:25),’.’);axis([O 25 -0.05 0.051);
xlabel(’n \rightarrow’) ;
title(’x(n) ’1 ;
subplot(2,4,3);
stem((0:24),0.5*ul(l:25),’.’);axi~(~O 25 -0.05 0.051);
xlabel(’n \rightarrow’) ;
title(’y(n1’);
subplot(2,4,4);
plot((0:96)*5,0.5*y(l:97));axis([O 500 -0.05 0.053);
xlabel(’t in \mu sec \rightarrow’);
title(’y(t) ’1 ;

-0.5 I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000

0.4 I I I I I I 1 I I I I

-0.4 I I I I I I I I I I l
0 100 200 300 400 500 600 700 800 900 1000

-0.05 I I I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

n +

Figure 1.3 Different time representations for digital audio signals.

1.2 Fundamentals of Digital Signal Processing 5

Figure 1.3 shows some digital signals to demonstrate different graphical repre-
sentations(see M-file 1.2). The upper part shows 8000 samples, the middle part the
first 1000 samples and the lower part shows the first 100 samples out of a digital
audio signal. Only if the number of samples inside a figure is sufficiently low, will
the line with dot graphical representation be used for a digital signal.

M-file 1.2 (figurel-03.m)
[ulyFSyNBITS]=wavread(~ton2.wav~);

figure(1)
subplot(3,1,i);
pl0t(0:7999,ul(l:800O));ylabel(’x(~~’);
subplot (3,1,2) ;
p~ot(0:999,ul(l:1000));ylabel(’x(n)’);
subplot (3, l, 3) ;
stem(O:99,ul(l:100),’.’);ylabel(’x(n)’);
xlabel(’n \rightarrow’) ;

axis format vertical
Vertical Normalized

axis format

32767-
32766’

-32767,
-32768 -

Continuous
time axis

I : : : : : : : : : : : : I ~ T Discrete
0 1 2 3 4 5 6 7 8 9 1 0 1 1 time axis

+-+ : : : : : : : : : : : ~n Normalized
discrete time axis

Figure 1.4 Vertical and horizontal scale formats for digital audio signals.

Two different vertical scale formats for digital audio signals are shown in Fig. 1.4.
The quantization of the amplitudes to fixed numbers in the range between -32768
. . . 32767 is based on a 16-bit representation of the sample amplitudes which allows
216 quantized values in the range -215. . . 215 - 1. For a general w-bit representation
the number range is -2”-’ . . .2”-’ - 1. This representation is called the integer
number representation. If we divide all integer numbers by the maximum absolute
value, for example 32768, we come to the normalized vertical scale in Fig. 1.4 which
is in the range between -1 . . . l-Q. Q is the quantization step size and can be
calculated by Q = 2-(”-’), which leads to Q = 3.0518e - 005 for W = 16. Figure

6 l Introduction

1.4 also displays the horizontal scale formats, namely the continuous-time axis,
the discrete-time axis and the normalized discrete-time axis, which will be used
normally. After this narrow description we can define a digital signal as a discrete-
time and discrete-amplitude signal, which is formed by sampling an analog signal
and by quantization of the amplitude onto a fixed number of amplitude values.
The digital signal is represented by a sequence of numbers z(n). Reconstruction of
analog signals can be performed by DACs. Further details of ADCs and DACs and
the related theory can be found in the literature. For our discussion of digital audio
effects this short introduction to digital signals is sufficient.

Signal processing algorithms usually process signals by either block processing
or sample-by-sample processing. Examples for digital audio effects are presented in
[Arf98]. For block processing, data are transferred to a memory buffer and then
processed each time the buffer is filled with new data. Examples of such algorithms
are fast Fourier transforms (FFTs) for spectra computations and fast convolution.
In sample processing algorithms, each input sample is processed on a sample-by-
sample basis.

A basic algorithm for weighting of a sound z (n) (see Fig. 1.2) by a constant
factor a demonstrates a sample-by-sample processing. (see M-file 1.3). The input
signal is represented by a vector of numbers z(O), z(1) , . . . , z(length(z) - 1) .

M-file 1.3 (sbs-a1g.m)
% Read input sound file into vector x(n) and sampling frequency FS
[x,FS]=wavread(’input filename’);
% Sample-by sample algorithm y(n>=a*x(n>
for n=i : length(x) ,

end ;
% Write y(n> into output sound file with number of
% bits Nbits and sampling frequency FS
wavwrite(y,FS,Nbits,’output filename’);

y(n>=a * x(n>;

1.2.2 Spectrum Analysis of Digital Signals

The spectrum of a signal shows the distribution of energy over the frequency range.
The upper part of Fig. 1.5 shows the spectrum of a short time slot of an analog
audio signal. The frequencies range up to 20 kHz. The sampling and quantization of
the analog signal with sampling frequency of fs = 40 kHz lead to a corresponding
digital signal. The spectrum of the digital signal of the same time slot is shown
in the lower part of Fig. 1.5. The sampling operation leads to a replication of the
baseband spectrum of the analog signal [Orf96]. The frequency contents from 0 Hz
up to 20 kHz of the analog signal now also appear from 40 kHz up to 60 kHz and the
folded version of it from 40 kHz down to 20 kHz. The replication of this first image
of the baseband spectrum at 40 kHz will now also appear at integer multiples of
the sampling frequency of fs = 40 kHz. But notice that the spectrum of the digital
signal from 0 up to 20 kHz shows exactly the same shape as the spectrum of the

l .L? Fundamentals of Digital Signal Processing 7

m : -20
5 40

-60

-80
0 4WO 8WO 12OW 16000 :!WW 24000 280W 32000 36000 4WW 440W 480W 52000 5M)OO SOW0

f m Hz+

Figure 1.6 Spectra of analog and digital signals.

analog signal. The reconstruction of the analog signal out of the digital signal is
achieved by simply lowpass filtering the digital signal, rejecting frequencies higher
than f s / 2 = 20 kHz. If we consider the spectrum of the digital signal in the lower
part of Fig. 1.5 and if we reject all frequencies higher than 20 kHz we come back to
the spectrum of the analog signal in the upper part of the figure.

Discrete Fourier Transform

The spectrum of a digital signal can be computed by the discrete Fourier transform
DFT which is given by

N-l

X (k) = DFT[z(n)] = c z(n)e-jZnnklN k = 0,1 , . . . , N - 1. (1.1)
n=O

The fast version of the above formula is called the fast Fourier transform FFT. The
FFT takes N consecutive samples out of the signal z(n) and performs a mathemat-
ical operation to yield N sa,mples X (k) of the spectrum of the signal. Figure 1.6
demonstrates the results of a, 16-point FFT applied to 16 samples of a cosine signal.
The result is normalized by N according to X=abs (fft (x ,N)) /N; .

The N samples X (k) = X,(k) + j X l (k) are complex-valued with a real part
XR(IC) and an imaginary part X ~ (l c) from which one can compute the absolute value

JX(lc)J = v I X i (k) + X ? (k) IC = 0,1,. . . , N - 1 (1.2)

which is the magnitude spectrum, and the phase

p (k) = arctan - k = 0 , 1 , ... , N - l
X R (k)

8 1 Introduction

0 2 4 6 8 10 12 14 16
n-+

1 -I
I I I I

0.5 -

0 7 I . 1
I I I I I

0 2 4 6 8 10 12 14 16
k +

1 -I
I I I I I I

- (c) Magnitude spectrum IX(f)l t

0.5 - -

0 -, I I I I I

0 0.5 1 1.5 2 2.5 3 3.5
f in Hz + x lo4

Figure 1.6 Spectrum analysis with FFT algorithm: (a) digital cosine with N = 16 sam-
ples, (b) magnitude spectrum (X (k) l with N = 16 frequency samples and (c) magnitude
spectrum IX(f) l from 0 Hz up to the sampling frequency fa = 40000 Hz.

which is the phase spectrum. Figure 1.6 also shows that the FFT algorithm leads to
N equidistant frequency points which give N samples of the spectrum of the signal
starting from 0 Hz in steps of up to vis. These frequency points are given
by IC$, where IC is running from 0,1,2, . . . , N - 1. The magnitude spectrum IX(f)l
is often plotted over a logarithmic amplitude scale according to 20 log,, (g)
which gives 0 dB for a sinusoid of maximum amplitude f l . This normalization is
equivalent to 20 log,, . Figure 1.7 shows this representation of the example
from Fig. 1.6. Images of the baseband spectrum occur at the sampling frequency
fs and multiples of fs. Therefore we see the original frequency a t 5 kHz and in the
first image spectrum the folded frequency fs - fc,,i,,=(40000-5)Hz=35000 Hz. The
following M-file 1.4 is used for the computation of Figures 1.6 and 1.7.

(NI2

M-file 1.4 (figurei-06-07.111)
N=16;
~=cos(2*pi*2*(0:l:N-l~/N) ’;

1.2 Fundamentals of Digital Signal Processing 9

- -20
I
X

-40
0 0.5 1 1.5 2 2.5 3 3.5

f in Hz -+ X lo4

Figure 1.7 Magnitude spectrum IX(f) l in dB from 0 Hz up to the sampling frequency
fs = 40000 Hz.

figure (1)
subplot(3,1,1);stem(O:N-iyx,’. ’>;
axis([-0.2 N -1.2 1.21);
legend(’Cosine signal x(n> ’> ;
ylabel(’a) ’ ;
xlabel(’n \rightarrow’) ;

X=abs (f f t (x , N)) /N;
subplot(3,1,2);stem(O:N-l,Xy’.’);
axis([-0.2 N -0.1 1.11);
legend(’Magnitude spectrum\index{Magnitude spectrum) IX(k) 1 ’) ;
ylabel(’ b) ’) ;
xlabel (’ k \rightarrow ’

N=1024;
x=cos(2*pi*(2*1024/16)*(O:I:N-l~/N)’;

FS=40000 ;

X=abs(fft(x,N))/N;
subplot (3 , l , 3) ;plot (f ,X> ;
axis ([-0.2*44100/16 max(f) -0.1 1.11 ;
legend(’Magnitude spectrum\index{Magnitude spectrum) IX(f) 1 ’) ;
ylabel(’c) ’) ;
xlabel(’f in Hz \rightarrow’)

f=((O:N-l)/N)*FS;

figure (2)
subplot(3,l,l);plot(f ,20*10giO(X./(0.5)>);
axis (C-0.2*44100/16 max(f) -45 201 ;
legend(’Magnitude spectrum\index{Magnitude spectrum) I X(f) I in dB’) ;
ylabel(’)X(f)) in dB \rightarrow’);
xlabel(’f in Hz \rightarrow’)

10 1 Introduction

Inverse Discrete Fourier Transform (IDFT)

Whilst the DFT is used as the transform from the discrete-time domain to the
discrete-frequency domain for spectrum analysis, the inverse discrete Fourier trans-
form IDFT allows the transform from the discrete-frequency domain to the discrete-
time domain. The IDFT algorithm is given by

1 N--l ~ (n) = IDFT[X(IC)] = C X(k)ej2""k/N n = 0, l , . . . , N - 1. (1.4)
k=O

The fast version of the IDFT is called the inverse Fast Fourier transform IFFT.
Taking N complex-valued numbers and the property X (k) = X * (N - IC) in the
frequency domain and then performing the IFFT gives N discrete-time samples
~(n) , which are real-valued.

Frequency Resolution: Zero-padding and Window Functions

To increase the frequency resolution for spectrum analysis we simply take more
samples for the FFT algorithm. Typical numbers for the FFT resolution are N =
256,512,1024,2048,4096 and 8192. If we are only interested in computing the spec-
trum of 64 samples and would like to increase the frequency resolution from f,/64
to f,/1024, we have to extend the sequence of 64 audio samples by adding zero
samples up to the length 1024 and then performing an 1024-point FFT. This tech-
nique is called zero-padding and is illustrated in Fig. 1.8 and by M-file 1.5. The
upper left part shows the original sequence of 8 samples and the upper right part
shows the corresponding 8-point FFT result. The lower left part illustrates the
adding of 8 zero samples to the original 8 sample sequence up to the length of
N = 16. The lower right part illustrates the magnitude spectrum IX(k) l resulting
from the 16-point FFT of the zero-padded sequence of length N = 16. Notice the
increase in frequency resolution between the 8-point and 16-point FFT. Between
each frequency bin of the upper spectrum a new frequency bin in the lower spec-
trum is calculated. Bins k = 0,2,4,6,8,10,12,14 of the 16-point FFT correspond
to bins k = 0,1,2,3,4,5,6,7 of the 8-point FFT. These N frequency bins cover the
frequency range from 0 Hz up to v fs Hz.

M-file 1.5 (f igurel-08 .m)

x2(16)=0;
x2(1:8)=x1;

xI=[-I -0.5 1 2 2 1 0.5 -11;

subplot (221) ;
stern(O:l:7,xl);axis([-O.5 7.5 -1.5 2.51)-
ylabel('x(n) \rightarrow') ;title('8 samples));
subplot (222) ;
stem(O:l:7,abs(fft(xI)));axis([-O.5 7.5 -0.5 IO]);
ylabelo IX(k) I \rightarrowJ);title('8-point FFT');

1.2 Fundamentals of Digital Signal Processing 11

8 samples

2.5 ’

2

8 samples + zero-padding

1
T
F 0.5

-1

-1.5

-

’

0 5 10 15
n +

8-point FFT
10, , I

lo’

16-point FFT

0 5 10 15
k-1

I S
0 frequency in Hz f S

Figure 1.8 Zero-padding to increase frequency resolution.

subplot (223) ;
stem(0:1:15,x2);axis([-0.5 15.5 -1.5 2.51);
xlabel (’n \rightarrow’ ; ylabel(’x (n) \rightarrow’ ;
title(’8 samples + zero-padding’) ;

subplot (224) ;
stem(0:1:15,abs(fft(x2)));axis([-1 16 -0.5 101);
xlabel(’k \rightarrow’);ylabel(’JX(k) I \rightarrow’);
title(’l6-point FFT’);

The leakage effect occurs due to cutting out N samples from the signal. This
effect is shown in the upper part of Fig. 1.9 and demonstrated by the correspond-
ing M-file 1.6. The cosine spectrum is smeared around the frequency. We can reduce
the leakage effect by selecting a window function like Blackman window and

1 Introduction 12

1

0.5

0

-0.5

-1

(a) Coslne signal x@) (b) Spectrum of cosine signal

200 400 600 Boo lo00 0 2000 4000 6OoO 8000 10000
(c) Cosine signal xw(n)=x(n). w(n) with window (d) Spectrum with Biackman window

I I o t I

-4 -80
0 2000 4000 6000 8000 0 2000 4000 6000 8000 10000

(e) Audio signal x,(n) with window (l) Spectrum with Blackman wlndow
L I I

0

0.5
-20 -

0
-40

-0.5 -60

-1 -an
0 2000 4000 6000 8000

I-

O 2000 4000 6000 8000 10000
n + fin Hz --t

Figure 1.9 Spectrum analysis of digital signals: take N audio samples and perform an N
point discrete Fourier transform to yield N samples of the spectrum of the signal starting
f romOHzoverk~wherekis runningfromO,l ,Z , . . . , N - l . (a) z (n) = c o s (Z . . r r ~ ~ . 1 kHz

n).

Hamming window

~ ~ (7 2) = 0.42 - 0.5 ~0~(27rn /N) + 0.08 cos(47rn/N), (1.5)

~ ~ (7 2) = 0.54 - 0 . 4 6 ~ 0 ~ (2 ~ n / N) (1.6)
n = 0 , 1 , . . . N - 1 .

and weighting the N audio samples by the window function. This weighting is
performed according to x, = w(n) . x(n) with 0 5 n 5 N - 1 and then an FFT
of the weighted signal is performed. The cosine weighted by a window and the
corresponding spectrum is shown in the middle part of Fig. 1.9. The lower part of
Fig. 1.9 shows a segment of an audio signal weighted by the Blackman window and
the corresponding spectrum via a FFT. Figure 1.10 shows further simple examples
for the reduction of the leakage effect and can be generated by the M-file 1.7.

M-file 1.6 (figurel-09.m)
x=cos(2*pi*1000*(0:1:N-1)/44100)~;
f igure(2)

1.2 Fundamentals of Digital Signal Processing 13

W=blackman(N) ;
W=N*W/sum(W); % scaling of window
f=((O:N/2-1)/N)*FS;

xw=x . *W;
subplot(3,2,l);plot(O:N-1,x);
axis([O 1000 -1.1 1.111;
titleoa) Cosine signal x(n> ’)

subplot(3,2,3);plot(O:N-1,xw);axis([O 8000 -4 41);
titleoc) Cosine signal x-w(n)=x(n) \cdot w(n) with window’)

X=2O*loglO (abs (f ft (x ,N) 1 / (N/2)) ;
subplot(3,2,2) ;plot(f ,X(1:N/2)) ;
axis(CO l0000 -80 101 1 ;
ylabel(’X(f)’);
title(’b) Spectrum of cosine Signal’)

Xw=20*logiO (abs (f f t (xw , N) 1 / (N/2)) ;
subplot(3,2,4);plot(f ,Xw(I:N/2));
axis([O 10000 -80 101) ;
ylabel(’X(f)’);
title(’d) Spectrum with Blackman window’)

s=ul(I:N).*W;
subplot(3,2,5);plot(O:N-lys);axis([0 8000 -1.1 1.11);
xlabel(’n \rightarrow’) ;
titleoe) Audio signal x-w(n) with window’)

Sw=20*loglO (abs (f f t (S ,N) 1 / (N/2) 1 ;
subplot(3,2,6);plot(f ,Sw(I:N/2));
axis(CO 10000 -80 101 ;
ylabel(’X(f)’);
titleof) Spectrum with Blackman window’)
xlabel(f in Hz \rightarrow’ ;

M-file 1.7 (figurel-1O.m)

W = BLACKMAN(8) ;
w=w*8/sum(w) ;
xl=x. *W’ ;
x2 (IS) =O;
x2(1:8)=xI;

x=[-I -0.5 1 2 2 1 0.5 -11;

14 1 Introduction

0 1 2 3 4 5 6 7
(b)

l5 7
&point FFT of (c)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
(C)

16-point FFT of (d)

~ 0 0 0 0 0 0 0 0 0
I . I
0 5 10 15

15

10

5

0

n - l k - 1

Figure 1.10 Reduction of the leakage effect by window functions: (a) the original signal,
(b) the Blackman window function of length N = 8, (c) product z(n) . w(n) with 0 5 n 5
N - 1, (d) zero-padding applied to z (n) . w(n) up to length N = 16 and the corresponding
spectra are shown on the right side.

ylabel(’x(n) \rightarrow’);
title(’a) 8 samples’) ;
subplot (423) ;
stem(O:l:7,w);axis([-0.5 7.5 -1.5 31);
ylabel(’w(n) \rightarrow’) ;
title(’b) 8 samples Blackman window’);

subplot (425) ;
stem(0:l:7,xl);axis([-O.5 7.5 -1.5 S]) ;
ylabel(’ x-w (n) \rightarrow ’) ;
title(’c) x(n)\cdot w(n)’);

1.2 Fundamentals of Digital Signal Processing 15

subplot (222) ;
stem(0:l:7,abs(fft(xl)));axis([-O.5 7.5 -0.5 151);
ylabel(’ I X (k) I \rightarrow’) ;
title(’8-point FFT of c) ’);

subplot (224) ;
stem(0:1:15,abs(fft(x2)));axis(~-1 16 -0.5 151);
xlabel(’k \rightarrow’) ;ylabel(’ lX(k) I \rightarrow’) ;
title (’ 16-point FFT of ci) ’) ;

DFT DFT DFT

AAA N=8 N=8 N=8

Figure 1.1’1 Short-time spectrum analysis by FFT.

Spectrogram: Time-frequency Representation

A special time-frequency representation is the spectrogram which gives an estimate
of the short-time, time-localized frequency content of the signal. Therefore the signal
is split into segments of length N which are multiplied by a window and an FFT is
performed (see Fig. 1.11). To increase the time-localization of the short-time spectra
an overlap of the weighted segments can be used. A special visual representation
of the short-time spectra is the spectrogram in Fig. 1.12. Time increases linearly
across the horizontal axis and frequency increases across the vertical axis. So each
vertical line represents the absolute value \ X (f) 1 over frequency by a grey scale
value (see Fig. 1.12). Only frequencies up to half the sampling frequency are shown.
The calculation of the spectrogram from a signal can be performed by the MATLAB
function B = SPECGRAM (x, NFFT ,Fs ,WINDOW, NOVERLAP) .

Another time-frequency representation of the short-time Fourier transforms of
a signal x(.) is the waterfall representation in Fig. 1.13, which can be produced by
M-file 1.8 which calls the waterfall computation algorithm given by M-file 1.9.

M-file 1.8 (figurel-l3.m)
[signal,FS,NBITS]=wavread(’ton2’);
subplot(2li);plot(signal);
subplot (212) ;
waterfspec(signal,256,256,512,FS,20,-100);

16 1 Introduction

..
l Frequency

Spectrogram

Figure 1.12 Spectrogram via FFT of weighted segments.

1
Signal x(n)

I I I I I I I

l l

- O I 1
-1 ’ I I I I I 1 I I J

0 1000 2000 3000 4000 5000 6000 7000 8000
n +

Waterfall ReDresentaiion of Short-time FFTs

f in kHz --t

Figure 1.13 Waterfall representation via FFT of weighted segments.

M-file 1.9 (waterf spec .m)
f unc t ion y y = w a t e r f s p e c (s i g n a l , s t a r t , s t e p s , N , f S , c l i p p i n ~ o i n t , b a s e p l ~ e)
% water fspec(s igna l , s tart , s t e p s , N , f S , c l ippingpoint , baseplane)

% shows shor t - t ime spec t ra of s i g n a l , s t a r t i n g
%

1.2 Fundamentals of Digital Signal Processing 17

% at k=start, with increments of STEP with N-point FFT
% dynamic range from -baseplane in dB up to 20*log(clippingpoint)
% in dB versus time axis

% 18/9/98 J. Schattschneider
% 14/10/2000 U. Zoelzer
echo off ;
if narginc7, baseplane=-IO0 ; end
if narginc6, clippingpoint=O; end
if narginc5, fS=48000; end
if narginc4, N=1024; end % default FFT
if narginc3, steps=round(length(signal)/25); end
if narginc2, start=O; end

%

windoo=blackman(N); % window - default
windoo=windoo*N/sum(windoo) ; % scaling
Calculation of number of spectra nos
n=length(signal);
rest=n-start-N;
nos=round(rest/steps) ;
if nos>rest/steps, nos=nos-l; end
vectors for 3D representation
x=linspace(O, fS/1000 ,N+I);
z=x-x;
cup=z+clippingpoint;
cdown=z+baseplane;

signal=signa1+0.0000001;
Computation of spectra and visual representation
for i=l:l:nos,
spekl=20 .* loglO(abs(fft(windoo . * signal(l+start+
. . . . i*steps : start+N+i*steps)) . / (N) /O .5) ;
spek= C-200 ; spekl (l :NI] ;
spek=(spek>cup’).*cup’+(spek<=cup’).*spek;
spek=(spek<cdown’).*cdown’+(spek>=cdown’).*spek;
spek(l)=baseplane-1.0;
spek(N/2)=baseplane-10;
y=x-x+(i-l) ;
if i==l

p=plAt3(x(l:N/2) ,y(I:N/2) ,spek(l:N/2), ’k’);
set(p,’Linewidth’,O.l);

pp=patch(x(l:N/2),y(l:N/2),spek(l:N/2),’w’,’Visible’,’on’);
set (pp, ’Linewidth’ ,O .l) ;

end

end ;
set(gca,’DrawMode’,’fast’);

18 1 Introduction

axis(C-0.3 fS/2000+0.3 0 nos baseplane-l0 01 ;
set(gca,’Ydir’,’reverse’);
view (12,401 ;

1.2.3 Digital Systems

A digital system is represented by an algorithm which uses the input signal x(n) as
a sequence (stream) of numbers and performs mathematical operations upon the
input signal such as additions, multiplications and delay operations. The result of
the algorithm is a sequence of numbers or the output signal y(n). Systems which do
not change their behavior over time and fulfill the superposition property [Orf96] are
called linear time-invariant (LTI) systems. Nonlinear time-invariant systems will be
discussed in Chapter 5. The input/output relations for a LT1 digital system describe
time domain relations which are based on the following terms and definitions:

0 unit impulse, impulse response and discrete convolution;

0 algorithms and signal flow graphs.

For each of these definitions an equivalent description in the frequency domain
exists, which will be introduced later.

Unit Impulse, Impulse Response and Discrete Convolution

0 Test signal: a very useful test signal for digital systems is the unit impulse

d(n) =
1 for W = 0
0 for n # 0,

which is equal to one for n = 0 and zero elsewhere (see Fig. 1.14).

0 Impulse response: if we apply a unit-sample function to a digital system, the
digital system will lead to an output signal y(n) = h(n) , which is the so-called
impulse response h(n) of the digital system. The digital system is completely
described by the impulse response, which is pointed out by the label h(n)
inside the box, as shown in Fig. 1.14.

Figure 1.14 Impulse response h(n) as a time domain description of a digital system.

1.2 Fundamentals of Digital Signal Processing 19

0 Discrete convolution: if we know the impulse response h(n) of a digital system,
we can calculate the output signal y(n) from a freely chosen input signal ~ (n)
by the discrete convolution formula given by

00

y(n) = c z (k) . h(" - k) = .(n) * h(n) , (1.8)
k = - m

which is often abbreviated by the second term y(n) = x(n)*h(n). This discrete
sum formula (1.8) represents an input-output relation for a digital system in
the time domain. The computation of the convolution sum formula (1.8) can
be achieved by the MATLAB function y=conv(x, h) .

Algorithms and Signal Flow Graphs

The above given discrete convolution formula shows the mathematical operations
which have to be performed to obtain the output signal y(n) for a given input
signal x(.). In the following we will introduce a visual representation called a signal
flow graph which represents the mathematical input/output relations in a graphical
block diagram. We discuss some example algorithms to show that we only need three
graphical representations for the multiplication of signals by coefficients, delay and
summation of signals.

0 A delay of the input signal by two sampling intervals is given by the algorithm

y(n) = .(n - 2) (1.9)

and is represented by the block diagram in Fig. 1.15.

Figure 1.15 Delay of the input signal.

A weighting of the input signal by a coefficient a is given by the algorithm

y(n) = a . x(.) (1.10)

and represented by a block diagram in Fig. 1.16.

1 a a

- 1 0 1 2 - 1 0 1 2

Figure 1.16 Weighting of the input signal.

20

0 The addition of two input signals is given by the algorithm

y(n) = a1 .x1 (n) + a2 . z2(n)

and represented by a block diagram in Fig. 1.17.

1 Introduction

(1.11)

- 1 0 1 2

Figure 1.17 Addition of two signals z l (n) and z2(n)

0 The combination of the above algorithms leads to the weighted sum over
several input samples, which is given by the algorithm

1 1 1
3 3 3

y(n) = -x(.) + -x(. - 1) + -x(n - 2) (1.12)

and represented by a block diagram in Fig. 1.18.

x(n-2)

- 1 0 1 2

'13 '13
n) = 1 x(n) + 1 x(n-1) + - x(n-2)

3 3 L n

- 1 0 1 2 3

Figure 1.18 Simple digital system.

Transfer Function and Frequency Response

So far our description of digital systems has been based on the time domain relation-
ship between the input and output signals. We noticed that the input and output
signals and the impulse response of the digital system are given in the discrete time
domain. In a similar way to the frequency domain description of digital signals by
their spectra given in the previous subsection we can have a frequency domain de-
scription of the digital system which is represented by the impulse response h(n).
The frequency domain behavior of a digital system reflects its ability to pass, reject
and enhance certain frequencies included in the input signal spectrum. The com-
mon terms for the frequency domain behavior are the transfer function H (z) and

1.2 Fundamentals of Digital Signal Processing 21

the frequency response H (f) of the digital system. Both can be obtained by two
mathematical transforms applied to the impulse response h(n).

The first transform is the 2-Transform
cc

X (z) = (1.13)
n=-cc

applied to the signal z (n) and the second transform is the discrete-time Fourier
transform

M

n=-cc

with R = wT = 27r f / fs (1.15)

applied to the signal z(n). Both are related by the substitution z U ej'. If we apply
the Z-transform to the impulse response h(n) of a digital system according to

cc

(1.16)
n=-cc

we denote H (z) as the transfer function. If we apply the discrete-time Fourier trans-
form to the impulse response h(n) we get

Substituting (1.15) we define the frequency response of the digital system by

cc

(1.17)

(1.18)
n=-cc

Causal and Stable Systems

A realizable digital system has to fulfill the following two conditions:

Causality: a discrete-time system is causal, if the output signal y (n) = 0 for
n < 0 for a given input signal U(.) = 0 for n < 0. This means that the system
cannot react to an input before the input is applied to the system.

0 Stability: a digital system is stable if

00

(1.19)

holds. The sum over the absolute values of h(n) has to be less than a fixed
number M2 < cc.

22 l Introduction

Table 1.1 Z-transforms and discrete-time Fourier transforms of x(..).

The stability implies that the transfer function (Z-transform of impulse response)
and the frequency response (discrete-time Fourier transform of impulse response) of
a digital system are related by the substitution z H ej'. Realizable digital systems
have to be causal and stable systems. Some Z-transforms and their discrete-time
Fourier transforms of a signal ~ (n) are given in Table 1 .l.

IIR and FIR Systems

IIR systems: A system with an infinite impulse response h(n) is called an IIR
system. From the block diagram in Fig. 1.19 we can read the difference equation

y (n) = z(n) - a1y(n - 1) - a2y(n - 2). (1.20)

The output signal y(n) is fed back through delay elements and a weighted sum
of these delayed outputs is summed up to the input signal x(.). Such a feedback
system is also called a recursive system. The Z-transform of (1.20) yields

Y (z) = X (z) - a l z - l Y (z) - a / Y (z) (1.21)
X(z) = Y (z) (l + a1z-' + a2z-2) (1.22)

and solving for Y (z) /X (z) gives transfer function

(l .23)

Figure 1.20 shows a special signal flow graph representation, where adders, multi-
pliers and delay operators are replaced by weighted graphs.

If the input delay line is extended up to N - 1 delay elements and the output
delay line up to M delay elements according to Fig. 1.21, we can write for the
difference equation

M N-l

(1.24)
k=l k=O

1,2 Fundamentals of Digital Signal Processing 23

Figure 1.19 Simple IIR system with input signal z(n) and output signal y(n).

Figure 1.20 Signal flow graph of digital system in Fig. 1.19 with time domain descrip-
tion in the left block diagram and corresponding frequency domain description with Z-
transform.

Figure 1.21 IIR system

the Z-transform of the difference equation

M N-l

Y (z) = -- c ah z-’YY(z) + c bh z-’XX(z),
k = l k=O

(1.25)

24 l Introduction

and the resulting transfer function

(1.26)

The following M-file 1.10 shows a block processing approach for the IIR filter algo-
rithm.

M-file 1.10 (fi1ter.m)
Y = FILTER(B,A,X) filters the data in vector X with the

filter described by vectors A and B to create the filtered
data Y. The filter is a "Direct Form I1 Transposed"
implementation of the standard difference equation:
a(l)*y(n) = b(l)*x(n) + b(2)*x(n-l) + . . . + b(nb+l)*x(n-nb)

- a(2)*y(n-1) - . . . - a(na+l)*y(n-na)
If a(1) is not equal to 1, FILTER normalizes the filter
coefficients by a(l) .

A sample-by-sample processing approach for a second-order IIR filter algorithm
is demonstrated by the following M-file 1.11.

M-file 1.11 (DirectFormO1.m)
% M-File DirectFormO1.M
% Impulse response of 2nd order IIR filter
% Sample-by-sample algorithm
clear
echo on
%

%
% Impulse response of 2nd order IIR filter

echo off

% Coefficient computation
f g=4000 ;
f a=48000 ;
k=tan(pi*fg/fa) ;

b(l)=l/(l+sqrt(2)*k+k-2);
b(2)=-2/(l+sqrt(2)*k+k^2);
b(3)=l/(l+sqrt(2)*k+k-2);
a(l)=l;
a(2)=2*(k-2-l)/(l+sqrt(2)*k+kA2);
a(3)=(l-sqrt(2)*k+k^2)/(l+sqrt(2)*k+k-2);

1.2 Fundamentals of Digital Signal Processing 25

% Initialization of state variables
xhl=O;xh2=0;
yhl=O;yh2=0;

% Input signal: unit impulse
N=20; % length of input signal
x(N)=O;x(l)=l;

% Sample-by-sample algorithm
for n=l:N
y(n)=b(l)*x(n) + b(2)*xhl + b(3)*xh2 - a(2)*yhl - a(3)*yh2;
xh2=xhl; xhl=x (n) ;
yh2=yhl; yhl=y (n) ;
end ;

% Plot results
subplot (2,1,1)
stem(0:l:length(x)-lyx,’.’);axis([-0.6 length(x)-l -1.2 1.21);
xlabel(’n \rightarrow’) ;ylabel(’x(n) \rightarrow’);
subplot (2 1,2)
stem(O:l:length(x)-l,y,’.’);axis([-0.6 length(x)-l -1.2 1.21);
xlabel(’n \rightarrow’) ;ylabel (’y(n) \rightarrow’) ;

The computation of frequency response based on the coefficients of the transfer
function H (z) = % can be achieved by the M-file 1.12.

M-file 1.12 (freq2.m)
FREqZ Digital filter frequency response.

[H,W] = FREqZ(B,A,N) returns the N-point complex frequency
response vector H and the N-point frequency vector W in
radians/sample of the filter:

jw -jw - jmw
jw B(e) b(1) + b(2)e + + b(m+l)e

H(e) = _ _ _ _ = .
jw -jw - jnw

A(e) a(1) + a(2)e + + a(n+i)e
given numerator and denominator coefficients in vectors B and A.
The frequency response is evaluated at N points equally spaced
around the upper half of the unit circle.

The computation of zeros and poles of H (z) = B is implemented by M-file
1.13.

M-file 1.13 (zp1ane.m)
ZPLANE 2-plane zero-pole plot.

ZPLANE(B,A) where B and A are row vectors containing transfer

26 l Introduction

function polynomial coefficients plots the poles and zeros of
B(z)/A(z).

FIR system: A system with a finite impulse response h(n) is called an FIR system.
From the block diagram in Fig. 1.22 we can read the difference equation

y(n) = bo.(.) + blz(n - 1) + baz(n - 2). (1.27)

The input signal ~ (n) is fed forward through delay elements and a weighted sum
of these delayed inputs is summed up to the input signal y(n). Such a feed forward
system is also called a nonrecursive system. The Z-transform of (1.27) yields

Y (z) boX(2) + b l z - ' X (z) + b z ~ - ~ X (z) (1.28)
= X (Z) (b o + b1z-l + b 2 z P 2) (1.29)

and solving for Y (z) / X (z) gives transfer function

A general FIR system in Fig. 1.23 consists of a feed forward delay line with N - 1
delay elements and has the difference equation

N - l

y(n) = c b k Z(?Z - k) . (1.31)
k=O

The finite impulse response is given by
N--l

h(n) = C bk 6(n - k) , (l .32)
k=O

which shows that each impulse of h(n)is represented by a weighted and shifted unit
impulse. The Z-transform of the impulse response leads to the transfer function

N - l

k=O

x(n-1) = xH,(n) X

Figure 1.22 Simple FIR system with input signal z (n) and output signal y(n).

1.2 Fundamentals of Digital Signal Processing 27

.

Figure 1.23 FIR system.

The time-domain algorithms for FIR systems are the same as those for IIR systems
with the exception that the recursive part is missing. The previously introduced
M-files for IIR systems can be used with the appropriate coefficients for FIR block
processing or sample-by-sample processing.

The computation of the frequency response H (f) = (H (f) 1 . e j L H (f) ((H (f) I
magnitude response, cp = L H (f) phase response) from the Z-transform of an FIR
impulse response according to (1.33) is shown in Fig. 1.24 and is calculated by the
following M-file 1.14.

(a) Impulse Response h(n)
I l 0.7 I

(b) Magnitude Response IH(f)l
I

- 1 0 1 2 3 4 5
n-l

(c) PoleLZero plot

0 10 20 30 40
fin kHz +

O l T T - - - -

(d) Phase Response L H(f)

T
S -1
I
U

-1.5

-2 ‘
10 20 30

f in kHz +
3

Figure 1.24 FIR system: (a) impulse response, (b) magnitude response, (c) pole/zero
plot and (d) phase response (sampling frequency fs= 40 kHz).

28 1 Introduction

M-file 1.14 (figurel-24.m)
function magphasresponse(h)
FS=40000;
FoSi=’Fontsize’;
fosi=lO;
if nargin==O

end
hmax=max (h) ;
hmin=min(h);
dh=hmax-hmin;
hmax=hmax+.l*dh;
hmin=hmin-.l*dh;

h=[-.l .l5 .3 .l5 -.l];

N=length(h) ;
% denominator polynomial:
a=zeros(l ,N) ;
a(1)=1;

subplot (221)
stem(0:N-1,h)
axis([-l N, hmin hmax])
title(’a) Impulse Response h(n)’,FoSi,fosi);
xlabel(’n \rightarrow’,FoSi,fosi)
grid on;

subplot (223)
zplane (h , a)
title(’c) Pole/Zero plot’,FoSi,fosi);
xlabel(’Re(z)’,FoSi,fosi)
ylabel(’Im(z)’ ,FoSi,fosi)

subplot (222)
[H,F] =freqz(h,a,l024,’whole’,FS);
plot (F/1000, abs (H))
xlabel(’f in kHz \rightarrow’,FoSi,fosi);
ylabel(’IH(f) I \rightarrow’,FoSi,fosi);
title(’b) Magnitude response IH(f) I ’,FoSi,fosi);
grid on;

subplot (224)
plot (F/l000 ,unwrap (angle (H)) /pi)
xlabel(’f in kHz \rightarrow’,FoSi,fosi)
ylabel(’\angle H(f)/\pi \rightarrow’,FoSi,fosi)
title(’d) Phase Response \angle H(f)’,FoSi,fosi);
grid on;

1.3 Conclusion 29

1.3 Conclusion

In this first chapter some basic concepts of digital signals, their spectra and digital
systems have been introduced. The description is intended for persons with little or
no knowledge of digital signal processing. The inclusion of MATLAB M-files for all
stages of processing may serve as a basis for further programming in the following
chapters. As well as showing simple tools for graphical representations of digital
audio signals we have calculated the spectrum of a signal x(.) by the use of the
FFT M-file

0 Xmagnitude=abs (f f t (x))
Xphase=angle (f f t (x)) .

Time-domain processing for DAFX can be performed by block-based input-output
computations which are based on the convolution formula (if the impulse response
of a system is known) or difference equations (if the coefficients a and b are known).
The computations can be done by the following M-files:

0 y=conv (h, x) %length of output signal l-y =l-h +l-x -1
y=filter(b,a,x) %l-y =l-x

These M-files deliver an output vector containing the output signal y(n) in a vector
of corresponding length. Of course, these block processing algorithms perform their
inner computations on a sample-by-sample basis. Therefore, we have also shown an
example for the sample-by-sample programming technique, which can be modified
according to different applications:

0 y=dafxalgori thm(paraeters ,x)

f o r n=i : length(x) ,
y(n)=. . . .do something algorithm with x(n) and parameters;
end ;

% Sample-by sample algorithm y(n)=function(parameters,x(n))

That is all we need for DAFX exploration and programming, good luck!

Bibliography

[Arf98] D. Arfib. Different ways to write digital audio effects programs. In
Proc. DAFX-Q8 Digital Audio Effects Workshop, pp. 188-191, Barcelona,
November 1998.

[Arf99] D. Arfib. Visual representations for digital audio effects and their control.
In Proc. DAFX-99 Digital Audio Effects Workshop, pp. 63-68, Trondheim,
December 1999.

30 1 Introduction

[ME931 C . Marvin and G. Ewers. A Simple Approach to Digital Signal Processing.
Texas Instruments, 1993.

[MitOl] S.K Mitra. Digital Signal Processing - A Computer-Based Approach.
McGraw-Hill, 2nd edition, 2001.

[MSY98] J. McClellan, R. Schafer, and M. Yoher. DSP FIRST: A Multimedia
Approach. Prentice-Hall, 1998.

[Orf96] S.J. Orfanidis. Introduction to Signal Processing. Prentice-Hall, 1996.

[Zo197] U. Zolzer. Digital Audio Signal Processing. John Wiley & Sons, Ltd, 1997.

Chapter 2

Filters

P. Dutilleux, U. Zolzer

2.1 Introduction

The term filter can have a large number of different meanings. In general it can be
seen as a way to select certain elements with desired properties from a larger set.
Let us focus on the particular field of digital audio effects and consider a signal in
the frequency domain. The signal can be seen as a set of partials having different
frequencies and amplitudes. The filter will perform a selection of the partials accord-
ing to the frequencies that we want to reject, retain or emphasize. In other words:
the filter will modify the amplitude of the partials according to their frequency.
Once implemented, it will turn out that this filter is a linear transformation. As an
extension, linear transformations can be said to be filters. According to this new
definition of a filter, any linear operation could be said to be a filter but this would
go far beyond the scope of digital audio effects. It is possible to demonstrate what
a filter is by using one’s voice and vocal tract. Utter a vowel, a for example, at a
fixed pitch and then utter other vowels at the same pitch. By doing that we do not
modify our vocal cords but we modify the volume and the interconnection pattern
of our vocal tract. The vocal cords produce a signal with a fixed harmonic spec-
trum whereas the cavities act as acoustic filters to enhance some portions of the
spectrum. We have described filters in the frequency domain here because it is the
usual way to consider them but they also have an effect in the time domain. After
introducing a filter classification in the frequency domain, we will review typical
implementation methods and the associated effects in the time domain.

The various types of filters can be defined according to the following classifica-
tion:

e Lowpass (LP) filters select low frequencies up to the cut-off frequency fc
and attenuate frequencies higher than fc.

31

32 2 Falters

LP BP H(f)t Resonator

HP BR Notch

Figure 2.1 Filter classification.

0 Highpass (HP) filters select frequencies higher than f c and attenuate fre-
quencies below f c .

0 Bandpass (BP) filters select frequencies between a lower cut-off frequency
f c l and a higher cut-off frequency f c h . Frequencies below fc l and frequencies
higher than fch are attenuated.

0 Bandreject (BR) filters attenuate frequencies between a lower cut-off fre-
quency f,.~ and a higher cut-off frequency f&. Frequencies below fcl and fre-
quencies higher than f c h are passed.

0 Notch filters attenuate frequencies in a narrow bandwidth around the cut-off
frequency f c.

0 Resonator filters amplify frequencies in a narrow bandwidth around the cut-
off frequency fc .

0 Allpass filters pass all frequencies but modify the phase of the input, signal.

Other types of filters (LP with resonance, comb, multiple notch ...) can be de-
scribed as a combination of these basic elements. Here are listed some of the possible
applications of these filter types: The lowpass with resonance is very often used in
computer music to simulate an acoustical resonating structure; the highpass filter
can remove undesired very low frequencies; the bandpass can produce effects such
as the imitation of a telephone line or of a mute on an acoustical instrument; the
bandreject can divide the audible spectrum into two bands that seem to be uncor-
related. The resonator can be used to add artificial resonances to a sound; the notch
is most useful in eliminating annoying frequency components; a set of notch filters,
used in combination with the input signal, can produce a phasing effect.

2.2 Basic Falters 33

2.2 Basic Filters

2.2.1 Lowpass Filter Topologies

A filter can be implemented in various ways. It can be an acoustic filter, as in the
case of the voice. For our applications we would rather use electronic or digital
means. Although we are interested in digital audio effects, it is worth having a
look at well-established analog techniques because a large body of methods have
been developed in the past to design and build analog filters. There are intrinsic
design methods for digital filters but many structures can be adapted from existing
analog designs. Furthermore, some of them have been tailored for ease of operation
within musical applications. It is therefore of interest to gain ideas from these analog
designs in order to build digital filters having similar advantages. We will focus on
the second-order lowpass filter because it is the most common type and other types
can be derived from it. The frequency response of a lowpass filter is shown in Fig. 2.2 .
The tuning parameters of this lowpass filter are the cut-off frequency fc and the
damping factor C. The lower the damping factor, the higher the resonance at the
cut-off frequency.

Analog Design, Sallen & Key

Let us remind ourselves of an analog circuit that implements a second-order lowpass
filter with the least number of components: the Sallen & Key filter (Figure 2.2).

C
Frequency response

H(f) 1-------+ ihighL

Figure 2.2 Sallen & Key second-order analog filter and frequency response.

The components (R I , R z , C) are related to the tuning parameters as:

These relations are straightforward but both tuning coefficients are coupled. It is
therefore difficult to vary one while the other remains constant. This structure is
therefore not recommended when the parameters are to be tuned dynamically and
when low damping factors are desired.

34 2 Falters

Digital Design, Canonical

The canonical second-order structure, as shown in Fig. 2.3, can be implemented by
the difference equation

y(n) = box(?%) + b1z(n - l) + b2x(n - 2)

-u1y(n - 1) - uay(n - 2). (2.2)

Figure 2.3 Canonical second-order digital filter.

It can be used for any second-order transfer function according to

In order to modify the cut-off frequency or the damping factor, all 5 coefficients
have to be modified. They can be computed from the specification in the frequency
plane or from a prototype analog filter. One of the methods that can be used is
based on the bilinear transform [DJ85]. The following set of formulas compute the
coefficients for a lowpass filter:

f c analog cut-off frequency

c damping factor

f s sampling frequency
c = l/[tan(7rfc/fs)l

(2.4)

This structure has the advantage that it requires very few elementary operations
to process the signal itself. It has unfortunately some severe drawbacks. Modifying

2.2 Basic Falters 35

the filter tuning (fc, 4) involves rather complex computations. If the parameters are
varied continuously, the complexity of the filter is more dependent on the coefficient
computation than on the filtering process itself. Another drawback is the poor signal
to noise ratio for low frequency signals. Other filter structures are available that cope
with these problems. We will again review a solution in the analog domain and its
counterpart in the digital domain.

State Variable Filter, Analog

For musical applications of filters one wishes to have an independent control over
the cut-off frequency and the damping factor. A technique originating from the
analog computing technology can solve our problem. It is called the state variable
filter (Figure 2.4). This structure is more expensive than the Sallen & Key but has
independent tuning components (R f , RC) for the cut-off frequency and the damping
factors:

Furthermore, it provides simultaneously three types of outputs: lowpass, highpass
and bandpass.

Higtlpass output Bandpass output
0 C 0 C

Lowpass
0

- - -

output

Figure 2.4 Analog state variable filter.

State Variable Filter, Digital

The state variable filter has a digital implementation, as shown in Fig. 2.5 [Cha80],
where

4 n) input signal
Y1 (n) lowpass output
Y b (n) bandpass output
Y h (R) highpass output

and the difference equations for the output signals are given by

36 2 Falters

Highpass output Bandpass output Lowpass output ,,

Figure 2.5 Digital state variable filter.

With tuning coefficients F1 and Q1, related to the tuning parameters f c and C as:

F1 = 2sin(rfC/ f S) Q1 = 2((2.8)

it can be shown that the lowpass transfer function is:

T = F1 q = l - F l Q I
n

This structure is particularly effective not only as far as the filtering process is
concerned but above all because of the simple relations between control parameters
and tuning coefficients. One should consider the stability of this filter, because
at higher cut-off frequencies and larger damping factors it becomes unstable. A
“usability limit” given by Fl < 2 - Q1 assures the stable operation of the state
variable implementation [DutSl, DieOO]. In most musical applications however it is
not a problem because the tuning frequencies are usually small compared to the
sampling frequency and the damping factor is usually set to small values [Dut89a,
Dat971. This filter has proven its suitability for a large number of applications.
The nice properties of this filter have been exploited to produce endless glissandi
out of natural sounds and to allow smooth transitions between extreme settings
[Dut89b, m-Vas931. It is also used for synthesizer applications [DieOO]. We have
considered here two different digital filter structures. More are available and each has
its advantages and drawbacks. An optimum choice can only be made in agreement
with the application [Zo197].

Normalization

Filters are usually designed in the frequency domain and we have seen that they
have an action also in the time domain. Another correlated impact lies in the loud-
ness of the filtered sounds. The filter might produce the right effect but the result

2.2 Basic Filters 37

might be useless because the sound has become too weak or too strong. The method
of compensating for these amplitude variations is called normalization. Usual nor-
malization methods are called L1, L2 and L , [Zo197]. L1 is used when the filter
should never be overloaded under any circumstances. This is overkill most of the
time. L2 is used to normalize t,he loudness of the signal. It is accurate for broad-
band signals and fits many practical musical applications. L , actually normalizes
the frequency response. It is best when the signal to filter is sinusoidal or periodical.
With a suitable normalization scheme the filter can prove to be very easy to handle
whereas with the wrong normalization, the filter might be rejected by musicians be-
cause they cannot operate it. The normalization of the state variable filter has been
studied in [DutSl] where several implementation schemes are proposed that lead to
an effective implementation. In practice, a first-order lowpass filter that processes
the input signal will perform the normalization in fc and an amplitude correction in
& will normalize in (Figure 2.6). This normalization scheme allows us to operate
the filter with damping factors down to where the filter gain reaches about 74
dB at fc.

l l
t”

Figure 2.6 &-normalization in fc and C for the state variable filter.

Sharp Filters

Apart from FIR filters (see section 2.2.3), we have so far only given examples of
second-order filters. These filters are not suitable for all applications. On the one
hand, smooth spectral modifications are better realized by using first-order filters.
On the other hand, processing two signal components differently that are close
in frequency, or imitating t8he selectivity of our hearing system calls for higher
order filters. FIR filterss can offer the right selectivity but again, they will not be
easily tuned. Butterworth filters have attractive features in this case. Such filters are
optimized for a flat frequency response until fc and yield a 6n dB/octave attenuation
for frequencies higher than f c . Filters of order 2n can be built out of n second-order
sections, All sections are tuned to the same cut-off frequency f c but each section
has a different damping factor C (Table 2.1) [LKG72].

These filters can be implemented accurately in the canonical second-order dig-
ital filter structure but modifying the tuning frequency in real time can lead to
temporary instabilities. The state variable structure is less accurate for high tuning
frequencies (i.e. fc > f s / l O) but allows faster tuning modifications. A bandpass
filter comprising a 4th-order highpass and a 4th-order lowpass was implemented

38

Table 2.1 Damping factors for Butterworth filters.

2 Filters

n
2 I(0.707

C of second-order sections 1 i ‘1 0.924 0.383 1
10 0.988 0.891 0.707 0.454 0.156

0.966 0.707 0.259
0.981 0.831 0.556 0.195

and used to imitate a fast varying mute on a trombone [Dutgl]. Higher order filters
(up to about 16) are useful to segregate spectral bands or even individual partials
within complex sounds.

Behavior in the Time Domain

We so far considered the action of the filters in the frequency domain. We cannot
forget the time domain because it is closely related to it . Narrow bandpass filters,
or resonant filters even more, will induce long ringing time responses. Filters can
be optimized for their frequency response or time response. It is easier to grasp the
time behavior of FIRs than IIRs. FIRs have the drawback of a time delay that can
impair the responsiveness of digital audio effects.

2.2.2 Parametric AP, LP, HP, B P and BR Filters

Introduction

In this subsection we introduce a special class of parametric filter structures for
allpass, lowpass, highpass, bandpass and bandreject filter functions. Parametric fil-
ter structures denote special signal flow graphs where a coefficient inside the signal
flow graph directly controls the cut-off frequency and bandwidth of the correspond-
ing filter. These filter structures are easily tunable by changing only one or two
coefficients. They play an important role for real-time control with minimum com-
putational complexity.

Signal Processing

The basis for parametric first- and second-order IIR filters is the first- and second-
order allpass filter. We will first discuss the first-order allpass and show simple low-
and highpass filters, which consist of a tunable allpass filter together with a direct
path.

2.2 Basic Filters 39

First-order allpass. A first-order allpass filter is given by the transfer function

4(z) =
z-1 + c
1 + cz-1

(2.10)

(2.11)

The magnitude/phase response and the group delay of a first-order allpass are
shown in Fig. 2.7. The magnitude response is equal to one and the phase response
is approaching -180 degrees for high frequencies. The group delay shows the delay
of the input signal in samples versus frequency. The coefficient c in (2.10) controls
the cut-off frequency of the allpass, where the phase response passes -90 degrees
(see Fig. 2.7).

Magnitude Response, Phase Response. Group Delay

-1 0
0 0.1 0.2 0.3 0.4 0.5

-200 '
0 0.1 0.2 0.3 0.4 0.5

0 0
0 0.1 0.2 0.3 0.4 0.5

f/f, +

Figure 2.7 First-order allpass filter with fc = 0.1 . fs.

From (2.10) we can derive the corresponding difference equation

y(n) = cz(n) + 2(n - l) - cy(n - l), (2.12)

which leads to the block diagram in Fig. 2.8. The coefficient c occurs twice in this
signal flow graph and can be adjusted according to (2.11) to change the cut-off
frequency. A va,riant allpass structure with only one delay element is shown in t,he
right part of Fig. 2.8. It is implemented by the difference equations

(2.13)
(2.14)

40 2 Filters

Direct-form structure Allpass structure

Figure 2.8 Block diagram for a first-order allpass filter.

The resulting transfer function is equal to (2.10). For simple implementations a
table with a number of coefficients for different cut-off frequencies is sufficient, but
even for real-time applications this structure offers very few computations. In the
following we use this first-order allpass filter to perform low/highpass filtering.

First-order low/highpass. A first-order lowpass filter can be achieved by
adding or subtracting (+/-) the input signal from the output signal of a first-order
allpass filter. As the output signal of the first-order allpass filter has a phase shift
of -180 degrees for high frequencies, this operation leads to low/highpass filtering.
The transfer function of a low/highpass filter is then given by

H (z) = - (1 f A (z)) (LP/HP +/-) l
2

(2.15)

(2.16)

(2.17)

where a tunable first-order allpass 4(z) with tuning parameter c is used. The plus
sign (+) denotes the lowpass operation and the minus sign (-) the highpass opera-
tion. A block diagram in Fig. 2.9 represents the operations involved in performing
the low/highpass filtering. The allpass filter can be implemented by the difference
equation (2.12) as shown in Fig. 2.8.

Figure 2.9 Block diagram of a first-order low/highpass filter.

The magnitude/phase response and group delay are illustrated for low- and high-
pass filtering in Fig. 2.10. The -3dB point of the magnitude response for lowpass and

2.2 Basic Falters 41

Magnitude Response, Phase Response, Group Delay Magnitude Response, Phase Response, Group Delay

,.,
0 0.1 02 0.3 0.4 0.5

U
.-

a' I !! -100 - 5 1 L l 0 0.1 0.2 0.3 0.4 0.5

9 l / , , , , I
-10

0 0.1 0.2 0.3 0.4 0.5

flf, + flf, +

Figure 2.10 First-order low/highpass filter with fc = O . l f s

highpass is passed at the cut-off frequency. With the help of the allpass subsystem
in Fig. 2.9 tunable low- and highpass systems are achieved.

Second-order allpass. The implementation of tunable bandpass and band-
reject filters can be achieved with a second-order allpass filter. The transfer function
of a second-order allpass filter is given by

(2.18)

(2.19)

(2.20)

The parameter d adjusts the cut-off frequency and the parameter c the bandwidth.
The magnitude/phase response and the group delay of a second-order allpass are
shown in Fig. 2.7. The magnitude response is again equal to one and the phase
response approaches -360 degrees for high frequencies. The cut-off frequency WC de-
termines the point on the phase curve, where the phase response passes -180 degrees.
The width or slope of the phase transition around the cut-off frequency is controlled
by the bandwidth parameter W B . From (2.18) the corresponding difference equation

y(n) = -cz(n) + d(l - c)z(n - 1) + z(n - 2)
-d(l - c)y(n - 1) + cy(n - 2) (2.21)

42 2 Filters

can be derived, which leads to the block diagram in Fig. 2.12. The cut-off frequency
is controlled by the coefficient d and the bandwidth by coefficient c.

Magnitude Response, Phase Response, Group Delay

-10
0 0.1 0.2 0.3 0.4 0.5

-400 L J
0 0.1 0.2 0.3 0.4 0.5

v i s --t

Figure 2.11 Second-order allpass filter with fc = O . l f s and f b = 0.022fs.

Figure 2.12 Block diagram for a second-order allpass filter.

2,2 Basic Falters 43

Second-order bandpass/bandreject. Second-order bandpass and bandreject
filters can be described by the following transfer function

H (z) = 5 [l ‘F A(z)] (BP/BR -/+) 1
(2.22)

(2.23)

(2.24)

(2.25)

where a tunable second-order allpass A(z) with tuning parameters c and d is used.
The plus sign (+) denotes the bandpass operation and the minus sign (-) the band-
reject operation. The block diagram in Fig. 2.13 shows the bandpass and bandreject
filter implementation based on a second-order allpass subsystem, which can be im-
plemented by the signal flow graph of Fig. 2.12. The magnitude/phase response and
group delay are illustrated in Fig. 2.14 for both filter types.

Figure 2.13 Second-order bandpass and bandreject filter.

Second-order low/highpass filters. The coefficients for second-order low-
and highpass filters given by the transfer function of (2.3) are shown in Table 2.2.
A control of single coefficients for adjusting the cut-off frequency is not possible.
A complete set of coefficients is necessary, if the cut-off frequency is changed. The
implementation of these second-order low- and highpass filters can be achieved by
the difference equation (2.2) and the filter structure in Fig. 2.3.

Table 2.2 Filter coefficients for second-order lowpass/highpass filters [Zo197] .
lowpass (second-order) with K = tan (7rfc/fs)

bo a2 a1 b2 bl
K2 2 K 2

1+&K+K2
K 2

I + & K + K ~ I + & K + K ~ I + & K + K ~ I + & K + K ~
2(K”- l) I - & K + K ~

highpass (second-order) with K = tan (rfc/fs)
bo

I+&K+K~
~ - & K + K ~

I+&K+K~ I + & K + K ~ I + & K + K ~ I+&K+K~

a 2 a1 b2 b l
1 -2 1 2 (K L - l)

44 2 Falters

Magnitude Response, Phase Response, Group Delay Magnltude Response, Phase Response, Group Delay

.-
v

c
3 -5
m

.- 2 -5

f 5
-10

0 0.1 0.2 0.3 0.4 0.5
-10

0 0.1 0.2 0.3 0.4 0.5

v ! 1 : : 7 - - /

.-

-50

-1 00
a

0 0.1 0.2 0.3 0.4 0.5

c -501 ,c , , , 1
-1 00

0 0.1 0.2 0.3 0.4 0.5

2, -
$ 5
a

Q 0
2

0 0.1 0.2 0.3 0.4 0.5
"f, +

Figure 2.14 Second-order bandpasslbandreject

100,

-100' i
0 0.1 0.2 0.3 0.4 0.5 jr-,i X 1014

-
rn v
a -4
9
Q -6

0 0.1 0.2 0.3 0.4 0.5
5 -6' 1

0 0.1 0.2 0.3 0.4 0.5
f/fs +

filter with fc = O . l f s and fb = 0.022fs.

Series connection of first- and second-order filters. If several filters are
necessary for spectrum shaping, a series connection of first- and second-order filters

is performed, which is given by the product of the single transfer functions

(2.26)

(2.27)

(2.28)

A series connection of three stages is shown in Fig. 2.15. The resulting difference

2.2 Basic Falters 45

Stage 1 Stage 2 Stage 3

Figure 2.15 Series connection of firstfsecond-order stages.

equation can be split into three difference equations as given by

stage 1
y1(n) = h f z (n) + b;lz(n - l) - a;lyl(n - 1) (2.29)

.2(.> = Y1 (n) (2.30)
y2(.) = bi2.2(n) + b;2z2(n - 1) + b;%2(n - 2)

-a, ya(n - 1) - a;2y2(n - 2) S 2 (2.31)

23(72) = Y2(n) (2.32)
y(n) = b;3.3(n) + b?323(n - 1) + b;323(n - 2)

-43y(n - 1) - 43y(n - 2). (2.33)

stage 2

stage 3

Musical Applications

The simple control of the cut-off frequency and the bandwidth of these parametric
filters leads to very efficient implementations for real-time audio applications. Only
second-order low- and highpass filters need the computation of a complete set of
coefficients. The series connection of these filters can be done very easily as shown
in the previous paragraph.

2.2.3 FIR Filters

Introduction

The digital filter that we have seen before is said to have an infinite impulse response.
Because of the feedback loops within the structure, an input sample will excite
an output signal whose duration is dependent on the tuning parameters and can
extend over a fairly long period of time. There are other filter structures without

46 2 Filters

T

Figure 2.16 Finite Impulse Response Filter.

feedback loops (Figure 2.16). These are called finite impulse response filters (FIR),
because the response of the filter to a unit impulse lasts only for a fixed period
of time. These filters allow the building of sophisticated filter types where strong
attenuation of unwanted frequencies or decomposition of the signal into several
frequency bands is necessary. They typically require more computing power than
IIR structures to achieve similar results but when they are implemented in the form
known as fast convolution they become competitive, thanks to the FFT algorithm.
It is rather unwieldy to tune these filters interactively. As an example, let us briefly
consider the vocoder application. If the frequency bands are fixed, then the FIR
implementation can be most effective but if the frequency bands have to be subtly
tuned by a performer, then the IIR structures will certainly prove superior [Mai97].
However, the filter structure in Fig. 2.16 finds widespread applications for head-
related transfer functions and the approximation of first room reflections, as will be
shown in Chapter 6. For applications where the impulse response of a real system
has been measured, the FIR filter structure can be used directly to simulate the
measured impulse response.

Signal Processing

The output/input relation of the filter structure in Fig. 2.16 is described by the
difference equation

N-l

y(n) = c bi . z(n - i) (2.34)
i=O

= boz(n) + b1z(n - 1) + . . . + b,Ai_1z(n - N + l) , (2.35)

which is a weighted sum of delayed input samples. If the input signal is a unit
impulse 6(n), which is one for n = 0 and zero for n # 0, we get the impulse
response of the system according to

N-l

h(n) = c bi .6(n - i) . (2.36)

A graphical illustration of the impulse response of a 5-tap FIR filter is shown in
Fig. 2.17. The Z-transform of the impulse response gives the transfer function

i = O

N-l

(2.37)
i=O

2.2 Basic Filters 47

Figure 2.17 Impulse response of an FIR filter.

and with z = ejn the frequency response

H(ej") = bo + ble-j" + b2e-j2" + . . . + b ~ - l . e- j (N-l)n (2.38)
with 0 = 2rf / fs = WT.

Filter design. The filters already described such as LP, HP, BP and BR are also
possible with FIR filter structures (see Fig. 2.18). The N coefficients b o , . . . , bN-1
of a nonrecursive filter have to be computed by special design programs, which are
discussed in all DSP text books. The N coefficients of the impulse response can
be designed to yield a linear phase response, when the coefficients fulfill certain
symmetry conditions. The simplest design is based on the inverse discrete-time
Fourier transform of the ideal lowpass filter, which leads to the impulse response

h(n) = - . 2fc sin [W C / f S (n - +l)]
f s 2rfclfs (. - F) ,n = 0 , . . . , N - 1. (2.39)

To improve the frequency response this impulse response can be weighted by an
appropriate window function like Hamming or Blackman according to

(2.40)
(2.41)

If a lowpass filter is designed and an impulse response h ~ p (n) is derived, a frequency
transformation of this lowpass filter leads to highpass, bandpass and bandreject
filters (see Fig. 2.18).

Figure 2.18 Frequency transformations: LP and frequency transformations to BP and
HP.

48 2 Filters

Frequency transformations are performed in the time domain by taking the
lowpass impulse response h ~ p (n) and computing the following equations:

0 LP-HP

0 LP-BP

hBp(n) = 2 h L p (n) . cos [2n- ;(71 - - N i l)] n = o , ... , N - 1 (2.43)

0 LP-BR

- hsp(n) 72 = o , . . . , N - 1. (2.44)

Another simple FIR filter design is based on the FFT algorithm and is called fre-
quency sampling. Design examples for audio processing with this design technique
can be found in [Zo197].

Musical Applications

If linear phase processing is required, FIR filtering offers magnitude equalization
without phase distortions. They allow real-time equalization by making use of the
frequency sampling design procedure [Zo197] and are attractive equalizer counter-
parts to IIR filters, as shown in [McG93]. A discussion of more advanced FIR filters
for audio processing can be found in [Zo197].

2.2.4 Convolution

Introduction

Convolution is a generic signal processing operation like addition or multiplication.
In the realm of computer music it has nevertheless the particular meaning of im-
posing a spectral or temporal structure onto a sound. These structures are usually
not defined by a set of few parameters, such as the shape or the time response of a
filter, but given by a signal which lasts typically a few seconds or more. Although
convolution has been known and used for a very long time in the signal processing
community, its significance for computer music and audio processing has grown with
the availability of fast computers that allow long convolutions to be performed in a
reasonable period of time.

2.2 Basic Filters 49

Signal Processing

We could say in general that the convolution of two signals means filtering the one
with the other. There are several ways of performing this operation. The straight-
forward method is a direct implementation in a FIR filter structure but it is com-
putationally very ineffective when the impulse response is several thousand samples
long. Another method, called the fast convolution, makes use of the FFT algorithm
to dramatically speed up the computation. The drawback of the fast convolution
is that it has a processing delay equal to the length of two FFT blocks, which is
objectionable for real-time applications whereas the FIR method has the advantage
of providing a result immediately after the first sample has been computed. In or-
der to take advantage of the FFT algorithm while keeping the processing delay to a
minimum, low-latency convolution schemes have been developed which are suitable
for real-time applications [Gar95, MT991.

The result of convolution can be interpreted in both the frequency and time
domains. If U(.) and b(n) are the two convolved signals, the output spectrum will be
given by the product of the two spectra S (j) = A (f) . B (f) . The time interpretation
derives from the fact that if b(n) is a pulse at time k, we will obtain a copy of u(n)
shifted at time ko, i.e. s(n) = a(n - k). If b(n) is a sequence of pulses, we will
obtain a copy of U(.) in correspondence to every pulse, i.e. a rhythmic, pitched,
or reverberated structure, depending on t,he pulse distance. If b(n) is pulse-like, we
obtain the same pattern with a filtering effect. In this case b(n) should be interpreted
as an impulse response. Thus convolution will result in subtractive synthesis, where
the frequency shape of the filter is determined by a real sound. For example the
convolution with a bell sound will be heard as filtered by the resonances of the bell.
In fact the bell sound is generated by a strike on the bell and can be considered as
the impulse response of the bell. In this way we can simulate the effect of a sound
hitting a bell, without measuring the resonances and designing the filter. If both
sounds a (n) and b (n) are complex in time and frequency, the resulting sound will
be blurred and will tend to lack the original sound’s character. If both sounds are of
long duration and each has a strong pitch and smooth attack, the result will contain
both pitches and the intersection of their spectra.

Musical Applications

The sound example “quasthal” [m-quasthal] illustrates the use of the impulse re-
sponse as a way of characterizing a linear system. In this example, a spoken word
is convolved with a series of impulses which are derived from measurements of 2
loudspeakers and of 3 rooms. The first loudspeaker, a small studio monitor, al-
ters at least the original sound. The second loudspeaker, a spherical one, colors
the sound strongly. When the sound is convolved with the impulse responses of a
room, it is projected in the corresponding virtual auditory space [DMT99]. A dif-
fuse reverberation can be produced by convolving with broad band noise having
a sharp attack and exponentially decreasing amplitude. Another example features
a tuba glissando convolved by a series of snare-drum strokes. The tuba is trans-
formed in something like a tibetan trumpet playing in the mountains. Each stroke

50 2 Filters

of the snare drum produces a copy of the tuba sound. Since each stroke is noisy
and broadband, it acts like a reverberator. The series of strokes acts like several
diffusing boundaries and produces the type of echo that can be found in natural
landscapes [DMT99, m-tubg5snal.

The convolution can be used to map a rhythm pattern onto a sampled sound. The
rhythm pattern can be defined by positioning a unit impulse at each desired time
within a signal block. The convolution of the input sound with the time pattern will
produce copies of the input signal at each of the unit impulses. If the unit impulse
is replaced by a more complex sound, each copy will be modified in its timbre and
in its time structure. If a snare drum stroke is used, the attacks will be smeared
and some diffusion will be added [m-gendsna]. The convolution has an effect both
in the frequency and in the time domain. Take a speech sound with sharp frequency
resonances and a rhythm pattern defined by a series of snare-drum strokes. Each
word will appear with the rhythm pattern, also the rhythm pattern will be heard
in each word with the frequency resonances of the initial speech sound [m-chu5sna].

The convolution as a tool for musical composition has been investigated by
composers such as Horacio Vaggione [m-Vag96, Vag981 and Curtis Roads [Roa97].
Because the convolution has a combined effect in the time and frequency domains,
some expertise is necessary to foresee the result of the combination of two sounds.

2.3 Equalizers

Introduction and Musical Applications

In contrast t o lowlhighpass and bandpasslreject filters, which attenuate the audio
spectrum above or below a cut-off frequency, equalizers shape the audio spectrum
by enhancing certain frequency bands while others remain unaffected. They are built
by a series connection of first- and second-order shelving and peak filters, which are
controlled independently (see Fig. 2.19). Shelving filters boost or cut the low or high
frequency bands with the parameter cut-off frequency fc and gain G. Peak filters
boost or cut mid-frequency bands with parameters cut-off frequency fc, bandwidth
fb and gain G. One often used filter type is the constant Q peak filter. The Q factor
is defined by the ratio of the bandwidth to cut-off frequency Q = k. The cut-off
frequency of peak filters are then tuned, while keeping the Q factor constant. This
means that the bandwidth is increased when the cut-off frequency is increased and
vice versa. Several proposed digital filter structures for shelving and peak filters can
be found in the literature [Whi86, RM87, Dut89a, HB93, Bri94, Orf96,Orf97, Zo1971.

Applications of these parametric filters can be found in parametric equalizers,
octave equalizers (fc=31.25, 62.5, 125, 250, 500, 1000, 2000, 4000, 8000, 16000 Hz)
and all kinds of equalization devices in mixing consoles, outboard equipment and
foot pedal controlled stomp boxes.

2.3 Equalizers 51

Cut-off frequency f, Cut-off frequency f, Cut-off frequency f, Cut-off frequency f,
Gain G in dB Bandwidth f Bandwidth f

Gain G in d d
Gain G in dB

Gain G in d d

Figure 2.19 Series connection of shelving and peak filters.

2.3.1 Shelving Filters

First-order Design

First-order low/high frequency shelving filters [Zo197] can be described by the trans-
fer function

H (z) = 1 + - [l + &A(z)] (LF/HF +/-) H0
2

(2.45)

with the first-order allpass

(2.46)

The block diagram in Fig. 2.20 shows a first-order low/high-frequency shelving

Figure 2.20 First-order low/high-frequency shelving filter.

52 2 Filters

filter, which leads to the following difference equations:

y1 (n) aB/Cz(n) + - 1) - aB/cyl (n - 1) (2.47)

?An> = 2 [.(n) Yl(n)l+ 4.). H0 (2.48)

The gain G in dB for low/high frequencies can be adjusted by the parameter

H0 = V' - 1, with V. = 1OGl2'. (2.49)

The cut-off frequency parameter U B for boost and a c for cut can be calculated as

(2.50)

(2.51)

The cut-off frequency parameters for boost and cut for a first-order high-frequency
shelving filter [Zo197] are calculated by

(2.52)

(2.53)

Magnitude responses for a low-frequency shelving filter are illustrated in the left
part of Fig. 2.21 for several cut-off frequencies and gain factors. The slope of the
frequency curves for these first-order filters are with 6 dB per octave.

Second-order Design

For several applications especially in advanced equalizer designs the slope of the
shelving filter is further increased by second-order transfer functions. Design formu-
las for second-order shelving filters are given in Table 2.3 from [Zo197]. Magnitude
responses for second-order low/high frequency shelving filters are illustrated in the
right part of Fig. 2.21 for two cut-off frequencies and several gain factors.

2.3.2 Peak Filters

A second-order peak filter [Zo197] is given by the transfer function

Ho
2

H (z) = 1 + - [l - (2.54)

where

2.3 Equalizers 53

Table 2.3 Second-order shelving filter design with K = tan (rfC/fs) [Zo197].

low-frequency shelving (boost V0 = loG/”)

I + J Z K + K ~
2(K2-1)

I I I I

low-frequency shelving (cut V. =

I

high-frequency shelving (boost V0 = loG/”)

I I I I

high-frequency shelving (cut V0 = 10-G/20)

bo I bl I b2 a2 a1

First-order Shelving Filters Second-order Shelving Filters

f i n H z + f i n H z +

Figure 2.21 Frequency responses for first-order and second-order shelving filters.

is a second-order allpass filter. The block diagram in Fig. 2.22 shows the second-
order peak filter, which leads to the following difference equations:

y1(n) = -uqcz (n) + d(1- uB/c)z(n - 1) + z (n - 2)
(2.56)

54 2 Filters

:+

Figure 2.22 Second-order peak filter.

The center/cut-off frequency parameter d and the coefficient H0 are given by

(2.58)
(2.59)
(2.60)

The bandwidth f b is adjusted through the parameters ag and a c for boost and cut
and are given by

(2.61)

(2.62)

This peak filter offers almost independent control of all three musical parameters
center/cut-off frequency, bandwidth and gain. Another design approach from [Zo197]
shown in Table 2.4 allows direct computation of the five coefficients for a second-
order transfer function as given in the difference equation (2.2).

Frequency responses for several settings of a peak filter are shown in Fig. 2.23.
The left part shows a variation of the gain with a fixed center frequency and band-
width. The right part show for fixed gain and center frequency a variation of the
bandwidth or Q factor.

55 2.4 Time-varying Filters

Table 2.4 Peak filter design with K = tan (.-fc/fs) [Zo197].

peak (boost v0 = loG/”)
bo

I + ~ K + K ~ ~ + & K + K z I + & K + K ~ 1 + x K + K 2

a2 a1 62 bl

I f ~ K f K 2

I++K+K~ m Qm

I - - ~ K + K ~ Z(K2-1) I - P K f K ’ 2(K2-1) Q m

peak (cut v0 =

bo 1 bz a1

20

15

10

T 5
m n o
c -5
I

-10

-1 5

.-
-

-20,

2.4

Second-order Peak Filters
Parameter: Gain Factor

Y 1 1

200 2000 20000

Second-order Peak Filters
Parameter: Bandwidth

f i n Hz --f f i n Hz +

Figure 2.23 Frequency responses second-order peak filters.

Time-varying Filters
The parametric filters discussed in the previous sections allow the time-varying
control of the filter parameters gain, cut-off frequency and bandwidth or Q factor.
Special applications of time-varying audio filters will be shown in the following.

2.4.1 Wah-wah Filter

The wah-wah effect is produced mostly by foot-controlled signal processors contain-
ing a bandpass filter with variable centerlresonant frequency and a small bandwidth.
Moving the pedal back and forth changes the bandpass cut-offlcenter frequency.
The “wah-wah” effect is then mixed with the direct signal as shown in Fig. 2.24.
This effect leads to a spectrum shaping similar to speech and produces a speech
like “wah-wah” sound. If the variation of the center frequency is controlled by the

56

l-mir

2 Filters

Figure 2.24 Wah-wah: time-varying bandpass filter.

input signal, a low-frequency oscillator is used to change the center frequency. Such
an effect is called an auto-wah filter. If the effect is combined with a low-frequency
amplitude variation, which produces a tremolo, the effect is denoted a tremolo-wah
filter. Replacing the unit delay in the bandpass filter by an M tap delay leads to the
M-fold wah-wah filter [Dis99], which is shown in Fig. 2.25. M bandpass filters are
spread over the entire spectrum and simultaneously change their center frequency.
When a white noise input signal is applied to an M-fold wah-wah filter, a spectro-
gram of the output signal shown in Fig. 2.26 illustrates the periodic enhancement
of the output spectrum. Table 2.5 contains several parameter settings for different
effects.

Figure 2.25 M-fold wah-wah filter.

Table 2.5 Effects with M-fold wah-wah filter [Dis99].

Wah-Wah i 1 i -/3kHz i 200Hz 1 ~ , _...

1 M-fold Wah-Wah I 5-20 I 0.51- I 200-500Hz \ l I , l

Bell effect I 100 I 0.5/- I lOOHz 1

2.4.2 Phaser

The previous effect relies on varying the center frequency of a bandpass filter. An-
other effect uses notch filters: phasing. A set of notch filters, that can be realized
as a cascade of second-order IIR sections, is used to process the input signal. The
output of the notch filters is then combined with the direct sound. The frequen-
cies of the notches are slowly varied using a low-frequency oscillator (Figure 2.27)
[Smi84]. “The strong phase shifts that exist around the notch frequencies combine

2.4 Time-varying Filters 57

x 10'

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time

Figure 2.26 Spectrogram of output signal of a time-varying M-fold wah-wah filter [DisSS].

with the phases of the direct signal and cause phase cancellations or enhancements
that sweep up and down the frequency axis" [Orf96]. Although this effect does not
rely on a delay line, it is often considered to go along with delay-line based effects
because the sound effect is similar to that of flanging. An extensive discussion on this
topic is found in [Str83]. A different phasing approach is shown in Figure 2.28. The
notch filters have been replaced by second-order allpass filters with time-varying
center frequencies. The cascade of allpass filters produces time-varying phase shifts
which lead to cancellations and amplifications of different frequency bands when
used in the feedforward and feedback configuration.

Figure 2.27 Phasing.

58 2 Filters

Figure 2.28 Phasing with time-varying allpass filters.

2.4.3 Time-varying Equalizers

0 Time-varying octave bandpass filters, as shown in Fig. 2.29, offer the possi-
bility of achieving wah-wah-like effects. The spectrogram of the output signal
in Fig. 2.30 demonstrates the octave spaced enhancement of this approach.

Figure 2.29 Time-varying octave filters.

0 Time-varying shelving and peak filters: the special allpass realization of shelv-
ing and peak filters has shown that a combination of lowpass, bandpass and
allpass filters gives access to several frequency bands inside such a filter struc-
ture. Integrating level measurement or envelope followers (see Chapter 5) into
these frequency bands can be used for adaptively changing the filter param-
eters gain, cut-off/center frequency and bandwidth or Q factor. The com-
bination of dynamics processing, which will be discussed in Chapter 5, and
parametric filter structures allows the creation of signal dependent filtering
effects with a variety of applications.

2.5 Conclusion 59

Time

Figure 2.30 Spectrogram of output signal for time-varying octave filters.

Feedback cancellers, which are based on time-varying notch filters, play an
important role in sound reinforcement systems. The spectrum is continuously
monitored for spectral peaks and a very narrow-band notch filter is applied
to the signal path.

2.5 Conclusion

Filtering is still one of the most commonly used effect tools for sound recording
and production. Nevertheless, its successful application is heavily dependent on the
specialized skills of the operator. In this chapter we have described basic filter al-
gorithms for time-domain audio processing. These algorithms perform the filtering
operations by the computation of difference equations. The coefficients for the dif-
ference equations are given for several filter functions such as lowpass, highpass,
bandpass, shelving and peak filters. Simple design formulas for various equalizers
lead to efficient implementations for time-varying filter applications. The combi-
nation of these basic filters together with the signal processing algorithms of the
following chapters allows the building of more sophisticated effects.

60 2 Filters

Sound and Music

[m-chu5sna] chu5sna: vocoder speech convolved with snare-drum strokes. Demo
Sound. DAFX Sound Library.

[m-gendsna] gendsna: snare-drum rhythm pattern is mapped onto a gender sound.
Demo Sound. DAFX Sound Library.

[m-Mai97] M. Maiguashca: Reading Castaiieda. CD. Wergo2053-2, zkm 3 edition,
1997.

[m-Pie99] F. Pieper: Das Effekte Praxisbuch. GC Carstensen, 1999. CD. Tr. 1,
35, 36.

[m-quasthal] quasthal: convolution of speech with impulse responses. Demo Sound.
DAFX Sound Library.

[m-Vag96] H. Vaggione: MYR-S, Composition for cello, electroacoustic set-up and
tape. Festival Synthhse, Bourges 1996.

[m-Vas93] P. Vasseur: PURPLE FRAME, in Le sens cachi. 100 mystkres, CD
FREE WAY MUSIQUE, No. 869193, 1993.

[m-tubg5sna] tubg5sna:: tuba glissando convolved by a series of snare-drum strokes.
Demo Sound. DAFX Sound Library.

Bibliography

(Brig41 R. Bristow. The equivalence of various methods of computing biquad co-
efficients for audio parametric equalizers. In Proc. 97th AES Convention,
Preprint 3906, San Rancisico, 1994.

[Cha80] H. Chamberlin. Musical Applications of Microprocessors. Hayden Book
Company, 1980.

[Dat97] J. Dattoro. Effect design, part 1: Reverberator and other filters. J. Audio
Eng. Soc., 45(9):660-684, September 1997.

[DieOO] S. Diedrichsen. Personal communication. emagic GmbH, 2000.

[Dis99] S. Disch. Digital audio effects - modulation and delay lines. Master’s
thesis, Technical University Hamburg-Harburg, 1999.

[DJ851 C. Dodge and T. A. Jerse. Computer Music; Synthesis, composition and
Performance. Schirmer Books, 1985.

Bibliography 61

[DMT99] P. Dutilleux and C. Miiller-Tomfelde. AML 1 Architecture and Music

[Dut89a]

[Dut89b]

[DutSl]

[Gar951

[HB93]

[LKG72]

[Mai97]

[McG93]

[MT99]

[Orf96]

[Orf97]

[RM87]

[Roa97]

Laboratory, a museum installation. In Proc. of the 16th AES Int. Conf.
on Spatial Sound Reproduction. Rovaniemi, Finland. Audio Engineering
Society, pp. 191-206, April 10-12 1999.

P. Dutilleux. Simple to operate digital time-varying filters. In Proc. 86th
AES Convention, Preprint 2757, Hamburg, March 1989.

P. Dutilleux. Spinning the sounds in real-time. In Proc. International
Computer Music Conference, pp. 94-97, November Columbus 1989.

P. Dutilleux. Vers la machine d sculpter le son, modification en temps
re'el des caracte'ristiques fre'quentielles et temporelles des sons. PhD thesis,
University of Aix-Marseille 11, 1991.

W.G. Gardner. Efficient convolution without input-output delay. J. Audio
Eng. Soc., 43(3):127-136, March 1995.

F. Harris and E. Brooking. A versatile parametric filter using an imbeded
all-pass sub-filter to independently adjust bandwidth, center frequency,
and boost or cut. In 95th AES Convention, Preprint 3757, New York,
1993.

M. Labarrkre, J . Krief, and B. Gimonet. Le filtrage et ses applications.
CEPADUES, 1972.

M. Maiguashca. Reading Castafieda. Booklet. Wergo2053-2, zkm 3 edi-
tion, 1997.

D.S. McGrath. An efficient 30-band graphic equalizer implementation for
a low cost dsp processor. In Proc. 95th AES Convention, Preprint 3756,
New York, 1993.

C. Muller-Tomfelde. Low-latency convolution for real-time applications.
In Proc. of the 16th AES Int. Conf. on Spatial Sound Reproduction,
Rovaniemi, Finland, pp. 454-460. Audio Engineering Society, April 10-12
1999.

S.J. Orfanidis. Introduction to Signal Processing. Prentice-Hall, 1996.

S.J. Orfanidis. Digital parametric equalizer design with prescribed
nyquist-frequency gain. J. Audio Eng. Soc., 45(6):444-455, June 1997.

P.A. Regalia and S.K. Mitra. Tunable digital frequency response equal-
ization filters. .IEEE Trans. Acoustics, Speech and Signal Processing,
35(1):118-120, January 1987.

C. Roads. Sound transformation by convolution. In C. Roads, St. Pope,
A. Piccialli, and G. De Poli (eds), Musical Signal Processing, pp. 411-438.
Swets & Zeitlinger Publishers, 1997.

62 2 Filters

[Smi84] J.O. Smith. An all-pass approach to digital phasing and flanging. In
Proc. International Computer Music Conference, pp. 103-109, 1984.

[Str83] A. Strange. Electronic Music, Systems, Techniques and Controls. W. C.
Brown, 1983.

[Vag981 H. Vaggione. Transformations morphologiques: quelques exemples. In
Proceedings of JIM98, CNRS-LIMA, pp. G1.1-G1.lO, Marseille 1998.

[Whi86] S.A. White. Design of a digital biquadratic peaking or notch filter for
digital audio equalization. J. Audio Eng. Soc., 34(6):479-482, June 1986.

[Zo197] U. Zolzer. Digital Audio Signal Processing. John Wiley & Sons, Ltd,
1997.

Chapter 3

Delays

P. Dutilleux, U. Zolzer

3.1 Introduction
Delays can be experienced in acoustical spaces. A sound wave reflected by a wall
will be superimposed on the sound wave at the source. If the wall is far away, such
as a cliff, we will hear an echo. If the wall is close to us, we will notice the reflec-
tions through a modification of the sound color. Repeated reflections can appear
between parallel boundaries. In a room, such reflections will be called flatter echo.
The distance between the boundaries determines the delay that is imposed to each
reflected sound wave. In a cylinder, successive reflections will develop at both ends.
If the cylinder is long, we will hear an iterative pattern whereas, if the cylinder is
short, we will hear a pitched tone. Equivalents of these acoustical phenomena have
been implemented as signal processing units.

3.2 Basic Delay Structures

3.2.1 FIR Comb Filter

The network that simulates a single delay is called the FIR comb filter. The input
signal is delayed by a given time duration. The effect will be audible only when
the processed signal is combined (added) to the input signal, which acts here as
a reference. This effect has, 2 tuning parameters: the amount of time delay T and
the relative amplitude of the delayed signal to that of the reference signal. The
difference equation and the transfer function are given by

y(n) = z(n) +gs(n - M)

H (z) = 1 + g z - M .
with M = r / f s

63

64 3 Delays

Figure 3.1 FIR comb filter and magnitude response.

The time response of this filter is made up of the direct signal and the delayed
version. This simple time domain behavior comes along with interesting frequency
domain patterns. For positive values of g, the filter amplifies all frequencies that
are multiples of 1 / ~ and attenuates all frequencies that lie in between. The transfer
function of such a filter shows a series of spikes and it looks like a comb (Fig. 3.1).
That is why this type of filter is called a comb filter. For negative values of g, the
filter attenuates frequencies that are multiples of l/' and amplifies those that lie
in between. The gain varies between 1 f g and 1 - g [Orf96]. The following M-
file 3.1 demonstrates a sample-by-sample based FIR comb filter. For plotting the
output signal use the command stem(0 : length(y) -1, y) and for the evaluation of
the magnitude and phase response use the command f reqz (y , I).

M-file 3.1 (firc0mb.m)
x=zeros(100,1);x(1)=1; % unit impulse signal of length 100

Delayline=zeros(lO,l);% memory allocation for length IO
f o r n=l:length(x);
y(n)=x(n)+g*Delayline(lO);
Delayline=[x(n) ;Delayline(l: IO-l)] ;
end ;

g=o. 5;

As well as acoustical delays, the FIR comb filter has an effect both in the time
and frequency domains. Our ear is more sensitive to the one aspect or to the other
according to the range where the time delay is set. For larger values of T, we can hear
an echo that is distinct from the direct signal. The frequencies that are amplified by
the comb are so close to each other that we barely identify the spectral effect. For
smaller values of T, our ear can no longer segregate the time events but can notice
the spectral effect of the comb.

3.2.2 IIR Comb Filter

Similar to the endless reflections at both ends of a cylinder, the IIR comb filter
produces an endless series of responses y(n) to an input x(.). The input signal

3.2 Basic Delay Structures 65

circulates in a delay line that is fed back to the input. Each time the signal goes
through the delay line it is attenuated by g. It is sometimes necessary to scale the
input signal by c in order to compensate for the high amplification produced by the
structure. It is implemented by the structure shown in Fig. 3.2 with the difference
equation and transfer function given by

positive

negative
coefficient

I *
Frequency

Figure 3.2 IIR comb filter and magnitude response.

Due to the feedback loop, the time response of the filter is infinite. After each
time delay r a copy of the input signal will come out with an amplitude g p where
p is the number of cycles t,hat the signal has gone through the delay line. It can
readily be seen, that (g (<I= 1 is a stability condition. Otherwise the signal would
grow endlessly. The frequencies that are affected by the IIR comb filter are similar
to those affected by the FIR comb filter. The gain varies between 1/(1 - g) and
1/(1 + g) . The main differences between the IIR comb and the FIR comb is that
the gain grows very high and that the frequency peaks get narrower as 19) comes
closer to 1 (see Fig. 3.2). The following M-file 3.2 shows the implementation of a
sample-by-sample based IIR comb filter.

M-file 3.2 (iirc0mb.m)
x=zeros(100,l);x(i)=1; % unit impulse signal of length 100

Delayline=zeros(lO,l); % memory allocation f o r length l 0
for n=l:length(x);
y(n)=x(n)+g*Delayline(lO) ;
Delayline=[y(n) ;Delayline(l: IO-l)] ;
end ;

g=o. 5;

3.2.3 Universal Comb Filter

The combination of FIR and IIR comb filters leads to the universal comb filter.
This is simply an allpass filter (see Fig. 2.8) where the one sample delay operator

66 3 Delays

z-' is replaced by the M sample delay operator z P M and an additional multiplier
FF shown in Figure 3.3. The special cases for differences in feedback parameter FB,
feedforward parameter FF and blend parameter BL are given in Table 3.1. M-file
3.3 shows the implementation of a sample-by-sample universal comb filter.

I - - I

Figure 3.3 Universal comb filter.

Table 3.1 Parameters for universal comb filter
I BL I FB I FF

FIR comb filter I X I 0 I X
I I I

IIR comb filter 1 1 I X 1 0
I allpass I a I -a I l I

I

delay 1 0 1 0 (1

M-file 3.3 (unic0mb.m)
x=zeros(IOO,l);x(1)=1; % unit impulse signal of length 100
BL=O .5;

FF=i ;
M=lO ;
Delayline=zeros(M,l); % memory allocation for length IO
f o r n=l : length(x) ;

FB=-O .5 ;

xh=x(n)+FB*Delayline(M) ;
y(n)=FF*Delayline(M)+BL*xh;
Delayline=[xh;Delayline(l:M-l)];

end ;

The extension of the above universal comb filter to a parallel connection of N
comb filters is shown in Figure 3.4. The feedback, feedforward and blend coefficients
are now NxN matrices to mix the input and output signals of the delay network.
The use of different parameter sets leads to the applications shown in Table 3.2.

3.2.4 Fractional Delay Lines

Variable-length delays of the input signal are used to simulate several acoustical
effects. Therefore, delays of the input signal with noninteger values of the sampling

3.2 Basic Delay Structures 67

U

Figure 3.4 Generalized structure of parallel allpass comb filters.

Table 3.2 Effects with generalized comb filter.

I 1 delay BL 1 FB 1 FF 1
1

0 o < x < 1 1
X 0

reverb matrix matrix matrix

interval are necessary. A delay of the input signal by M samples plus a fraction of
the normalized sampling interval with 0 5 frac 5 1 is given by

g(n) = x(n - [M + frac]) (3.6)

and can be implemented by a fractional delay shown in Fig. 3.5.

I
M-l M ' M+l

M-l M M+l

Interpolation

Figure 3.5 Fractional delay line with interpolation.

Design tools for fractional delay filters can be found in [LVKL96]. An interpo-
lation algorithm has to compute the output sample g(n), which lies in between the
two samples at time instants M and M + 1. Several interpolation algorithms have
been proposed for audio applications:

68 3 Delays

0 linear interpolation [Dat97]

y(n) = .(n - [M + I])frac + z(n - M)(1 - frac) (3.7)

0 allpass interpolation [Dat97]

y(n) = z (n - [M + l])frac + z (n - M)(1 - frac) - y(n - 1)(1- frat) (3.8)

0 sinc interpolation [FC98]

0 fractionally addressed delay lines [Roc98, Roc001

0 spline interpolation [Dis99]

y(n) = z (n - [M + l]) . - frac3
6

+ z(n - M) .

+ .(n - [M - l]) .

(1 + f r a ~) ~ - 4 . frac3
6

(2 - f r a ~) ~ - 4(1 - f r a ~) ~
6

+ z (n - [M - 21) . (1 - frac)
6

They all perform interpolation of a fractional delayed output signal with different
computational complexity and different performance properties, which are discussed
in [RocOO]. The choice of the algorithm depends on the specific application.

3.3 Delay-based Audio Effects

3.3.1 Vibrato

When a car is passing by, we hear a pitch deviation due to the doppler effect [Dutgl].
This effect will be explained in another chapter but we can keep in mind that the
pitch variation is due to the fact that the distance between the source and our ears
is being varied. Varying the distance is, for our application, equivalent to varying
the time delay. If we keep on varying periodically the time delay we will produce a
periodical pitch variation. This is precisely a vibrato effect. For that purpose we need
a delay line and a low-frequency oscillator to drive the delay time parameter. We
should only listen to the delayed signal. Typical values of the parameters are 5 to 10
ms as average delay-time and 5 to 14 Hz rate for the low-frequency oscillator (Figure
3.6) [And95, Whi931. M-file 3.4 shows the implementation for vibrato [Dis99].

M-file 3.4 (vibrato .m)
1 Vibrato
function y=vibrato(y,SAMPLERATE,Modfreq,Width)
ya-alt=O;

3.3 Delay-based Audio Effects

Figure 3.6 Vibrato.

69

Delay=Width; basic delay of input sample in sec
DELAY=round(Delay*SAMPLERATE); % basic delay in # samples
WIDTH=round(Width*SAMPLERATE); % modulation width in # samples
if WIDTH>DELAY
error(’de1ay greater than basic delay ! ! ! ’) ;
return;

end
MODFREQ=Modfreq/SAMPLERATE; % modulation frequency in # samples
LEN=length(x) ; % # of samples in WAV-file
L=2+DELAY+WIDTH*2; % length of the entire delay
Delayline=zeros(L,l); % memory allocation for delay
y=zeros(size(x)) ; % memory allocation for output vector
for n=l : (LEN-l)

M=MODFREQ;
MOD=sin(M*2*pi*n) ;
ZEIGER=I+DELAY+WIDTH*MOD;
i=f loor (ZEIGER) ;
frac=ZEIGER-i;
Delayline=[x(n) ;Delayline(l:L-l)] ;

y(n,l)=Delayline(i+l)*frac+Delayline(i)*(i-frac);

%y(n,i)=(Delayline(i+l)+(l-frac)*Delayline(i)-(l-frac)*ya~alt);
%ya-alt=ya(n, 1) ;

%y(n,I)=Delayline(i+l)*frac-3/6
x +Delayline (i) * ((i+f rac) ^3-4*frace3) /6
x . . .+Delayline(i-l)*((2-frac)-3-4*(i-frac)-3)/6
%....+Delayline(i-2)*(l-frac)-3/6;
X3rd-order Spline Intierpolation

%---Linear Interpolation-----------------------------

%---Allpass Interpolation------------------------------

%---Spline Interpolat;ion-------------------------------

end

3.3.2 Flanger, Chorus, Slapback, Echo

A few popular effects can be realized using the comb filter. They have special names
because of the peculiar sound effects that they produce. Consider the FIR comb
filter. If the delay is in the range 10 to 25 ms, we will hear a quick repetition named
slapback or doubling. If the delay is greater than 50 ms we will hear an echo. If

70 3 Delays

the time delay is short (less than 15 ms) and if this delay time is continuously
varied with a low frequency such as 1 Hz, we will hear the flanging effect. If several
copies of the input signal are delayed in the range 10 to 25 ms with small and
random variations in the delay times, we will hear the chorus effect, which is a
combination of the vibrato effect with the direct signal (see Table 3.3 and Fig. 3.7)
[Orf96, And95, Dat971. These effects can also be implemented as IIR comb filters.
The feedback will then enhance the effect and produce repeated slapbacks or echoes.

Table 3.3 Typical delay-based effects.

[Delay range (ms) I Modulation I Effect name
(TYP.1 (TYP.)
0 ... 20 Resonator
0 ... 15

Slapback 25 ... 50
Chorus Random 10 ... 25

Flanging Sinusoidal

> 50 Echo

Figure 3.7 Chorus.

Normalization. We saw in 2.2.1 that it is important to compensate for the
intrinsic gain of the filter structure. Whereas in practice the FIR comb filter does
not amplify the signal by more than 6 dB, the IIR comb filter can yield a very large
amplification when 191 comes close to 1. The L2 and L , norm are given by

L2 = 1/J1-s” L , = 1/(1- 191). (3.10)

The normalization coefficient c = l/L,, when applied, ensures that no overload
will occur with, for example, periodical input signals. c = 1/L2 ensures that the
loudness will remain approximatively constant for broadband signals.

A standard effect structure was proposed by Dattorro [Dat97] and is shown
in Fig. 3.8. It is based on the allpass filter modification towards a general allpass
comb, where the fixed delay line is replaced by a variable-length delay line. Dattorro
[Dat97] proposed keeping the feedback tap of the delay line fixed, that means the
input signal to the delay line xh(n) is delayed by a fixed integer delay K and with
this zh(n - K) is weighted and fed back. The delay K is the center tab delay of

3.3 Delay-based Audio Effects 71

BL

Figure 3.8 Standard effects with variable-length delay line.

the variable-length delay line for the feed forward path. The control signal MOD(n)
for changing the length of the delay line can either be a sinusoid or lowpass noise.
Typical settings of the parameters are given in Table 3.4.

Table 3.4 Industry standard audio effects. [Dis99]

11 BL 1 FF I FB I DELAY I DEPTH 1 MOD
0-3 ms 0.1-5 Hz Sine
0-2 ms 0.1-1 Hz Sine

(white) Chorus (-0.7) 1-30 ms 1-30 ms lowpass noise
Doubling 0.7 lJ.7 10-100 ms 1-100 ms lowpass noise

3.3.3 Multiband Effects

New interesting sounds can be achieved after splitting the signal into several fre-
quency bands, for example, lowpass, bandpass and highpass signals, as shown in
Fig. 3.9.

Figure 3.9 Multiband effects.

Variable-length delays are applied to these signals with individual parameter
settings and the output signals are weighted and summed to the broad-band signal
[FC98, Dis991. Efficient frequency splitting schemes are available from loudspeaker
crossover designs and can be applied for this purpose directly. One of these tech-
niques uses complementary filtering [Fli94, Orf961, which consists of lowpass filtering

72 3 Delays

and subtracting the lowpass signal from the broad-band signal to derive the high-
pass signal, as shown in Fig. 3.10. The lowpass signal is then further processed by a
following stage of the same complementary technique to deliver the bandpass and
lowpass signal.

x (n) o ~ ~ ~ ~ ~ i c !

High

LP1
Low

LP2

Figure 3.10 Filter bank for multiband effects.

3.3.4 Natural Sounding Comb Filter

We have made the comparison between acoustical cylinders and IIR comb filters.
This comparison might seem inappropriate because the comb filters sound metallic.
They tend to amplify greatly the high frequency components and they appear to
resonate much too long compared to the acoustical cylinder. To find an explanation,
let us consider the boundaries of the cylinder. They reflect the acoustic waves with
an amplitude that decreases with frequency. If the comb filter should sound like
an acoustical cylinder, then it should also have a frequency-dependent feedback
coefficient g(f). This frequency dependence can be realized by using a first order
lowpass filter in the feedback loop (see Fig. 3.11) [Moo85].

Figure 3.11 Lowpass IIR comb filter.

These filters sound more natural than the plain IIR comb filters. They find appli-
cation in room simulators. Further refinements such as fractional delays and com-
pensation of the frequency-dependent group-delay within the lowpass filter make
them suitable for the imitation of acoustical resonators. They have been used for
example to impose a definite pitch onto broadband signals such as sea waves or to
detune fixed-pitched instruments such as a Celtic harp [m-Ris92]. M-file 3.5 shows
the implementation for a sample-by-sample based lowpass IIR comb filter.

M-file 3.5 (1piircomb.m)
x=zeros(l00,l);x(l)=1; % unit impulse signal of length 100
g=o.5;

3.4 Conclusion 73

b-O=O. 5;
b-i=0.5;
a-i=0.7;
xhold=O;yhold=O;
Delayline=zeros(iO,l); % memory allocation for length 10
for n=i : length(x) ;

yh(n)=b-O*Delayline(lO)+b-i*xhold-a_l*yhold;

yhold=yh(n) ;
xhhold=Delayline(lO) ;
y (n) =x (n) +g*yh(n) ;
Delayline= cy (n) ; Delayline (l : 10-1) 1 ;

Ist-order difference equation

end ;

3.4 Conclusion
Delays are used in audio processing to solve several practical problems, for example
delay compensation for sound reinforcement systems, and as basic building blocks
for delay-based audio effects, artificial reverberation and physical models for in-
strument simulation. The variety of applications of delays to spatial effects will be
presented in Chapter 6.

This brief introduction has described some of the basic delay structures, which
should enable the reader to implement and experiment with delay algorithms on
their own. We have focused Qn a small set of important delay applications such as
echo, vibrato, flanger and chorus. We have pointed out the important combination
of delays and filters and their time-varying application. These basic building blocks
may serve as a source of ideas for designing new digital audio effects.

Sound and Music
[m-Ris92] J.-C. Risset: Lurai, pour harpe celtique et bande. Radio France,

21.3.1992.

[m-Pie99] F. Pieper: Das Effekte Praxisbuch. Delay, Kammfilter, Phaser, Vibrato,
Chorus. CD, Tr. 2-7, 18-24, 28-32, Ch. 5, 7, 8, 10, 11. GC Carstensen,
1999.

Bibliography
[And951 C. Anderton. Multieffects for Musicians. Amsco Publications, 1995.

[Dat97] J. Dattoro. Effect design, part 2: Delay-line modulation and chorus. J.
Audio Eng. Soc., 45(10):764-788, October 1997.

74 3 Delays

[Dis99] S. Disch. Digital audio effects - modulation and delay lines. Master's
thesis, Technical University Hamburg-Harburg, 1999.

[Dutgl] P. Dutilleux. Vers la machine ci sculpter le son, modification en temps
re'el des caracte'ristiques fre'quentielles et temporelles des sons. PhD the-
sis, University of Aix-Marseille 11, 1991.

[FC98] P. Fern6ndez-Cid and F.J. Casajlis-Quir6s. Enhanced quality and va-
riety of chorus/flange units. In Proc. DAFX-98 Digital Audio Effects
Workshop, pp. 35-39, Barcelona, November 1998.

[Fli94] N.J. Fliege. Multirate Digital Signal Processing. John Wiley & Sons,
Ltd, 1994.

[LVKL96] T.I. Laakso, V. Vallimalki, M. Karjalainen, and U.K. Laine. Splitting
the unit delay. I E E E Signal Processing Magazine, 13:30-60, 1996.

[Moo851 J.A. Moorer. About this reverberation business. In Foundations of Com-
puter Music, pp. 605-639. MIT Press, 1985.

[Orf96] S.J. Orfanidis. Introduction to Signal Processing. Prentice-Hall, 1996.

[Roc981 D. Rochesso. Fractionally-adressed delay lines. In Proc. DAFX-98 Digital
Audio Effects Workshop, pp. 40-43, Barcelona, November 1998.

[RocOO] D. Rochesso. Fractionally addressed delay lines. IEEE Trans. on Speech
and Audio Processing, 8(6):717-727, November 2000.

[Whig31 P. White. L 'enregistrement cre'atif, Effets et processeurs, Tomes 1 et 2.
Les cahiers de l'ACME, 1993.

Chapter 4

Modulators and
Demodulators

P. Dutilleux, U. Zolzer

4.1 Introduction

Modulation is the process by which parameters of a sinusoidal signal (amplitude,
frequency and phase) are modified or varied by an audio signal. In the realm of
telecommunications the word modulate means: “to shift the frequency spectrum
of a signal to another frequency band”. Numerous techniques have been designed
to achieve this goal and some have found applications in digital audio effects. In
the field of audio processin,g these modulation techniques are mainly used with
very low frequency shifts of the audio signal. In particular, the variation of control
parameters for filters or delay lines can be regarded as an amplitude modulation
or phase modulation of the audio signal. Wah-wah, phaser and tremolo are typical
examples of amplitude modulation and vibrato, flanger and chorus are examples
for phase modulations of th’e audio signal. To gain a deeper understanding of the
possibilities of modulation .techniques we will first introduce simple schemes for
amplitude modulation, single side band modulation and phase modulation and point
out their use for audio effects. The combination of these modulators will lead to more
advanced digital audio effects, which will be demonstrated by several examples. In
a further section we will describe several demodulators, which extract the incoming
signal or parameters of the incoming signal for further effects processing.

75

76 4 Modulators and Demodulators

4.2 Modulators

4.2.1 Ring Modulator

In the ring modulation (RM) the audio signal x(.) is multiplied by a sinusoid
m(n) with carrier frequency fc. In the analog domain it was pretty difficult to
do it properly but within a computer it is straightforward [Ste87] since it is a mere
multiplication. The input signal is called the modulator s(n) and the second operand
is called the carrier m(n):

If m(n) is a sine wave of frequency fc, the spectrum of the output y(n) is made up of
two copies of the input spectrum: the lower side band (LSB) and the upper side band
(USB). The LSB is reversed in frequency and both sidebands are centered around
fc (Figure 4.2). Depending on the width of the spectrum of s(n) and on the carrier
frequency, the side bands can be partly mirrored around the origin of the frequency
axis. If the carrier signal comprises several spectral components, the same effect
happens with each component. Although the audible result of a ring modulation
is fairly easy to comprehend for elementary signals, it gets very complicated with
signals having numerous partials. The carrier itself is not audible in this kind of
modulation. When carrier and modulator are sine waves of frequencies f c and fz,
one hears the sum and the difference frequencies fc + fz and fc - fz [Ha195].

Figure 4.1 Ring modulation of a signal ~ (n) by a sinusoidal carrier-signal m(n).

Figure 4.2 Ring modulation of a signal z (n) by a sinusoidal carrier-signal m(n). The
spectrum of the modulator ~ (n) (a) is shifted around the carrier frequency (b).

When the input signal is periodic with fundamental frequency fo, a sinusoidal
carrier of frequency f c produces a spectrum with amplitude lines at the frequencies
Ik fo&fcl [De 001. A musical application of this effect is applied in the piece “Ofanim”
by Lucian0 Berio. The first section is dominated by a duet between a child voice
and a clarinet. The transformation of the child voice into a clarinet was desired. For
this purpose a pitch detector computes the instantaneous frequency fo(n) of the

4.2 Modulators 77

voice. Then the child voice passes through a ring modulator, where the frequency of
the carrier fc is set to fo(n)/2. In this case odd harmonics prevail which is similar
to the sound of a clarinet in the low register [VidSl]. Notice that in order to better
represent the characteristic articulations of the clarinet and to eliminate typical
vocal portamento, a sample-and-hold unit is inserted after the pitch detector for
holding the current pitch until the successive one has been established.

4.2.2 Amplitude Modulator

The amplitude modulation (.AM) was easier to realize with analog electronic means
and has therefore been in use for a much longer time. It can be implemented by

y(n) = [l + am(n)] . x(..) (4.2)

where it is assumed that the peak amplitude of m(n) is 1. The Q: coefficient deter-
mines the depth of modulation. The modulation effect is maximum with a = 1 and
the effect is disengaged when a = 0. A typical application is with an audio signal as
carrier x(.) and a low-frequency oscillator (LFO) as modulator m(.) (Figure 4.3).
The amplitude of the audio signal varies according to the amplitude of the LFO,
and it is heard as such.

(audio)
Carrier

a 1 x(n)

Modulaior
(LFO) m(n)

Figure 4.3 Typical application of AM.

When the modulator is an audible signal and the carrier a sine wave of frequency
fc , the spectrum of the output y(t) is similar to that of the ring modulator except
that the carrier frequency can be also heard. When carrier and modulator are sine
waves of frequencies fc and fx, one hears three components: carrier, difference and
sum frequencies (f c - f z , fc, f c + fx). One should notice that due to the integration
time of our hearing system the effect is perceived in a different manner depending
on the frequency range of the signals. A modulation with frequencies below 20
Hertz will be heard in the time domain (variation of the amplitude, tremolo in
Fig. 4.4) whereas modulations by high frequencies will be heard as distinct spectral
components (LSB, carrier, TJSB).

4.2.3 Single-Side Band Modulator

The upper and lower side bands carry the same information although organized
differently. In order to save bandwidth and transmitter power, radio-communication
engineers have designed the single-side band (SSB) modulation scheme (Fig. 4.5).
Either the LSB or the USB is transmitted. Phase shifted versions by 90" of the

78 4 Modulators and Demodulators

Low-frequency Amplitude Modulation (fc=20 Hz)
0.5

5 0

I I
-0.5 I I I I I I I I J

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

I I I I I I I 1 I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

1.5

c 1
E
P 0.5

-

-
-0.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
n +

Figure 4.4 Tremolo effect by AM.

Figure 4.5 Single side band modulator with compensation filter CF and Hilbert filter
(90” block).

modulating audio signal z(n) are denoted by 2(n) and of the carrier signal m(n) by
h (n) and are produced by Hilbert transform filters [Orf96]. The upper and lower
side band signals can be computed as follows:

USB(n) = .(.)m(.) - i (n) h (n)
LSB(n) = z(n)m(n) + 2(n)h(n) .

4.2 Modulators

Impulse response compensation filter

1 -

0.5.

-
5 0 " * ..-.
c

-0.5 -

-1 -

0 20 40 60
n - 1

Impulse response of Hilbert filter

-0.51
0 20 40 60

n +

79

Magnitude response of compensation filter

: : : I , , , , ,

0
0 0.5 1 1.5 2

fin Hz

Magnitude response of Hilbert filter

X lo4

-0 0.5 1 1.5 2
fin Hz x 104

Figure 4.6 Delay compensation and Hilbert filter.

A discrete-time Hilbert transform can be approximated by a FIR filter with the
zero-phase impulse response

a(.) = 1 - cos(.irn) = { 2/?) for n odd
.irn for n even.

These coefficients are multiplied with a suitable window function of length N , for
example a Hamming window, and shifted right by to make the filter causal.
Acceptable quality can be achieved with N M 60. Note that the use of the FIR
Hilbert filter requires a delay in the direct path for the audio and the carrier signal.
Figure 4.6 shows an example with the compensation delay of 30 samples and a
FIR Hilbert filter of length N = 61. This effect is typically used with a sine wave
as carrier of frequency fc. The use of a complex oscillator for m(n) simplifies the
implementation. By using positive or negative frequencies it is then possible to
select the USB or the LSB. The spectrum of ~ (n) is frequency shifted up or down
according to fc. The results are non-harmonic sound effects: a plucked-string sound
is heard, after processing, like a drum sound. The modification in pitch is much
less than expected, probably because our ear recovers pitch information from the
frequency difference between partials and not only from the lowest partial of the
tone [Dutgl].

80 4 Modulators and Demodulators

4.2.4 Frequency and Phase Modulator

The frequency modulation (FM) is widely used for broadcasting and has found in-
teresting applications for sound synthesis [Roa96]. The continuous-time description
of an angle modulated carrier signal is given by

x P M / F M (t) = cos[2rfct + 4(t)] (4.6)

where A, is the amplitude of the signal and the argument of the cosine is given by
carrier frequency f, and the modulating signal m(t) according to

For phase modulation (PM) the phase 4(t) is directly proportional to the modu-
lating signal m(t), while for frequency modulation the phase 4(t) is the integral of
the modulating signal m(t). Some examples of frequency and phase modulation are
shown in Fig. 4.7. In the first example the modulating signal is a sinusoid which
shows that the resulting FM and PM signals are the same. The second example (c)
and (d) shows the difference between FM and PM, where the modulating signal is
now a bipolar pulse signal. The last example in (e) and (f) shows the result of a
ramp type signal. The main idea behind using these techniques is the control of the
carrier frequency by a modulating signal m(n). We especially notice from Fig. 4.7
the possibility to change the carrier frequency by a sinusoid and a ramp signal.

Using angle modulat,ion for audio effects is different from the previous discussion,
where a modulating signal m(n) is used to modify the phase 4(t) of a cosine of fixed
carrier frequency f,. By phase modulation we mean the direct modification of the
phase of the audio signal by a control parameter or modulating signal m(n). A phase
modulator for an audio signal can be regarded as a system which performs a phase
modulation of the audio input signal x(n). The phase modulator system can be
described by a time-variant impulse response h(n) and leads to a phase modulated
output signal z p ~ (n) according to

The result for phase modulation (PM) of the signal z (n) can then be written as

Y(n) = z P M (n) = z(n - m(n>) (4.11)

where m(n) is a continuous variable, which changes every discrete time instant n.
Therefore m(n) is decomposed into an integer and a fractional part [Dat97]. The
integer part is implemented by a series of M unit delays, the fractional part is
approximated by interpolation filters [Dat97, LVKL96, Zo1971, e.g. linear interpo-
lation, spline interpolation or allpass interpolation (see Fig. 4.8). The discrete-time

4.2 Modulators 81

-c
0 200 400 600 800 1000

n +

-L

0 200 400 600 800 1000
n - 1

-c
0 200 400 600 800 1000

n +

(el FM

-L

0 200 400 600 800 1000
n-1

- 1

I
0 100 200 300 400 500 600 700 800 900 1000

n - t

I I I I
0 100 200 300 400 500 600 700 800 900 1000

n +

Figure 4.7 Examples of angle modulation.

82 4 Modulators and Demodulators

M , frac symbol

. . %("-M) x(n-(M+l) +(M+?)

t
m(n)=M + frac

Figure 4.8 Phase modulation by delay line modulation.

Fourier transform of (4.11) yields

Y(,j") XPM(,j") = x(,j"),-mW (4.12)

which shows the phase modulation of the input signal by a time-variant delay line
m(n). The phase modulation is performed by the modulating signal m(.).

For sine type modulation, useful for vibrato effects, the modulation signal can
be written as

m(n) = M + DEPTH. sin(wMnT). (4.13)

For a sinusoidal input signal the so-called resampling factor for sine type modulation
can be derived as

~ (n) = - = 1 - DEPTH. WMTCOS(WM~T) . WI
W

(4.14)

The instantaneous radian frequency is denoted by W I and the radian frequency of
the input sinusoid is denoted by W . The resampling factor is regarded as the pitch
change ratio in [Dat97]. For sine type modulation the mean value of the resampling
factor a(n) is one. The consequence is an output signal, which has the same length
as the input signal, but has a vibrato centered around the original pitch.

For ramp type modulation according to

m(n) = M =k SLOPE. 72, (4.15)

the resampling factor a(n) for the sinusoidal input signal is given by

a(n) = = 1 SLOPE.
WI (4.16)

The output signal is pitch transposed by a factor a and the length of the output
data is altered by the factor l/a. This behavior is useful for pitch transposing
applications.

4.3 Demodulators
Each modulation has a suitable demodulation scheme. The demodulator for the
ring modulator uses exactly the same scheme, so no new effect is to be expected
there. The demodulator for the amplitude detector is called an amplitude follower
in the realm of digital audio effects. Several schemes are available, some are inspired
from analog designs, some are much easier to realize using digital techniques. These
demodulators are comprised of three parts: a detector, an averager and a scaler.

4.3 Demodulators 83

4.3.1 Detectors

The detector can be a half-wave rectifier d h (t) , a full-wave rectifier d f (t) , a squarer
d r (t) or an instantaneous envelope detector dq(t). The first two detectors are directly
inspired by analog designs. They are still useful to achieve effects having typical
analog behavior. The third and fourth types are much easier to realize in the digital
domain (Figure 4.9). The four detectors are computed as follows:

input signal
Hilbert transform of x (n)
= max[O, x(.)]

= Ix(n)I
= x 2 (n)
= x2 (n) + p 2 (n) (4.17)

Figure 4.9 Detectors: (a) half-wave, (b) full-wave, (c) squarer, (d) instantaneous envelope.

4.3.2 Averagers

In the analog domain, the averager is realized with a resistor-capacitor (RC) network
and in the digital domain using a first order lowpass filter. Both structures are
characterized by a time-constant T. The filter is implemented as:

9 = exP[-l/(.fs~)l
d(n) = detector output

A n) = (1 - g) d (n) + g1J(n - 1) (4.18)

The time-constant must be chosen in accordance with the application. A short
time-constant is suitable when fast variations of the input signal must be followed.
A larger time-constant is better to measure the long-term amplitude of the input
signal. This averager is nevertheless not suitable for many applications. It is often

84 4 Modulators and Demodulators

Figure 4.10 RMS (Root Mean Square)) detectors. (a) single time-constant; (b) attack
and release time-constants.

necessary to follow short attacks of the input signal. This calls for a very small
time-constant, 5 ms typically. The output of the averager will then react very fast
to any amplitude variation, even to the intrinsic variations within a period of a low
frequency signal. We understand that we need an averager with two time-constants:
an attack time-constant 7, and a release time-constant T ~ . To distinguish it from
the basic averager, we will call this one the AR-averager. McNally has proposed
an implementation having two fixed coefficients [McN84, 231973 and Jean-Marc Jot
has an alternative where a single coefficient is varied according to the relationship
between the input and the output of the averager (Figure 4.10):

ga = e x ~ [- l / (f s ~ a) l
gr = exp[-l/(fs.r,)1

d(n) detector output
(4.19)

(4.20)

4.3.3 Amplitude Scalers

The outputs of the systems described above are all different. In order to get measures
that are comparable with each other, it would be necessary to scale the outputs.
Although scaling schemes are typically defined for sine waves, each type of signal
will require a different scaling scheme. To build a RMS detector or an instanta-
neous envelope detector, a root extractor would still be necessary, but building an
accurate device can be difficult in analog and computationally intensive in digital.
Fortunately, it is often possible to avoid the root extraction by modifying the circuit
that makes use of the averager output, so that it works fine with squared measures.
For these practical reasons the scaling is taken into account most of the time within
the device that follows the averager output. If this device is a display, then the
scaling can be done by changing the display marks.

4.3.4 Typical Applications

Well-known devices or typical applications relate to the previous schemes as follows:

4.4 Applications

Envelooe Difference tone

85

Figure 4.11 Instantaneous envelope detector as applied to detect a difference tone that
is produced by two sine waves.

0 The AM-detector comprises the half-wave rectifier and of the basic averager.

0 The Volume-Meter (VU-meter) is an AM-detector. It measures the average
amplitude of the audio signal.

0 The Peak Program Meter (PPM) is, according to DIN45406, a full-wave rec-
tifier followed by an AR-averager with 10 ms integration-time and 1500 ms
release-time.

0 The RMS detector, as found in electronic voltmeters, uses the squarer and the
basic averager.

0 A sound level meter uses a RMS detector along with an AR-averager to mea-
sure impulsive signals.

0 The RMS detector associated with an AR-averager is the best choice for am-
plitude follower applications in vocoders, computer music and live-electronics
[Dut98b, m-Fur931.

0 Dynamics processors use various types of the above mentioned schemes in
relation to the effect and to the quality that has to be achieved.

0 The instantaneous envelope detector, without averager, is useful to follow the
amplitude of a signal with the finest resolution. The output contains typi-
cally audio band signals. A particular application of the e(t) detector is the
amplification of difference tones (Figure 4.11) [Dut96, m-MBa951.

4.4 Applications
Several applications of modulation techniques for audio effects are presented in the
literature [Dut98a, War98, Dis991. We will now summarize some of these effects.

86 4 Modulators and Demodulators

4.4.1 Vibrato

The cyclic variation of the pitch of the input signal is the basic application of the
phase modulator described in the previous section (see Fig. 4.12). The variation is
controlled by a low-frequency oscillator.

m(n)=M+DEPTH.sin(onT)

Figure 4.12 Vibrato based on a phase modulator.

4.4.2 Stereo Phaser

The application of a SSB modulator for a stereo phaser is described in [War98].
Figure 4.13 shows a SSB modulator performed by a recursive allpass implementation
of a Hilbert filter. The phase difference of 90” is achieved through special designed
allpass filters. A further effect with this approach is a rotating speaker effect, if you
connect the output signals yh(n) and y ~ (n) via DACs to loudspeakers.

Figure 4.13 Stereo phaser based on SSB modulation [War98].

4.4.3 Rotary Loudspeaker Effect

Introduction

The rotary loudspeaker effect was first used for the electronic reproduction of organ
instruments. Figure 4.14 shows the configuration of a rotating bi-directional loud-
speaker horn in front of a listener. The sound in the listener’s ears is altered by
the Doppler effect, the directional characteristic of the speakers, and phase effects
due to air turbulence. The Doppler effect raises and lowers the pitch according to
the rotation speed. The directional characteristic of the opposite horn arrangement
performs an intensity variation in the listener’s ears. Both the pitch modification
and the intensity variation are performed by speaker A and in the opposite direction
by speaker B.

4.4 Applications 87

intensity pitch

0" 360" ($l 0" 360" ($l

Figure 4.14 Rotary loudspeaker [DZ99].

Signal Processing

A combination of modulation and delay line modulation can be used for a rotary
loudspeaker effect simulation [DZ99], as shown in Fig. 4.15. The simulation makes
use of a modulated delay line for pitch modifications and amplitude modulation
for intensity modifications. The simulation of the Doppler effect of two opposite
horns is done by the use of two delay lines modulated with 180 phase shifted signals
in vibrato configuration (see Fig. 4.15). A directional sound characteristic similar
to rotating speakers can be achieved by amplitude modulating the output signal
of the delay lines. The modulation is synchronous to the delay modulation in a
manner, that the back moving horn has lower pitch and decreasing amplitude. At the
return point the pitch is unaltered and the amplitude is minimum. The movement
in direction to the listener causes a raised pitch and increasing amplitude. A stereo
rotary speaker effect is perceived due to unequal mixing of the two delay lines to
the left and right channel output.

sin(wnT) l+sin(onT) A 4 sin(wnT) l+sin(onT) 71 -(Ml+fracl) pFY
0.7

B

z -(M2+frac2) t.Q X

Figure 4.15 Rotary loudspeaker simulation [DZ99].

88 4 Modulators and Demodulators

Musical Applications

By imprinting amplitude and pitch modulations as well as some spatialization, this
effect makes the sounds more lively. At lower rotation speeds it is reminiscent of the
echoes in a cathedral whereas a t higher rotation speeds it gets a ring modulation
flavor. This effect is known as “Leslie” from the name of Donald E. Leslie, who
invented it in the early forties. It was licensed to electronic organ manufacturers
such as Baldwin, Hammond or Wurlizer but it has also found applications for other
musical instruments such as the guitar or even the voice (”Blue Jay Way” on the
Beatles LP “Magical Mystery Tour” [Sch94].) A demonstration of a Leslie simu-
lator can be heard on [m-Pie99]. This effect can also be interpreted as a rotating
microphone between two loudspeakers. You may also imagine that you are sitting
on a merry-go-round and you pass by two loudspeakers.

4.4.4 SSB Effects

Single-sideband modulation can be used as a special effect for detuning of percussion
instruments or voices. The harmonic frequency relations are modified by using this
technique. Another application is time-variant filtering: first use SSB modulation
to shift the input spectrum, then apply filtering or phase modulation and then
perform the demodulation of the signal, as shown in Fig. 4.16 [Dis99, DZ991. The
frequency shift of the input signal is achieved by a low-frequency sinusoid. Arbitrary
filters can be used in between modulation and demodulation. The simulation of the
mechanical vibrato bar of an electric guitar can be achieved by applying a vibrato
instead of a filter [DZ99]. Such a vibrato bar alters the pitch of the lower strings
of the guitar in larger amounts than the higher strings and thus a non-harmonic
vibrato results. The SSB appoach can also be used for the construction of modified
flangers.

t t

sin(2nfT) U
Figure 4.16 SSB modulation-filtering-demodulation: if a vibrato is performed instead of
the filter a mechanical vibrato bar simulation is achieved.

Further applications of SSB modulation techniques for audio effects are pre-
sented in [Dut98a, War981.

4.4.5 Simple Morphing: Amplitude Following

Among the many different meanings that the word “morphing” can have, let us
now consider its first meaning: imposing a feature of one sound onto another. The
amplitude envelope, the spectrum as well as the time structure are features that can

4.4 Applications 89

be morphed. Morphing the amplitude envelope can be achieved by the amplitude
follower whereas morphing a, spectrum or a time structure can be achieved by the
use of convolution.

Introduction

Envelope following is one of the various methods developed to breathe more life into
synthetic sounds. The amplitude envelope of a control signal, usually coming from a
real acoustical source, is measured and used to control the amplitude of the synthetic
sounds. For example, the amplitude envelope of speech can be used to control the
amplitude of broadband noise. Through this process the noise seems to have been
articulated like voice. A refinement of this method has led to the development of
the vocoder where the same process is applied in each of the frequency bands in
which the voice as well as the noise are divided.

An audio effect is achieved when the amplitude of an input signal is modified by
a predefined amplitude envelope or according to the amplitude of another signal.
In the latter case the process is called amplitude following.

Signal Processing

If an amplitude envelope is used, the input signal is multiplied by the output of
the envelope generator. If a control signal is used, its envelope has to be measured
before it can be multiplied with the input signal. When an accurate measurement is
desired, a RMS detector should be used. However, signals from acoustic instruments
have usually fairly limited amplitude variations and their loudness variations are
more dependent on spectrum modifications than on amplitude modifications. If the
loudness of the output signal has to be similar to that of the controlling signal,
then an expansion of the dynamic of the controlling signal should be performed. An
effective way to expand the dynamic by a factor 2 is to eliminate the root extraction
from the scaler and use a much simpler MS (Mean Square) detector.

I
I

Scaler -
I ,

I

I Decay time-constant
Attack time-constant

Figure 4.17 The amplitude of an input signal z(n) is controlled by that of another signal
z,(n). The amplitude of the input signal is first leveled before the modulation by the
amplitude measured on the controlling signal.

90 4 Modulators and Demodulators

Musical Applications and Control

In “Swim, swan”, Kiyoshi F‘urukawa has extended the sound of a clarinet by ad-
ditional synthetic sounds. In order to link these sounds intimately to the clarinet,
their amplitude is controlled by that of the clarinet. In this case, the input sound
is the synthetic sound and the controlling sound is the clarinet. The mixing of the
synthetic sounds with the clarinet is done in the acoustic domain of the performance
space [m-F‘ur93].

The amplitude variations of the controlling signal applied to the input signal
produce an effect that is perceived in the time domain or in the frequency domain,
according to the frequency content of the modulating signal. For sub-audio rates
(below 20 Hz) the effect will appear in the time domain and we will call it “am-
plitude following’’ l whereas for audio nlodulation rates (above 20 Hz), the effect
will be perceived in the frequency domain and will be recognized as an amplitude
modulation.

If the control signal has a large bandwidth, the spectrum of the amplitude will
have to be reduced by the averager. Typical settings for the decay time constant
of the averager are in the range of 30 to 100 ms. Such values will smooth out the
amplitude signal so that it remains in the sub-audio range. However, it is often
desired that the attacks, that are present in the control signal, are morphed onto
the input signal as attacks and are not smoothed out by the averager. This is why it
is recommended to use a shorter attack time constant than the decay time constant.
Typical values are in the range of l to 30 ms.

The amplitude variations of the input signal could be opposite to those of the
controlling signal, hence reducing the impact of the effect or be similar and provoke
an expansion of the dynamic. In order to get amplitude variations at the output
that are similar to those of the controlling signal, it is recommended to process the
input signal through a compressor-limiter beforehand [Ha195, p. 401.

In his work “Diario polacco”, Luigi Nono specifies how the singer should move
away from her microphone in order to produce amplitude modifications that are
used to control the amplitude of other sounds [Ha195, p. 67-68].

Applying an amplitude envelope can produce interesting modifications of the
input signal. Take, for example, the sustained sound of a flute and apply iteratively
a triangular amplitude envelope. By varying the slopes of the envelope and the
iteration rate, the original sound can be affected by a tremolo or a Flatterzunge
and evoke percussive instruments [Dut88]. Such sound transformations are reminis-
cent of those (anamorphoses) that the early electroacoustic composers were fond of
[m-Sch98].

4.5 Conclusion

In this chapter we introduced the concepts of modulators and demodulators in re-
lation to digital audio effects. Although well known in communication engineering

Sound and Music 91

and already successfully used for music synthesizers, the special emphasis on modu-
lation and demodulation can also help to clarify the importance of these techniques
in the field of audio effects. The interaction of modulators/demodulators with filters
and delays is one of the the fundamental processes for many audio effects occurring
in the real world. Several applications of modulators and demodulators may serve
as examples for experiments and further research.

Sound and Music

[m-MBa95] M. Bach: 55 Sounds for Cello. Composition for cello and live-
electronics. 1995.

[m-Fur93] K. Furukawa: “Swim, swan”, composition for clarinet and live-
electronics. ZKM, 1993.

[m-Hoe82] K. Hormann and M. Kaiser: Effekte in der Rock- und Popmusik: Funk-
tion, Klang, Einsatz. Bosse-Musik-Paperback ; 21, 1982. Sound exam-
ples. Cassette BE 2240 MC.

[m-Pie99] F. Pieper: Leslie-Simulatoren. CD, Tr. 33. in Das Effekte Praxisbuch.
Ch. 12. GC Carstensen, 1999.

[m-Sch98] P. Schaeffer and G. Reibel: Solfkge de l’objet sonore. Booklet + 3 CDs.
First published 1967. INA-GRM, 1998.

Bibliography

[Dat97] J. Dattoro. Effect design, part 2: Delay-line modulation and chorus. J.
Audio Eng. Soc., 45(10):764-788, October 1997.

[De 001 G. De Poli. Personal communication, 2000.

[Dis99] S. Disch. Digital audio effects - modulation and delay lines. Master’s
thesis, Technical University Hamburg-Harburg, 1999.

[Dut88] P. Dutilleux. Mise en euvre de transformations sonores sur u n s g s t h e
temps-re‘el. Technical report, Rapport de stage de DEA, CNRS-LMA,
June 1988.

[Dutgl] P. Dutilleux. Vers la machine h sculpter le son, modification en temps
re‘el des caructe‘ristiques fre‘quentielles et temporelles des sons. PhD the-
sis, University of Aix-Marseille 11, 1991.

[Dut96] P. Dutilleux. Verstarkung der Differenztone (a-fl). In Bericht der 19.
Tonmeistertagung Karlsruhe, Verlag K.G. Saw, pp. 798-806, 1996.

92 4 Modulators and Demodulators

[Dut98a] P. Dutilleux. Filters, Delays, Modulations and Demodulations: A Tu-
torial. In Proc. DAFX-98 Digital Audio Effects Workshop, pp. 4-11,
Barcelona, November 1998.

[Dut98b] P. Dutilleux. Opkras multimkdias, le r61e des ordinateurs clans trois
crkations du zkm. in musique et arts plastiques. In GRAME et Muse'e
d'Art contemporain, Lyon, pp. 73-79, 1998.

[DZ99] S. Disch and U. Zolzer. Modulation and delay line based digital audio
effects. In Proc. DAFX-99 Digital Audio Effects Workshop, pp. 5-8,
Trondheim, December 1999.

[Ha1951 H.P. Haller. Das Experimental Studio der Heinrich-Strobel-Stiftung des
Sudwestfunks Freiburg 1971-1989, Die Erforschung der Elektronischen
Klangumformung und ihre Geschichte. Nomos, 1995.

[LVKL96] T.I. Laakso, V. Vallimalki, M. Karjalainen, and U.K. Laine. Splitting
the unit delay. IEEE Signal Processing Magazine, 13:30-60, 1996.

[McN84] G.W. McNally. Dynamic range control of digital audio signals. J. Audio
Eng. Soc., 32(5):316-327, May 1984.

[Orf96] S.J. Orfanidis. Introduction to Signal Processing. Prentice-Hall, 1996.

[Roa96] C. Roads. The Computer Music Tutorial. MIT Press, 1996.

[Sch94] W. Schiffner. Rock und Pop und ihre Sounds. Elektor-Verlag, 1994.

[Stet371 M. Stein. Les modems pour transmission de donne'es. Masson CNET-
ENST, 1987.

[Vidgl] A. Vidolin. Musical interpretation and signal processing. In G. De Poli,
A. Piccialli, and C. Roads (eds), Representations of Musical Signals, pp.
439-459. MIT Press, 1991.

[War981 S. Wardle. A Hilbert-transformer frequency shifter for audio. In Proc.
DAFX-98 Digital Audio Effects Workshop, pp. 25-29, Barcelona, Novem-
ber 1998.

[Zo197] U. Zolzer. Digital Audio Signal Processing. John Wiley & Sons, Ltd,
1997.

Chapter 5

Nonlinear Processing

P. Dutilleux, U. Zolzer

5.1 Introduction

Audio effect algorithms for dynamics processing, valve simulation, overdrive and dis-
tortion for guitar and recording applications, psychoacoustic enhancers and exciters
fall into the category of nonlinear processing. They create intentional or uninten-
tional harmonic or inharmonic frequency components which are not present in the
input signal. Harmonic distortion is caused by nonlinearities within the effect de-
vice. Most of these signal processing devices are controlled by varying parameters
and simultaneously listening to the output signal and monitoring the output signal
by a level meter. A lot of listening and recording experience is necessary to obtain
sound results which are preferred by most listeners. The application of these sig-
nal processing devices is an art of its own and of course one of the main tools for
recording engineers and musicians.

Nonlinear processing/processors is the term for signal processing algorithms or
signal processing devices in the analog or digital domains which deliver an output
signal as a sum of sinusoids y(n) = A0 + A1 sin(2xflTn) + A2 sin(2.2nflTn) + . . . +
AN sin(N . 2xflTn), if the input signal is a sinusoid of known amplitude and fre-
quency according to x(.) = A sin(2xflTn). A linear system will deliver the output
signal y (n) = Aout sin(2xfl Tn+cp,,t) which again is a sinusoid where the amplitude
is modified by the magnitude repsponse (H (f l) (of the transfer function according
to Aout = (H (f 1) l . A and the phase response (Pout = pin + LH(f1) is modified by
the phase LH(f l) of the transfer function. Block diagrams in Fig. 5.1 showing both
input and output signals of a linear and a nonlinear system illustrate the difference
between both systems. A measurement of the total harmonic distortion gives an

93

94 5 Nonlinear Processing

Output signal of linear system Spectrum

x(n)
System

-0.5 -30

Input signal -1
0 500 1000 '" 0 200 400 600 800

n-r f inHz-r

Output signal of nonlinear system Spectrum
0 500 1000 '1 O t l 1

-1 I

-10

-20

-30

-40

I L
0 500 1000 0 200

._ B 400 h
600
i
800

n + f i n H z +

Figure 5.1 Input and output signals of a linear and nonlinear system. The output signal
of the linear system is changed in amplitude and phase. The output signal of the nonlinear
system is strongly shaped by the nonlinearity and consists of a sum of harmonics, as shown
by the spectrum.

indication of the nonlinearity of the system. Total harmonic distortion is defined by

which is the square root of the ratio of the sum of powers of all harmonic frequencies
above the fundamental frequency to the power of all harmonic frequencies including
the fundamental frequency.

We will discuss nonlinear processing in three main musical categories. The first
category consists of dynamic range controllers where the main purpose is the con-
trol of the signal envelope according to some control parameters. The amount of
harmonic distortion introduced by these control algorithms should be kept as low
as possible. Dynamics processing algorithms will be introduced in section 5.2. The
second class of nonlinear processing is designed for the creation of strong harmonic
distortion such as guitar amplifiers, guitar effect processors, etc. and will be intro-
duced in section 5.3. These nonlinear processors can be described by a linear part
and a nonlinear part. The linear part consists of the impulse response and the non-
linear part is a combination of a nonlinear function f[x(n)] of the input signal ~ (n)
and linear systems in front and behind this nonlinearity. The theory and simulation
of nonlinear systems will be discussed in section 5.3.1. The third category can be
described by the same theoretical approach and is represented by signal processing

5.2 Dynamics Processing 95

devices called exciters and enhancers. Their main field of application is the creation
of additional harmonics for a subtle improvement of the main sound characteristic.
The amount of harmonic distortion is usually kept small to avoid a pronounced
effect. Exciters and enhancers are based on psycho-acoustic fundamentals and will
be discussed in section 5.4.

5.2 Dynamics Processing

Dynamics processing is performed by amplifying devices where the gain is automat-
ically controlled by the level of the input signal. We will discuss limiters, compres-
sors, expanders and noise gates. A good introduction to the parameters of dynamics
processing can be found in [Ear761 (pp. 242-248).

Dynamics processing is based on an amplitude/level detection scheme sometimes
called an envelope follower, an algorithm to derive a gain factor from the result of
the envelope follower and a multiplier to weight the input signal (see Fig. 5.2). The
envelope follower calculates the mean of the absolute values Ix(n)l over a predefined
time interval. The output to input relation is usually described by the characteristic
curve y(n) = f[z(n)] as shown in Fig. 5.2. Certain thresholds are defined for a
change of the output to input behavior. For the given example the output is limited
to y(n) = f0 .5 for Ix(n)l > 0.5 and y(n) = z(n) for Ix(n)l 5 0.5. The lower path
consisting of the envelope detector and the following processing to derive the gain
factor g(n) is usually call the side chain path. Normally, the gain factor is derived
from the input signal, but the side chain path can also be connected to another
signal for controlling the gain factor of the input signal.

Signal Processing

A detailed description of a dynamic range controller is shown in Fig. 5.3. It consists
of a direct path for delaying the input signal and a side chain path. The side chain
path performs a level measurement and a subsequent gain factor calculation which
is then used as a gain factor for the delayed input signal. The level measurement is
followed by a static function and a part for the attack and release time adjustment.
Besides the time signals x (n) , f (n) , g(n) and y(n) the corresponding signal levels
X , G and Y are denoted. These level values are the logarithm of the root mean
square xrms(n) (RMS value) or peak value xpeak(n) of the time signals according
to X = 20- log,,,(.). The multiplication g (n) = g (n) . z(n - D) at the output of the
dynamic range controller can be regarded as an addition in the logarithmic domain.
This means Y = X + G in dB. The calculation of the time-variant gain factor g(n)
is usually performed with a logarithmic level representation, because the human
sensitivity of loudness follows a logarithmic relation. The delay of D samples in the
direct path allows for the time delay of the side chain processing, which is mainly
made up of the level measurement and the attack and release time adjustments.

The static function for the output level versus the input level (in dB) and the
calculations are shown in the left part of Fig. 5.4. Inside this representation the

96 5 Nonlinear Processing

ox(n)L f , y t)

Gain factor g(n)

Level Detection

Input signal x(n) Gain factor signal g(n)

1

0.5

-0.5 0 o . : F l
o.:rq
-1 0

0 100 200 300 400 0 100 200 300 400
Envelope of x(n)

1

0.5

0

-0.5

0 -1

0 100 200 300 400 0 100 200 300 400
n + n +

Figure 5.2 Block diagram of a nonlinear signal processing device with envelope detector.
The lower plots show the input signal z(n) , the envelope of z(n) , the derived gain factor
g (n) and the output signal y(n).

& x(n-D)

Level Static
Measurement curve

Figure 5.3 Block diagram of a dynamic range controller [Zo197].

5.2 Dynamics Processing 97

X[dB] -
0

-1 0

-20

-30

-40

-50

-60

-70

-80

-90 t
W B l

-80 -

NT

-

X[dB]

-60 -50 -40 -30 -20 -10 0 70

LT

0

-10

-20

-30

-40

-50

-60

-70
-80

-90 t
W B I

Figure 5.4 Static characteristic of a dynamic range controller [Zo197].

thresholds for limiting (LT limiter threshold), compression (CT compressor thresh-
old), expansion (ET expander threshold) and noise gate (N T noise gate threshold)
are denoted. In the right part of Fig. 5.4 the input level versus the gain level (in
dB) is shown which clearly shows the four regions of operation. For the description
of the static function two further parameters, namely the slope factor S = 1 -
and the compression factor R = = are used. The compression factor R
represents the fraction of input level change ALI to output level change ALo. With
the help of Fig. 5.5 for Compression the equation Y = CT + h (X - C T) and the
equation R = = t an& can be derived.

X[dB] - X[dB] ----*

-90 -80 -70 -80 -50 -40 -30 -20 -10 0 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

CR=3/1
cs=1-1/3=2/3 1

-20

-30

-40 -40

-50 -50
-60 -60
W B I W B I

Figure 5.5 Static Characteristic: definition of slope S and ratio R [Zo197].

Typical values for compression factor and slope factor for the four regions of
operation are:

Limiter R = m
Compressor 1 < R < m
Linear part R = l
Expander 0 < R < 1
Noise gate R = O

S = l
o < S < l

S = o
-m< S < o

S =-m.

98 5 Nonlinear Processing

The calculation of the control parameter f (n) in the logarithmic domain F in
dB can be performed by simple line equations [Zo197, RZ95] given by

Limiter FL = -LS(X - L T) + CS(CT - LT)
Compressor FC = -CS(X - C T)
Linear part Flin = 0
Expander FE = -ES(X - E T)
Noise gate FNG = - N S (X - N T) + ES(ET - N T) .

The dynamic behavior of a dynamic range controller is influenced by the level
measurement approach (with attack AT and release time RT for peak measurement
and averaging time TAV for RMS measurement) and further adjusted with special
attack/release times which can be achieved by the systems shown in Figures 5.6
and 5.7.

AT

I A

TAV

Figure 5.6 RMS and peak measurement (envelope detector/follower) for a dynamic range
controller [McN84, 261971.

Figure 5.7 Dynamic filter: attack and release time adjustment for a dynamic range con-
troller [McN84, Z6197].

These envelope detectors/followers can also be used for other musical applica-
tions. The calculation of the attack time parameter is carried out by

5.2 Dynamics Processing 99

where t is the time parameter in seconds and T is the sampling period. The release
time parameter RT and the averaging parameter TAV can be computed by the
same formula by replacing AT by ~ R T or tTAV, respectively. Further details and
derivations can be found in [McN84, 261971. The output factor f (n) of the static
function is used as the input signal to the dynamic filter with attack and release
times in Fig. 5.7. The output signal g (n) is the gain factor for weighting the delayed
input signal x (n - D) as shown in Fig. 5.3. In the following sections some special
dynamic range controllers are discussed in detail.

5.2.1 Limiter

The functional units of a limiter are shown in Fig. 5.8. The purpose of the limiter
is to provide control over the high peaks in the signal and to change the dynamics
of the signal as little as possible. A limiter makes use of peak level measurement
and should react very quickly to extensions of the limiter threshold. Typical para-
meters for a limiter are AT = 0.02 . . .0.04. . .10.24 msec and tRT = l . . . l30 . . .5000
msec for the peak measurement and tAT = 0.02.. .0.04.. .10.24 msec and ~ R T =
1. . .130. . .5000 msec for the attack/release time adjustment. The fast attack and
release of a limiter allow t,he volume reduction as soon as the signal crosses the
threshold. By lowering the peaks, the overall signal can be boosted. Beside limiting
single instrument signals, limiting is also often performed on the final mix of a
multichannel application.

Figure 5.8 Block diagram of a limiter [Zo197].

The following M-file 5.1 may serve as an example of a sample-based limiter
implementation.

M-file 5.1 (1imiter.m)
% Limiter.m
anzahl=220;
f o r n=l : anzahl,

x (n)=o. 2*sin (n/5) ;
end ;
f o r n=anzahl+l:2*anzahl;

end ;
x(n)=sin(n/5) ;

100 5 Nonlinear Processing

slope=l ;
tresh=0.5;
rt=O .Ol;
at=O. 4;

xd(l)=O;
for n=2:2*anzahl;

a=abs(x(n))-xd(n-l);
if a<O, a=O; end;
xd(n)=xd(n-l)*(l-rt)+at*a;
if xd(n)>tresh,

f (n)=lO-(-slope*(loglO(xd(n))-logiO(tresh)));
% linear calculation of f=iO-(-LS*(X-LT))

else f (n)=l;
end ;

y (n) =x (n) *f (n) ;
end ;

Figure 5.9 demonstrates the behavior of the time signals inside a limiter configura-
tion of Fig. 5.8.

A variant for a hard limiter is given by the following M-file 5.2 which makes use
of lowpass filtering the absolute value \ x (n) \ by a second order Butterworth filter
to obtain the gain factor g(n) [Ben97].

M-file 5.2 (hard-limiter .m)
function y=hard-limiter(x, limit)
% Hard sound limiter, limit - normalized limit
g=filter(le-5*[0.45535887 0.91071773849 0.455358871, . . .
. . . [l -1.99395528 0.9939734941 , abs (x) ;
1 detects the envelope of the signal with a second order

h=h/max (h) ;
for n=l:length(x)

Butterworth filter, cut off frequency 30 Hz

if h(n)>limit %if the signal envelope is above the limit

end ;
x(n)=x(n)*limit/g(n) ;

end ;
y=x ;

5.2.2 Compressor and Expander

A dynamic range controller for compression and expansion is shown in Fig. 5.10.
The gain factor calculation is based on an RMS measurement and some computa-
tions in the logarithmic domain. Typical parameters for compressors and expanders
are tAT = 5 msec and ~ R T = 130 msec for the RMS measurement and tAT =

5.2 Dynamics Processing

Input signal x(n)

101

Output signal y(n)

1

0.5

0

-0.5

-1

I t

0.5

0

-0.5

l I
i -1 t

0 100 200 300 400
n - 1

Filter output signal xpeak(n)

0 100 200 300 400
n-,

Gain signal f(n)

0 100 200 300 400
n - 1

0 100 200 300 400
n +

Figure 5.9 Signals for limiter.

0.16.. . S . . .2600 msec and tRT = 1. . .130 . . .5000 msec for the attacklrelease time
adjustment. The programming is similar to the implementation for the limiter from
the previous subsection.

Range Detector

-F
Figure 5.10 Block diagram of a compressor/expander [Zo197].

A different method of implementation is given by [Ben97], which follows the

102 5 Nonlinear Processing

comp>0 comp=O O<comp<-l
expander compressor

Figure 5.11 Block diagram of a compressor/expander [Ben97].

block diagram in Fig. 5.11. The corresponding M-file 5.3 illustrates the implemen-
tation.

M-file 5.3 (c0mpexp.m)
function y=compexp(x,comp,release,attack,a,Fs)
% Compressor/expander
% comp - compression: O>comp>-i, expansion: O<comp<i
% a - filter parameter <l
h=filter([(l-a)-2], [l.OOOO -2*a a-21 ,abs(x));
h=h/max (h) ;
h=h.-comp;

y=y*max(abs(x)>/max(abs(y)) ;
y=x. *h;

Compressors are used for reducing the dynamics of the input signal. Quiet parts
or low levels of a signal are not modified but high levels or loud parts are reduced
according to the static curve. The result is that the difference between the loud and
quiet parts is lessened, and thus the overall signal level can be boosted, and thus
the signal is made louder. Expanders operate on low level signals and increase the
dynamics of these low level signals. This leads to a lively sound characteristic.

5.2.3 Noise Gate

The functional units of a noise gate are shown in Fig. 5.10. The decision to activate
the gate is based on a peak measurement which leads to a fade in/fade out of the
gain factor g (n) with appropriate attack and release times. The input to the time
constant system is set to zero if the input level falls below the noise gate threshold,
and is set to one if the input level exceeds the noise gate level. The M-file 5.4
demonstrates an implementation with a hold time [Ben97].

M-file 5.4 (noisegt .m)
function y=noisegt(x,holdtime,ltrhold,utrhold,release,attack,a,Fs)
%y=noisegt(x,holdtime,ltrhold,utrhold,release,attack,a,Fs);

% holdtime - time in seconds the sound level has to be below the
noise gate with hysteresis

% threshhold value before the gate is activated

5.2 Dynamics Processing 103

Figure 5.12 Block diagram of a noise gate [Zo197].

% ltrhold - threshold value for activating the gate
% utrhold - threshold value for deactivating the gate > ltrhold
% release - time in seconds before the sound level reaches zero
% attack - time in seconds before the output sound level is the
% same as the input level after deactivating the gate
% a - pole placement of the envelope detecting filter <l
% Fs - sampling frequency
rel=round(release*Fs); %number of samples for fade
att=round(attack*Fs); %number of samples for fade
g=zeros(size(x)) ;
lthcnt=O;
uthcnt=O;
ht=round(holdtime*Fs) ;
h=filter([(1-a)"2], [l.OOOO -2*a a-21 ,abs(x)) ;%envelope detection
h=h/max (h) ;
for i=l:length(h)

% Value below the lower threshold?
if (h(i)<=ltrhold) 1 ((h(i)<utrhold) & (lthcnt>O))

lthcnt=lthcnt+l;
uthcnt=O;
if lthcnt>ht

% Time below the lower threshold longer than the hold time?
if lthcnt>(rel+ht)
g(i)=O;

else
g(i)=l-(lthcnt-ht)/rel; % fades the signal to zero

end ;

g(i)=O;

g(i)=l;

elseif ((icht) 8! (lthcnt==i))

else

end ;
elseif (h(i)>=utrhold) I ((h(i)>ltrhold) & (uthcnt>O))

1 Value above the upper threshold or is the signal being faded in?
uthcnt=uthcnt+l;

104 5 Nonlinear Processing

if (g(i-i)<l)
% Has the gate been activated or isn't the signal faded in yet?

g(i)=max(uthcnt/att,g(i-l));

g(i)=i;
end ;
lthcnt=O ;

g(i)=g(i-l) ;
lthcnt=O;
uthcnt=O;

else

else

end ;
end ;
y=x . *g ;
y=y*max(abs(x))/max(abs(y));

The main use of a noise gate is to eliminate noise when the desired signal is not
present. The noise gate attenuates only the soft signals. A particular application
is found when recording a drum set. Each element of the drum set has a different
decay time. When they are not manually damped, their sounds mix together and
the result is no longer distinguishable. When each element is processed by a noise
gate, every sound can automatically be faded out after the attack part of the sound.
This results in an overall cleaner sound.

Further implementations of limiters, compressors, expanders and noise gates can
be found in [Orf96] and in [Zo197] where special combined DRCs are also discussed.

5.2.4 De-esser

A de-esser is a signal processing device for processing speech and vocals. It consists
of a bandpass filter tuned to the frequency range between 2-6 kHz to detect the
level of the signal in this frequency band. If a certain threshold is exceeded, the
amount of gain is used to control the gain factor of a peak- or notch-filter tuned to
the same frequency band. The peak- or notch-filter is in the direct signal path (see
Fig. 5.13). As an alternative to the bandpass/notch filters, highpass and shelving
filters are used with good results. In order to make the de-esser more robust against
input level changes the threshold should depend on the overall level of the signal -
that is, a relative threshold [NieOO].

Applications of de-essers are mainly in the field of speech and vocal processing
to avoid high frequency sibilance. Here, quite fast time constants are used. An-
other application is the feedback reduction in sound reinforcement systems where
adaptively changing notch frequencies and gain factors are required.

5.2 Dgnamics Processing 105

Gain factor

Level Detection

Figure 5.13 Block diagram of a de-esser.

5.2.5 Infinite Limiters

In order to catch overshoots from a compressor and limiter, a clipper - or infinite
limiter - may be used [NieOO]. Another reason for using an infinite limiter is that
the average level rises. The infinite limiter is a nonlinear operation working directly
on the waveform by flattening the signal above a threshold. The simplest one is
hard clipping which generates lots of high order harmonics. A gentler infinite lim-
iter is the soft clipper which rounds the signal shape before the absolute clipping
threshold. The rounding typically consists of a low order polynomial and therefore
the harmonic spectrum rolls off faster [NieOO].

Due to the fact that the signal processing takes place in the digital domain, not
only harmonic distortion but also aliasing distortion is generated. Aliasing distortion
sounds metallic and is not really good. Although infinite limiting should be avoided
during mix down of multi-channel recordings and recording sessions, several CDs
make use of infinite limiting or saturation (see wave file in Fig. 5.14 and listen to
Carlos Santana/Smooth [m-San99]).

signal h C zoom in

0.5 0.5

0 0

-0.5 -0.5

-1 -1
0 5 10 15 0 200 400 600

n +
X lo4 n-,

Figure 5.14 Infinite limiting (Santana - “Smooth”).

106 5 Nonlinear Processing

5.3 Nonlinear Processors

There are two approaches towards nonlinear processing for audio applications. The
first approach is driven by musical applications of nonlinear effects and the second is
driven by the reduction of nonlinear behavior especially in the field of loudspeakers.
We cover the first approach of nonlinear effects for musical processing, where topics
from nonlinear modeling of physical systems play an important role. Therefore, we
investigate approximation and simulation techniques for nonlinear processors and
will show simple implementation schemes for nonlinear processors. Special nonlinear
waveshaping techniques for sound synthesis can be found in [Bru79, Arf79, De 841.

5.3.1 Basics of Nonlinear Modeling

Digital signal processing is mainly based on linear time-invariant systems. The as-
sumption of linearity and time invariance is certainly valid for a variety of technical
systems, especially for systems where input and output signals are bounded to
a specified amplitude range. In fact several analog audio processing devices have
nonlinearities like valve amplifiers, analog effect devices, analog tape recorders,
loudspeakers and at the end of the chain the human hearing mechanism. A
compensation and the simulation of these nonlinearities need nonlinear signal pro-
cessing and of course a theory of nonlinear systems. From several models for dif-
ferent nonlinear systems discussed in the literature the Volterra series expansion
is a suitable approach, because it is an extension of the linear systems theory.
Not all technical and physical systems can be described by the Volterra series
expansion, especially systems with extreme nonlinearities. If the inner structure
of a nonlinear system is unknown, a typical measurement set-up, as shown in
Fig. 5.15, with a pseudo-random signal as the input signal and recording the out-
put signal is used. Input and output signals allow the calculation of the linear
impulse response hl(n) by cross-correlation and kernels (impulse responses) of
higher order h2 (721, n2), h3 (nl ,122, n3), . . . , hN(n1, . . . , n ~) by higher order cross-
correlations. The linear impulse response hl(n) is a one-dimensional, h2(n1,7~2) is
a two-dimensional and hN(nl, . . . , n ~) is an N-dimensional kernel. An exhaustive
treatment of these techniques can be found in [Sch80]. These N kernels can be used

sync 0 -

Figure 5.15 Measurement of nonlinear systems.

5.3 Nonlinear Processors 107

for an N-order Volterra system model given by

N

i= 1
M

v1=0 v.N=o

Figure 5.16 shows the block diagram representing (5.3).

Figure 5.16 Simulation of nonlinear systems by an N-order Volterra system model.

A further simplification [Fra97] is possible if the kernels can be factored according
to

hi(nI,n2;.. ,ni) =hf(nl)hf(nz).'.hf(ni). (5.4)

Then (5.3) can be written as

which is shown in block diagram representation in Fig. 5.17. This representation
shows several advantages especially from the implementation point of view, be-
cause every subsystem can be realized by a one-dimensional impulse response or

108 5 Nonlinear Processing

Figure 5.17 Simulation of nonlinear systems by an N-order Volterra system model with
factored kernels.

the equivalent representations we have discussed in the previous chapters. At the
output of each subsystem we have to perform the O i operation on the corres-
ponding output signals. The discussion so far can be applied to nonlinear systems
with memory, which means that besides nonlinearities linear filtering operations
are also included. Further material on nonlinear audio systems can be found in
[Kai87, RH96, Kli98, FUB+98].

A simulation of a nonlinear system without memory, namely static nonlinear
curves, can be done by a Taylor series expansion given by

N

y(n) = f [x(.)] = c b2xi(n).
i=O

Static nonlinear curves can be applied directly to the input signal, where each input
amplitude is mapped to an output amplitude according to the nonlinear function
y = f [x(.)] (see Fig. 5.18). If one applies a squarer operation to the input signal of
a given bandwidth, the output signal y(n) = x2(n) will double its bandwidth. As
soon as the highest frequency after passing a nonlinear operation exceeds half the
sampling frequency f s / 2 , aliasing will fold this frequency back to the base band. In
some effect applications additional aliasing distortions might be helpful, especially
for extreme distortions in metal music. This means that for digital signals we first
have to perform over-sampling of the input signal before applying any nonlinear
operation to the input signal in order to avoid any aliasing distortions. This over-
sampling is shown in Fig. 5.18 where first up-sampling is performed and then an
interpolation filter HI is used to suppress images up to the new sampling frequency
L fs. Then the nonlinear operation can be applied followed by a band-limiting filter
to f s /2 and down-sampling.

As can be noticed, the output spectrum only contains frequencies up to f s / 2 .
Based on this fact the entire nonlinear processing can be performed without over-
sampling and down-sampling by the system shown in Fig. 5.19 [SZ99]. The input
signal is split into several lowpass versions which are forwarded to an individual
nonlinearity. The output signal is a weighted combination of the individual output
signals after passing a nonlinearity. With this approach the problem of aliasing is

5.3 Nonlineav Processors

Nonlinearity

109

Figure 5.18 Nonlinear processing by over-sampling techniques.

Figure 5.19 Nonlinear processing by band-limiting input range [SZSS].

avoided and an equivalent approximation to the over-sampling technique is achieved.
A comparison with our previous discussion on factored Volterra kernels shows also
a close connection. As a conclusion for a special static nonlinearity applied to an
input signal, the input signal has to be filtered by a lowpass of cut-off frequency
f s / (2 . order of the Taylor series), otherwise aliasing distortions will occur.

5.3.2 Valve Simulation

Valve or tube devices dominated signal processing during the first part of the last
century and have experienced a revival in audio processing every decade since their
introduction [Bar98, Ham731. One of the most commonly used effect for electric
guitars is the amplifier and especially the valve amplifier. The typical behavior

110 5 Nonlinear Processing

of the amplifier and the connected loudspeaker cabinet have demonstrated their
influence on the sound of rock music over the past decades. Besides the two most
important guitars, namely the Fender Stratocaster and the Gibson Les Paul, several
valve amplifiers have helped in creating exciting sounds from these classic guitars.

Introduction

Vintage valve amplifiers. An introduction to valve amplifiers and their history
can be found in [Fli93, Bar981 where several comments on sound characteristics are
published. We will concentrate on the most important amplifier manufacturers over
the past and point out some characteristic features.

0 Fender: The Fender series of guitar amplifiers goes back to the year 1946
when the first amplifiers were introduced. These were based on standard tube
schematics supplied by the manufacturers of tubes. Over the years modifica-
tions of the standard design approach were integrated in response to musi-
cians’ needs and proposals. The range of Fender amplifiers is still expanding
but also reissues of the originals are very popular with musicians. The sound
of Fender amplifiers is the “classic tube sound”. For more information’ we
refer to [Fli93].

0 Vox: The sound of the VOX AC30/4 is best characterized by guitar player
Brian May in [PD93] where he states “the quality at low levels is broad and
crisp and unmistakebly valve like, and as the volume is turned up it slides into
a pleasant, creamy compression and distortion”. There is always a ringing
treble quality through all level settings of the amp. The real ‘‘soul of the
amp” comes out if you play it at full volume and control your sound with
the volume knob of your guitar. The heart of the sound characteristic of the
VOX AC30/4 is claimed to be the use of EL84s, NFB and cathode-biasing
and Class A configuration. The four small EL84s should sound more lively
than the bigger EL34s. The sound of VOX AC30 can be found on recordings
by Brian May, Status Quo, Tom Petty and Bryan Adams.

Marshall: The Fender Bassman 5F6 was the basis for the Marshall JTM
45. The differences between both are discussed in [Doy93] and are claimed
to be the output transformers, speakers, input valve and feedback circuit,
although the main circuit diagrams are nearly identical. The sound of Marshall
is characterized by an aggressive and “crunchy” tone with brilliant harmonics,
as Eric Clapton says, “I was probably playing full volume to get that sound”
[Doy93]. Typical representatives of the early Marshall sound are Jimi Hendrix,
Eric Clapton, Jimmy Page and Ritchie Blackmore.

Mesa-Boogie: Two cascaded pre-amp stages and a master volume for the
power amp is the basis for Mesa-Boogie amps. An ambassador for Mesa-Boogie
sound is Carlos Santana.

lhttp://www.fender.Com, http://www.ampwares.com

5.3 Nonlinear Processors 111

Signal Processing

The sound of a valve amplifier is based on a combination of several important
factors. First of all the main processing features of valves or tubes are important
[Bar98, Ham731. Then the amplifier circuit has its influence on the sound and, last
but not least, the chassis and loudspeaker combination play an important role in
sound shaping. We will discuss all three factors now.

Valve basics. Z'r-iode valves [Rat95, RCA591 consisting of three electrodes,
namely the anode, cathode and gate, are considered as having a warm and soft
sound characteristic. The main reason for this is the nonlinear transfer function for
anode current versus input gate voltage of the triode which is shown in Fig. 5.20.
This nonlinear curve has a quadratic shape. An input signal represented by the
gate voltage VG delivers an anode output current I A = f(Uc) representing the out-
put signal. The corresponding output spectrum shows a second harmonic as well
as the input frequency. This second harmonic can be lowered in amplitude when
the operating point of the nonlinear curve is shifted right and the input voltage
is applied to the more linear region of the quadratic curve. The dc component in

400
Nonlinear Characteristic of a Triode

300 -

- ?a00

100

-20 -15 -10
0

-5 0
'G

l nw t Sianal
100

80

T
60

c

40

20

n
-20 -15 -10 -5 0

'G

Output Signal
400

300

- ?$OO

100

n v
0 20 40 60 80 100

t -+

Output Spectrum
50

40

8 30 T

C .-
G 20
>-

lo

0

f i n kHz +

I

Figure 5.20 Triode: nonlinear characteristic curve I A = f(lJc) and nonlinear effect on
input signal. The output spectrum consists of the fundamental input frequency and a
second harmonic generated by the quadratic curve of the triode.

112 5 Nonlinear Processing

the output signal can be suppressed by a subsequent highpass filter. Note also the
asymmetrical soft clipping of the negative halves of the output sinusoid, which is
the result of the quadratic curve of the triode. Input stages of valve amplifiers make
use of these triode valves. A design parameter is the operating point which controls
the amplitude of the second harmonic.

Pentode valves, which consist of five electrodes, are mainly used in the power
amp stage [Rat95, RCA591. They have a static characteristic like an S-curve shown
in Fig. 5.21 which shows the anode output current I A versus the input gate voltage
VG. If the entire static characteristic curve is used, the output signals is compressed
for higher input amplitudes leading to a symmetrical soft clipping. The correspond-
ing output spectrum shows the creation of odd order harmonics. For lower input
amplitudes the static characteristic curve operates in a nearly linear region, which
again shows the control of the nonlinear behavior by properly selecting the oper-
ating point. Several static characteristic curves can be chosen to achieve the S-like
curve of pentodes.

Nonlinear Characteristic of a Pentode

"G -+

Input Signal

n -
-20 -15 -10 -5 0

U - +
9

Output Signal

6oo -
500

400

- ?$OO
200

100

I
0 20 40 60 80 100

t +

Output Spectrum

f i n kHz 4

Figure 5.21 Pentode: nonlinear characteristic curve I A = ~ (U G) and nonlinear effect on
input signal.

The technical parameters of valves have wide variation, which leads to a wide
variation of sound features, although selected valves with small changes of para-

5.3 Nonlinear Processors 113

Splitter Transformer Cabinet

Power
AMP

Figure 5.22 Main stages of a valve amplifier. Upper left plot shows signal after pre-
amplifier, lower left plot shows signal after phase splitter, upper right plot shows signal
after power amplifier and lower right plot shows signal after output transformer.

meters are of course available. All surrounding environmental parameters like hu-
midity and temperature have their influence as well.

Valve amplifier circuits. Valve amplifier circuits are based on the block dia-
gram in Fig. 5.22. Several measured signals from a VOXAC30 at different stages of
the signal flow path are also displayed. This will give an indication of typical signal
distortions in valve amplifiers. The main stages of a valve amplifier are given below:

0 the input stage consists of a triode circuit providing the input matching fol-
lowed by a volume control for the next stages.

0 the tone control circuitry is based on low/high frequency shelving filters.

0 the phase inversion/splitting stage for providing symmetrical power amp feed-
ing. This phase splitter delivers the original input for the upper power amp
and a phase inverted replica of the input for the lower power amp.

0 the power amp stage performs individual amplification of the original and
the phase inverted replica in a class A, class B or class C configuration (see
Fig. 5.23). Class A is shown in the upper left plot, where the output signal is
valid all the time. Class B performs amplification only for one half wave and
class C only for a portion of one half wave. Class A and class AB (see lower
part of Fig. 5.23) are the main configurations for guitar power amplifiers. For
class AB operation the working point lies in between class A and class B. The
signals after amplification in both parts of the power amplifier are shown.

0 the output transformer, shown in Fig. 5.24, performs the subtraction of both
waveforms delivered by the power amplifiers which leads to the output signal
I A ~ - I A ~ as shown in Fig. 5.23. The nonlinear behavior of transformers is
beyond the scope of this discussion.

114 5 Nonlinear Processing

Class B

t '

Class AB

Figure 5.23 Power amplifier operation (upper plots: left class A, middle class B, right
class C, lower plot: class AB operation).

Figure 5.24 Power amplifier stage and output transformer.

the chassis and the loudspeakers are arranged in several combinations ranging
from 2x12 to 4x10 in closed or open cabinets. Simulations of these components
can be done by impulse response measurements of the loudspeaker and cabinet
combination.

As well as the discussed topics the influence of the power supply with valve rectifier
(pp. 51-54 in [vdL97]) is claimed to be of importance. A soft reduction of the power
supply voltage occurs when in a high power operation short transients need a high
current. This power supply effect leads to a soft clipping of the audio signal.

5.3 Nonlinear Processors 115

dBn
10
0

- 10
-20
-30
-+0

-50

1k Zk 3k 5k 7k lek mk

(C) (d)
dBn FPT CH1,

10
dBm FFI CHI.

10

0 0

-20

-10 -10

-30
-20

-io
-30

-50

-40

-60
-50
-60

-70
- 80

-70

-90
-80
-90

lk Zk 3k Sk 7k 10k lk Zk 3k 5k 7k 1Qk ZOk

Figure 5.25 VOX AC30/4 spectra at different stages: (a) input stage, (b) output phase
splitter, (c) output power amp and (d) output of transformer.

The corresponding spectra of the signals for the VOX AC30/4 measurements
are shown in Fig. 5.25. The distortion characteristic can be visualized by the wa-
terfall representation of short-time FFTs for a chirp input signal in Fig. 5.26. The
individual distortion components for the second up to the fifth harmonic are shown
in Fig. 5.27 for each signal in the VOX AC30/4 amplifier.

Musical Applications

Musical applications of valve amplifiers can be found on nearly every recording fea-
turing guitar tracks. Ambassadors of innovative guitar players from the blues to
early rock period are B. B. King, Albert King and Chuck Berry, who mainly used
valve amplifiers for their warm and soft sound. Representatives of the classic rock
period are Jimi Hendrix [m-Hen67a, m-Hen67b, m-Hen681, Eric Clapton [m-Cla67],
Jimmy Page [m-Pag69], Ritchie Blackmore [m-Bla70], Jeff Beck [m-Bec89] and Car-
los Santana [m-San99]. All make extensive use of valve amplification and special
guitar effect units. There are also players from the new classic period like Eddie
van Halen, Steve Ray Vaughan and Steve Morse up to the new guitar heroes such
as Steve Lukather, Joe Sartriani, Gary Moore, Steve Vai and Paul Gilbert, who are
using effect devices together with valve amplifiers. New guitar amplifier designs with
digital preamplifiers are ba,sed on digital modeling technology,2 where a modeling
of classic valve amplifiers is performed together with new valve-based algorithms
for guitar and bass guitar processing.

116

Signal x(n)

5 Nonl inear Processing

-1 ’ I I I I I I I I I J
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n +

Waterfall Representation of Short-time FFTs

f i n kHz +

Figure 5.26 Short-time FFTs (waterfall representation) of VOXACSO with a chirp input
signal. The amplifier is operating with full volume setting.

Valve microphones, preamplifiers and effect devices such as compressors, limiters
and equalizers are also used for vocal recordings where the warm and subtle effect
of valve compression is applied. A lot of vocalists prefer recording with valve con-
denser microphones because of their warm low end and smooth top end frequency
response. Also the recording of acoustical instruments such as acoustic guitars, brass
instruments and drums benefit from being processed with valve outboard devices.
Valve processors also assist the mixing process for individual track enhancing and
on the mix buses. The demand for valve outboard effects and classic mixing con-
soles used in combination with digital audio workstations has led back to entire
valve technology mixing consoles. For the variety of digital audio workstations a lot
of plug-in software modules for valve processing are available on the marketplace.

5.3.3 Overdrive, Distortion and Fuzz

Introduction

As pointed out in the section on valve simulation, the distorted electric guitar is a
central part of rock music. As well as the guitar amplifier as a major sound effect
device, several stomp boxes (foot-operated pedals) have been used by guitar play-

5.3 Nonlinear Processors 117

Input Stage VOX AC3014

2-

. - - - - _ _ - - -
- -, - - - _ , _ - - :I

- -

19.8 20 20.2 20.4 20.6 20.8
Level in dBm +

Power Amp Stage VOX AC30/4
a”

l
2 5 - - - d I -

l
l .
l

l .

T
8 20.

S 1 5 -
e
._ ti 10-

I

5 -

E .-

1 .

0 /

25 30 35 40 45 50
Level in dBm 4

25
Phase Inversion Stage VOX AC30/4

/

0
-1 0 0 10 20 30

Level in dBm +

Output Transformer VOX AC30/4

- j - ’ 1 - - ,

“5 10 15 20 25 30
Level in dBm +

Figure 5.27 VOX AC30 - Distortion components versus signal level at different stages.

ers for the creation of their typical guitar sound. Guitar heroes like Jimi Hendrix
have made use of several small analog effect devices to achieve their unmistakable
sound. Most of these effect devices have been used to create higher harmonics for
the guitar sound in a faster way and at a much lower sound level compared to
valve amplifiers. In this context terms like overdrive, distortion, fuzz and buzz are
used. Several definitions of overdrive, distortion and fuzz for musical applications
especially in the guitar player world are a~a i l ab le .~ For our discussion we will de-
fine overdrive as a first state where a nearly linear audio effect device at low input
levels is driven by higher input levels into the nonlinear region of its characteristic
curve. The operating region is in the linear region as well as in the nonlinear region
with a smooth transition. The main sound characteristic is of course from the non-
linear part. Overdrive has a warm and smooth sound. The second state is termed
distortion, where the effects device mainly operates in the nonlinear region of the
characteristic curve and reaches the upper input level, where the output level is
fixed to a maximum level. Distortion covers a wide tonal area starting beyond tube
warmth to buzz saw effects. All metal and grunge sounds fall into this category.
The operating status of fuzz is represented by a completely nonlinear behavior of
the effect device with a sound characterized by the guitar player terms “harder”
and “harsher” than distortion. Fuzz also means not clear, distinct, or precise and

3A Musical Distortion Primer by R.G. Keen on http://www.geofec.corn

118 5 Nonlinear Processing

unpredictable. The fuzz effect is generally used on single-note lead lines.

Signal Processing

Symmetrical soft clipping. For overdrive simulations a symmetrical soft clipping
of the input values has to be performed. One possible approach for a soft saturation
nonlinearity [Sch80] is given by

for 0 5 x 5 1/3

for 2/3 5 x 5 1.
for 113 5 x 5 213 (5.7)

The static input to output relation is shown in Fig. 5.28. Up to the threshold of 1/3
the input is multiplied by two and the characteristic curve is in its linear region.
Between input values of 1/3 up to 2/3, the characteristic curve produces a soft
compression described by the middle term of equation (5.7). Above input values of
2/3 the output value is set to one. The corresponding M-file 5.5 for overdrive with
symmetrical soft clipping is shown next.

M-file 5.5 (symc1ip.m)
function y=symclip(x)
% y=symclip(x)
% "Overdrive" simulation with symmetrical clipping
% x - input
N=length(x) ;
th=1/3; % threshold for symmetrical soft clipping

for i=i:l:Ny
% by Schetzen Formula

if abs(x(i))< thy y(i)=2*x(i);end;
if abs(x(i))>=th,

if x(i)> 0, y(i)=(3-(2-x(i)*3) .^2)/3; end;
if x(i)< 0, y(i)=-(3-(2-abs(x(i))*3) .^2)/3; end;

end ;
if abs(x(i))>2*th,

if x(i)> 0, y(i)=i;end;
if x(i)< 0, y(i)=-1;end;

end ;
end ;

Figure 5.29 shows the waveforms of a simulation with the above described char-
acteristic curve and a sinusoid of 1 kHz. In the upper left plot the output signal from
sample 0 up to 250 is shown which corresponds to the saturated part of the charac-
teristic curve. The tops and bottoms of the sinusoid run with a soft curve towards
the saturated maximum values. The upper right plot shows the output signal from
sample 2000 up to 2250, where the maximum values are in the soft clipping region of
the characteristic curve. Both the negative and the positive top of the sinusoid are

5.3 Nonlinear Processors 119

Static characteristic: y=f(x)

-1 -0.5 0 0.5 1
X

-25/ -30 -30 -20

X in dB
-10

Figure 5.28 Static characteristic curve of symmetrical soft clipping (right part shows
logarithmic output value versus input value).

Signal x(n) Signal x(n)

1 1

0.5 0.5

r T - C O
X

h - C O
X

-0.5 -0.5

-1 -1

0 50 100 150 200 250 2000 2050 2100 2150 2200 2250
n + n-,

Waterfall Representation of Short-time FFTs

- tInkHz+ l 5 20

Figure 5.29 Short-time FFTs (waterfall representation) of symmetrical soft clipping for
a decaying sinusoid of 1 kHz.

rounded in their shape. The lower waterfall representation shows the entire decay of
the sinusoid down to -12 dB. Notice the odd order harmonics produced by this non-
linear symmetrical characteristic curve, which appear in the nonlinear region of the

120 5 Nonlinear Processing

characteristic curve and disappear as soon as the lower threshold of the soft com-
pression is reached. The prominent harmonics are the third and the fifth harmonic.
The slow increase or decrease of higher harmonics is the major property of sym-
metrical soft clipping. As soon as simple hard clipping without a soft compression
is performed, higher harmonics appear with significant higher levels (see Fig. 5.30).
The discussion of overdrive and distortion has so far only considered the creation
of harmonics for a single sinusoid as the input signal. Since a single guitar tone
itself consists of the fundamental frequency plus all odd and even order harmonics,
the sum of sinusoids are always processed by a nonlinearity. The nonlinearity also
produces sum and difference frequencies, which sound very disturbing. The control
of these sum and difference frequencies goes beyond the current treatment of the
subject.

1

0.5

t
C O
I

x

-0.5

-1

Signal x(n) Signal x(n)

r

J
50 100 150 200

:I 1 250
0 2000 4000 6000 8000 l0000

n - t n +

Waterfall Representation of Short-time FFTs

Figure 5.30 Short-time FFTs (waterfall representation) of symmetrical hard clipping for
a decaying sinusoid of 1 kHz.

Asymmetrical clipping. We have already discussed the behavior of triode valves
in the previous section which produce an asymmetrical overdrive. One famous repre-
sentative of asymmetrical clipping is the Fuzz Faze which was used by Jimi Hendrix.
The basic analog circuit is shown in Fig. 5.314 and consists only of a few components
with two transistors in a feedback arrangement. The output signals for various input
levels are presented in Fig. 5.32 in conjunction with the corresponding spectra for

4The Technology of the Fuzz Face by R.G. Keen on http://www.geofex.com

5.3 Nonlinear Processors 121

INPUT

Figure 5.31 Analog circuit of Fuzz Face.

a l kHz sinusoid. The upper plots down to the lower plots show an increasing input

0.5 7 7
Output signals

0

-0.5 L.i
0 100 200 300 400 500

-0.5
0 100 200 300 400 500

Iil,..

Spectra

-60
-80

0 2000 4000 6000 8000 10000

-2ot A
0

n n . h n
0 2000 4000 6000 8000 10000

ot i
-20

-60
-n r; -m

0 -40

-.-
0 100 200 300 400 500

"-
0 2000 4000 6000 8000 10000

0 2: -20

-0.5
0 100 200 300 400 500

-80
0 2000 4000 6000 8000 10000

0

-0.5
0 100 200 300 400 500

n +

o t 1
-20

-60
-40

-80
0 2000 4000 6000 8000 10000

f in Hz +

Figure 5.32 Signals and corresponding spectra of Fuzz Face.

level. For low level input signals the typical second harmonic of a triode valve can
be noticed although the time signal shows no distortion components. With increas-
ing input level the second harmonic and all even order harmonics as well as odd
order harmonics appear. The asymmetrical clipping produces enhanced even order
harmonics as shown in the third row of Fig. 5.32. Notice that only the top of the
positive maximum values are clipped. As soon as the input level further increases,
the negative part of the waveform is clipped. The negative clipping level is lower
than the positive clipping value and so asymmetrical clipping is performed. When

122 5 Nonlinear Processing

both positive and negative clipping levels are exceeded, the odd order harmonics
come up but the even order harmonics are still present.

Short-time Fourier transforms (in waterfall representation) for an increasing 1
kHz sinusoid together with two waveforms are shown in Fig. 5.33.

Signal x(n) Signal x(n)
0.5 0.5

T T
C O C O
x X

-0.5
1 1.01 1.02 1.03 1.04 1.05

-0.5
4 4.01 4.02 4.03 4.04 4.05

n + n-t X lo4 x 104

Waterfall Representation of Short-time FFTs

Figure 5.33 Short-time FFTs (waterfall representation) of Fuzz Face for an increasing
1 kHz sinusoid. The upper plots show segments of samples from the complete analysed
signal.

A proposal for asymmetrical clipping [Ben971 used for tube simulation is given
by

Q # 0 , ~ # Q.

The underlying design parameters for the simulation of tube distortion are based on
the mathematical model [Ben971 where no distortion should occur when the input
level is low (the derivative of f(x) has to be f’(0) X 1 and f(0) = 0). The static
characteristic curve should perform clipping and limiting of large negative input
values and approximately linear for positive values. The result of equation (5.8) is
shown in Fig. 5.34.

The following M-file 5.6 performs equation (5.8) from [Ben97]. To remove the dc
component and to shape higher harmonics, additional lowpass and highpass filtering
of the output signal is performed.

5.3 Nonlinear Processors

Static characteristic: y=f(x)

123

-0,5L - 1
-1 -0.5 0

X
0.5

Figure 5.34 Static characteristic curve of asymmetric soft clipping for tube simulation
Q = -0.2 and dist = 8.

M-file 5.6 (tube.rn)
function y=tube(x, gain, Q, dist, rh, r l , mix)
% y=tube(x, gain, Q, dist, rh, rl, mix)
% "Tube distortion" simulation, asymmetrical function
% x - input
% gain - the amount of distortion, >0->
% Q - work point. Controls the linearity of the transfer

% dist - controls the distortion's character, a higher number gives

1 rh - abs(rh)<i, but close to 1. Placement of poles in the HP

% rl - O<rl<l. The po.Le placement in the LP filter used to

% mix - mix of original and distorted sound, l=only distorted
q=x*gain/max(abs(x)); %Normalization
if Q==O

% function for low input levels, more negative=more linear

% a harder distort ion, >O

% filter which removes the DC component

% simulate capacitances in a tube amplifier

z=q./(l-exp(-dist*q));
for i=l:length(q) %Test because of the
if q(i)==Q %transfer function's
z(i)=l/dist; %O/O value in Q

end ;
end ;

z=(q-Q)./(l-exp(-dist*(q-Q)))+Q/(l-exp(dist*Q));
for i=i:length(q) %Test because of the

else

if q(i)==Q %transfer function's

end ;
z(i)=l/dist+Q/(l-exp(dist*Q)); %O/O value in Q

124 5 Nonlinear Processing

end ;
end ;
y=mix*z*max(abs(x))/max(abs(z))+(l-mix)*x;
y=y*max (abs (x)) /max(abs (y) ;
y=filter(C1 -2 l] [l -2*rh rh-23 ,y>; %HP filter
y=filter(Cl-rll C1 -rll ,y>; %LP filter

Short-time FFTs (waterfall representation) of this algorithm applied to a 1 kHz
sinusoid are shown in Fig. 5.35. The waterfall representation shows strong even
order harmonics and also odd order harmonics.

Signal x(n)

'7
Signal x(n)

0.5 0.5

7 T
C O

- C O
X X

-0.5 t i

-1 U
0 100 200 300 400 500

n +

- O ' I L -1 8000 8100 8200 8300 8400 8

n +
00

Waterfall Representation of Short-time FFTs

Figure 5.35 Short-time FFTs (waterfall representation) of asymmetrical soft clipping.

Distortion. A nonlinearity suitable for the simulation of distortion [Ben971 is given
by

The M-file 5.7 for performing equation (5.9) is shown next.

M-file 5.7 (fuz2exp.m)
function y=f uzzexp (x gain mix)
% y=fuzzexp(x, gain, mix)

5.3 Nonlinear Processors 125

% Distortion based on an exponential function
% x - input

% mix - mix of original and distorted sound, l=only distorted
q=x*gain/max(abs(x));
z=sign(-q).*(l-exp(sign(-q) .*q));
y=mix*z*max(abs(x))/max(abs(z))+(l-mix)*x;
y=y*max(abs(x))/max(abs(y));

gain - amount of distortion, >0->

The static characteristic curve is illustrated in Fig. 5.36 and short-time FFTs of a
decaying 1 kHz sinusoid are shown in Fig. 5.37.

Static characteristic: y=f(x) Log. output over input level

-1 -0.5 0 0.5 1

-25

-30 -20L -30 -20 -1 0 0

X X in dB

Figure 5.36 Static characteristic curve of exponential distortion.

Musical Applications

There are a lot of commercial stomp effects for guitarists on the market place.
Some of the most interesting distortion devices for guitars are the Fuzz Face which
performs asymmetrical clipping towards symmetrical soft clipping and the Tube
S ~ r e a m e r , ~ which performs symmetrical soft clipping6 The Fuzz Face was used
by Jimi Hendrix and the Tube Screamer by Stevie Ray Vaughan. They both offer
classical distortion and are well known because of their famous users. It is impossible
to explain the sound of a distortion unit without listening personally to it. The
technical specifications for the sound of distortion are missing, so the only way to
choose a distortion effect is by a comparative listening test.

’The Technology of the Tube Screamer by R.G. Keen on http://www.geofex.com
6GM Arts Homepage http://www.chariot.net.au/-gmarts/ampovdrv.htm

126 5 Nonlinear Processing

Signal x(n) Signal x(n)

0 50 100 150 200 250
n+

-1
5000 5050 5100 5150 5200 5250

n +

Waterfall Representation of Shoft-time FFTs

Figure 5.37 Short-time FFTs (waterfall representation) of exponential distortion

5.3.4 Harmonic and Subharmonic Generation

Introduction

Harmonic and subharmonic generation are performed by simple analog or digital
effect devices which should produce an octave above and/or an octave below a single
note. Advanced techniques to achieve pitch shifting of instrument sounds will be
introduced in Chapter 7. Here, we will focus on simple techniques, which lead to
the generation of harmonics and subharmonics.

Signal Processing

The signal processing algorithms for harmonic and subharmonic generation are
based on simple mathematical operations like absolute value computation and
counting of zero crossings, as shown in Fig. 5.38 when an input sinusoid has to
be processed (first row shows time signal and corresponding spectrum).

The second row of Fig. 5.38 demonstrates half-wave rectification, where positive
values are kept and negative values are set to zero. This operation leads to the
generation of even order harmonics. Full-wave rectification, where the absolute value
is taken from the input sequence, leads to even order harmonics as shown in the third
row of Fig. 5.38. Notice the absence of the fundamental frequency. If a zero crossing

5.3 Nonlinear Processors 127

Input signal Spectra

50 loo,, 150 200
Half-wave rectlffed signal

0 50 100,. 150 200
l , Full-wave rectlfled siqnal

I

0 50 IO0 150 200
Octave dlvlslon signal
I

0 2 4 6 8 1 0

t O-

0 2 4 6 8 1 0

7 '-

0 2 4 6 8 1 0
I

f in kHz --f

Figure 5.38 Signals and corresponding spectra of halve-wave rectification, full-wave rec-
tification and octave division.

counter is applied to the half-wave or the full-wave rectified signal, a predefined
number of positive wave parts can be set to zero to achieve the signal in the last
row of Fig. 5.38. This signal has a fundamental frequency which is one octave lower
than the input frequency in the first row of the figure, but also shows harmonics of
this new fundamental frequency. If appropriate lowpass filtering is applied to such
a signal, only the fundamental frequency can be obtained which is then added to
the original input signal.

Musical Applications

Harmonic and subharmonic generation is mostly used on single note lead lines,
where an additional harmonic or subharmonic frequency helps to enhance the oc-
tave effect. Harmonic generators can be found in stomp boxes for guitar or bass
guitar and appear under the name octaver. Subharmonic generation is often used
for solo and bass instruments to give them an extra bass boost or simply a fuzz bass
character.

128 5 Nonlinear Processing

5.3.5 Tape Saturation

Introduction and Musical Application

The special sound characteristic of analog tape recordings has been acknowledged
by a variety of producers and musicians in the field of rock music. They prefer
doing multi-track recordings with analog tape-based machines and use the special
physics of magnetic tape recording as an analog effects processor for sound design.
One reason for their preference for analog recording is the fact that magnetic tape
goes into distortion gradually [Ear761 (pp. 216-218) and produces those kinds of
harmonics which help special sound effects on drums, guitars and vocals.

Signal Processing

Tape saturation can be simulated by the already introduced techniques for valve
simulation. An input level derived weighting curve is used for generating a gain
factor which is used to compress the input signal. A variety of measurements of
tape recordings can help in the design of such processing devices. An example of the
input/output behavior is shown in Fig. 5.39 and a short-time FFT of a sinusoid input
signal in Fig. 5.40 illustrates a tape saturation algorithm. For low-level inputs the
transfer characteristic is linear without any distortions. A smooth soft compression
simulates the gradually increasing distortion of magnetic tape.

Figure 5.39 Tape saturation: input and output signal (left) and static characteristic curve.

5.4 Exciters and Enhancers

5.4.1 Exciters

Introduction

An exciter is a signal processor that emphasizes or de-emphasizes certain frequen-
cies in order to change a signal's timbre. An exciter increases brightness without

5.4 Exciters and Enhancers 129

Signal x(n)
1

0.5

T -
U C O
X

-0.5

-1
J

0 100 200 300 400 500
n +

Signal x@)

1-

l000 1100 1200 1300 1400 1500
n +

Waterfall Representation of Short-time FFTs

4’#, ’

Figure 5.40 Tape saturation: short-time FFTs (waterfall representation) for decaying
sinusoid of 1 kHz.

necessarily adding equalization. The result is a brighter, “airier” sound without the
stridency that can sometinles occur by simply boosting the treble. This is often
accomplished with subtle amounts of high-frequency distortion, and sometimes, by
playing around with phase shifting. Usually there will only be one or two parame-
ters, such as exciter mix and exciter frequency. The former determines how much
“excited” sound gets added to the straight sound, and the latter determines the
frequency at which the exciter effect starts [Whi93, And95, Dic87, WG941.

This effect was discovered by the Aphex company and “Aural Exciter” is a
trademark of this company. The medium and treble parts of the original signal are
processed by a nonlinear circuit that generates higher overtones. These components
are then mixed to some extent to the original signal. A compressor at the output
of the nonlinear element makes the effect dependent on the input signal. The ini-
tial part of percussive sounds will be more enriched than the following part, when
the compressor limits the effect depth. The enhanced imaging or spaciousness is
probably the result of the phase rotation within the filter [Alt90].

Signal Processing

Measurement results of the APHEX Aural Exciter are shown in Fig. 5.41 and in
Fig. 5.42 where the genera.tion of a second harmonic is clearly visible. The input

130 5 Nonlinear Processing

signal is a chirp signal with an increasing frequency up to 5 kHz. Signal processing
techniques to achieve the effect have already been discussed in the previous sections.
The effect is created in the side chain path and is mixed with the input signal.

Figure 5.41 Block diagram of the psycho-acoustic equalizer APHEX Aural Exciter and
frequency response.

I ,
Signal x(n)

I , I I

I I
-1 I I I I I I I I I I

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n +

Waterfall Representation of Short-time FFTs

Figure 5.42 Short-time FFTs (waterfall representation) of a psycho-acoustic equalizer.

Musical Applications

The applications of this effect are widespread and range from single instrument
enhancement to enhancement of mix buses and stereo signals. The effect increases

5.4 Exciters and Enhancers 131

the presence and clarity of a single instrument inside a mix and helps to add nat-
ural brightness to stereo signals. Applied to vocals and speech the effect increases
intelligibility. Compared to equalizers the sound level is only increased slightly. The
application of this effect only makes sense if the input signal lacks high frequency
contents.

5.4.2 Enhancers

Introduction

Enhancers are signal processors which combine equalization together with nonlinear
processing. They perform equalization according to the fundamentals of psycho-
acoustics [ZF90] and introduce a small amount of distortion in a just noticeable
manner. An introduction to the ear’s own nonlinear distortions, sharpness, sensory
pleasantness and roughness can be also be found in [ZF90]. A lot of recording
engineers and musicians listen under slightly distorted conditions during recording
and mixing sessions.

Signal Processing

As an example of this class of devices the block diagram and the frequency response
of the SPL vitalizer are shown in Fig. 5.43. This effect processor has also a side
chain path which performs equalization with a strong bass enhancement, a mid-
frequency cut and a high-frequency boost. The short-time FFT of the output signal
when a chirp input signal is applied is shown in Fig. 5.44. The resulting waterfall
representation clearly shows higher harmonics generated by this effect processor.

T

Process X +
Harmonics (Mix)

enter Freq.)

Figure 5.43 Block diagram of the psycho-acoustic equalizer SPL Vitalizer and frequency
response.

Further refinements of enhancers can be achieved through multiband enhancers
which split the input signal into several frequency bands. Inside each frequency band
nonlinear processing plus filtering is performed. The output signals of each frequency
band are weighted and summed up to form the output signal (see Fig. 5.45).

Musical Applications

The main applications of such effects are single track processing as a substitute for
the equalizers inside the input channels of mixing consoles and processing of final

132 5 Nonlinear Processing

Signal x(n)

0.5

-1 ’ 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n +

Waterfall Representation of Short-time FFTs

Figure 5.44 Short-time FFTs (waterfall representation) of psycho-acoustic equalizer SPL
Vitalizer.

W.

Figure 5.45 Multiband enhancer with nonlinear processing in frequency bands.

mixes. The side chain processing allows the subtle mix of the effects signal together
with the input signal. Further applications are stereo enhancement for broadcast
stations and sound reinforcement.

5.5 Conclusion

The most challenging tools for musicians and sound engineers are nonlinear pro-
cessors such as dynamics processors, valve simulators and exciters. The successful
application of these audio processors depends on the appropriate control of these
devices. A variety of interactive control parameters influences the resulting sound

Sound and Music 133

quality.
The primary purpose of this chapter is to enable the reader to attain a fun-

damental understanding of different types of nonlinear processors and the special
properties of nonlinear operations applied to the audio signal. Dynamics processors
need a careful consideration of the interaction of thresholds and time-constants to
achieve sonic purity and avoid aliasing distortion. On the other hand nonlinear pro-
cessors are used for the simulation of valve amplifiers or nonlinear audio systems,
where a special kind of nonlinearity provides a sound distortion with accepted sound
characteristic. We have presented the basics of nonlinear modeling and focused on
the combination of filters and nonlinearities. Several applications demonstrate the
importance of nonlinear processors. The basic building blocks of the previous chap-
ters such as filters, delays and modulators/demodulators are particularly useful for
exploring new improved nonlinear processors.

Sound and Music

[m-Bec89] Jeff Beck: Guitar Shop. 1989.

[m-Bla70] Deep Purple: Deep Purple in Rock. 1970.

[m-Cla67] Cream: Disraeli Gear. 1967.

[m-Hen67a] Jimi Hendrix: Are You Experienced? 1967

[m-Hen67b] Jimi Hendrix: Bold As Love. 1967.

[m-Hen68] Jimi Hendrix: Electric Ladyland. 1968.

[m-Pag69] Led Zeppelin: I/II/II/IV. 1969-1971.

[m-San99] Santana: Supernatural. 1999.

Bibliography

[AM01 S.R. Alten. Audio in Media. Wadsworth, 1990.

[And951 C. Anderton. Multieffects for Musicians. Amsco Publications, 1995.

[Arf79] D. Arfib. Digital synthesis of complex spectra by means of multiplica-
tion of nonlinear distorted sine waves. J. Audio Eng. Soc., 27:757-768,
October 1979.

[Bar981 E. Barbour. The cool sound of tubes. IEEE Spectrum, pp. 24-32, August
1998.

[Ben971 R. Bendiksen. Digitale Lydeffekter. Master’s thesis, Norwegian Univer-
sity of Science and Technology, 1997.

134

[Bru79]

[De 841

[Did71

[Doy931

[Ear 761

[Fli93]

[Fra97]

5 Nonlinear Processing

M. Le Brun. Digital waveshaping synthesis. J. Audio Eng. Soc., 27:250-
265, April 1979.

G. De Poli. Sound synthesis by fractional waveshaping. J . Audio Eng.
Soc., 32(11):849-861, November 1984.

M. Dickreiter. Handbuch der Tonstudiotechnik, Band I und II. K.G.
Saur, 1987.

M. Doyle. The History of Marshall. Hal Leonhard Publishing Corpora-
tion, 1993.

J . Eargle. Sound Recording. Van Nostrand, 1976.

R. Fliegler. AMPS! The Other Half of Rock’n’Roll. Hal Leonhard Pub-
lishing Corporation, 1993.

W. Frank. Aufwandsarme Modellierung und Kompensation nichtlinearer
Systeme auf Basis von Volterra-Reihen. PhD thesis, University of the
Federal Armed Forces Munich, Germany, 1997.

[FUB+98] A. Farino, E. Ugolotti, A. Bellini, G. Cibelli, and C. Morandi. Inverse
numerical filters for linearisation of loudspeaker responses. In Proc.
DAFX-98 Digital Audio Effects Workshop, pp. 12-16, Barcelona, Novem-
ber 1998.

[Ham731 R.O. Hamm. Tubes versus transistors - is there an audible difference?
J. Audio Eng. Soc., 21(4):267-273, May 1973.

[Kai87] A.J.M. Kaizer. Modelling of the nonlinear response of an electrody-
namic loudspeaker by a volterra series expansion. J . Audio Eng. Soc.,
35(6):421-433, 1987.

[Kli98] W. Klippel. Direct feedback linearization of nonlinear loudspeaker sys-
tems. J . Audio Eng. Soc., 46(6):499-507, 1998.

[McN84] G.W. McNally. Dynamic range control of digital audio signals. J. Audio
Eng. Soc., 32(5):316-327, May 1984.

[NieOO] S. Nielsen. Personal communication. TC Electronic A/S, 2000.

[Orf96] S.J. Orfanidis. Introduction to Signal Processing. Prentice-Hall, 1996.

[PD93] D. Peterson and D. Denney. The VOX Story. The Bold Strummer Ltd.,
1993.

[Rat951 L. Ratheiser. Das groj3e Rohrenhandbuch. Reprint. Franzis-Verlag, 1995.

[RCA59] RCA. Receiving Tube Manual. Technical Series RC-19. Radio Corpora-
tion of America, 1959.

Bibliography 135

[RH961

[RZ95]

[SchsO]

[SZ99]

[vdL97]

[WG94]

[Whig31

[ZF90]

[Z0197]

M.J. Reed and M.O. Hawksford. Practical modeling of nonlinear au-
dio systems using the volterra series. In Proc. 100th AES Convention,
Preprint 4264, 1996.

B. Redmer and U. Zolzer. Parameters for a Dynamic Range Controller.
Technical report, Hamburg University of Technology, 1995.

M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems.
Robert Krieger Publishing, 1980.

J. Schattschneider and U. Zolzer. Discrete-time models for nonlinear
audio systems. In Proc. DAFX-99 Digital Audio Effects Workshop, pp.
45-48, Trondheim, December 1999.

R. von der Linde. Rohrenuerstarker. Elektor-Verlag, 1997.

M. Warstat and T. Gorne. Studiotechnik - Hintergrund und Praxiswis-
sen. Elektor-Verlag, 1994.

P. White. L’enregistrement crdatif, Effets et processeurs, Tomes 1 et 2.
Les cahiers de I’ACME, 1993.

E. Zwicker and H. Fastl. Psychoacoustics. Springer-Verlag, 1990.

U. Zolzer. Digital Audio Signal Processing. John Wiley & Sons, Ltd,
1997.

Chapter 6

Spatial Effects

D. Rocchesso

6.1 Introduction

The human peripheral hearing system modifies the sound material that is trans-
mitted to the higher levels in the brain, and these modifications are dependent
on the incoming direction of the acoustic waves. From the modified sound signals
several features are collected in a set of spatial cues, used by the brain to infer
the most likely position of the sound source. Understanding the cues used by the
hearing system helps the audio engineer to introduce some artificial features in the
sound material in order to project the sound events in space. In the first half of this
chapter, the most important techniques for sound projection are described] both for
individual listeners using hea.dphones and for an audience listening through a set of
loudspeakers.

In natural listening conditions, sounds propagate from a source to a listener and
during this trip they are widely modified by the environment. Therefore] there are
some spatial effects imposed by the physical and geometric characteristics of the
environment to the sound signals arriving at the listener’s ears. Generally speaking]
we refer to the kind of processing operated by the environment as reverberation. The
second half of this chapter illustrates these kinds of effects and describes audio pro-
cessing techniques that have been devised to imitate and extend the reverberation
that occurs in nature.

The last section of the chapter describes a third category of spatial effects that is
inspired by the natural spatial processing of sounds. In this miscellaneous category
we list all the filtering effects that are designed to change the apparent source width,
the spaciousness of a sound field, and the directivity of a loudspeaker set. Moreover]
the geometric and physical characteristics of reverberating enclosures are used as
design features for generalized resonators to be used as part of sound synthesis
algorithms.

137

138 6 Spatial Effects

The importance of space has been largely emphasized in electro-acoustic compo-
sitions, but sophisticated spatial orchestrations often result in poor musical messages
to the listener. Indeed, space cannot be treated as a composition parameter in the
same way as pitch or timbre are orchestrated, just because space for sounds is not an
“indispensable attribute” [KVOl] as it is for images. This relative weakness is well
explained if we think of two loudspeakers playing the same identical sound track:
the listener will perceive one apparent source. The phenomenon is analogous to two
colored spotlights that fuse to give one new, apparent, colored spot. In fact, color
is considered a non-indispensable attribute for visual perception. However, just as
color is a very important component in visual arts, the correct use of space can play
a fundamental role in music composition, especially in improving the effectiveness
of other musical parameters of sound, such as pitch, timbre, and intensity.

6.2 Basic Effects

6.2.1 Panorama

Introduction

Using a multichannel sound reproduction system we can change the apparent posi-
tion of a virtual sound source just by feeding the channels with the same signal and
adjusting the relative amplitude of the channels. This task is usually accomplished,
as part of the mixdown process, by the sound engineer for each sound source, thus
composing a panorama of acoustic events in the space spanned by the loudspeakers.

Acoustic and Perceptual Foundations

For reproduction via multiple loudspeakers, it is important to take some specific
aspects of localization into account. In fact, different and sometimes contradictory
cues come into play when multiple sources radiate coherent or partially coherent
signals [Bla83]. Particularly important is the case of a listener hearing signals ar-
riving from the sources only at slightly different levels and times. In this case the
sources will cooperate to provide a single sound event located at a place different
from the source locations. For larger differences in the incoming signal the virtual
sound images tend to collapse onto one of the real sources. The precedence effect
(see section 6.2.2) is largely responsible for this phenomenon.

Figure 6.2 shows the kind of curves that it is possible to draw from experi-
ments with a standard stereo layout (i.e. central listener and angle of 60’ with the
loudspeakers, as in Fig. 6.1) and with broadband impulses as test signals [Bla83].
Figure 6.2.a shows the perceived displacement for a given level difference. Figure
6.2.b shows the perceived displacement for a given time difference. The curve for
level difference is well approximated by the Blumlein law [Bla83]

622 Basic Egects 139

Figure 6.1 Stereo panning. B is the angle of the apparent source position.

or by the tangent law

where g L and g L are the gains to be applied to the left and right stereo channels,
0 is the angle of the virtual source position, and 81 is the angle formed by each
loudspeaker with the frontal direction. In [Pu197] it is shown that the tangent law
results from a vector formulation of amplitude panning (see section 6.4.3). This
formulation, as well as the curves of Fig. 6.2 are mainly valid for broadband signals
or at low frequencies (below 500-600 Hz). For narrowband signals at higher frequen-
cies the curves are quite dif€erent and the curve for time differences can even be
nonmonotonic [Bla83].

T

b

30

g 20
S 10
c

/
l

/

level difference in dB +

(a>

time difference in msec +

(b)

Figure 6.2 Perceived azimuth of a virtual sound source when a standard stereo layout is
driven with signals that only differ in level (a) or in time delay (b).

140 6 Spatial Egects

Signal Processing

In a standard stereo loudspeaker set-up it is assumed that the listener stands in
central position and forms an angle 201 with the two loudspeakers (see Fig. 6.1).
Two gains gL and gR should be applied to the left and right channel, respectively,
in order to set the apparent azimuth at the desired value 8. A unit-magnitude two-
channel signal, corresponding to the central apparent source position (0 = 0), can
be represented by the column vector

Jz
U = [+] ’

so that the gains to be applied to the two channels in order to steer the sound source
to the desired azimuth are obtained by the matrix-vector multiplication:

[i:] = Aeu.

The matrix A0 is a rotation matrix. If 01 = 45” the rotation matrix takes the form

Ae= [cos0 sin0
- sin0 cos0 1 ’

so that when 0 = only one of the two channels is non zero. It is easily verified
that the rotation by matrix (6.5) corresponds to applying the tangent law (6.2)
to the configuration with 91 = 45”. Amplitude panning by means of a rotation
matrix preserves the loudness of the virtual sound source while moving its apparent
azimuth. In contrast, linear cross-fading between the two channels does not preserve
the loudness and determines a “hole in the middle” of the stereo front.

The matrix-based panning of equation (6.4) is suited to direct implementation
in Matlab. The M-file 6.1 implements the amplitude panning between an initial and
a final angle.

M-file 6.1 (matpan.m)
initial-angle = -40; %in degrees
final-angle = 40; %in degrees
segments = 32;
angle-increment = (initial-angle - final-angle)/segments * pi / 180;

lenseg = floor(length(monosoud)/segments) - 1;
pointer = l;
angle = initial-angle * pi / 180; %in radians

% in radians

for i=l:segments
A =[cos(angle) , sin(ang1e) ; -sin(angle), cos(ang1e)l;
x = [monosound(pointer:pointer+lenseg);

monosound(pointer:pointer+lenseg)];

6.2 Basic Effects 141

y = Cy, A * XI;
angle = angle + angle-increment; pointer = po in te r + lenseg;

end ;

The monophonic input sound (stored in array monosound) is segmented in a num-
ber segments of blocks and each block is rotated by means of a matrix-by-vector
multiplication.

In practice, the steering angle 8 does not necessarily correspond to the perceived
localization azimuth. The perceived location is influenced by the frequency content
of sound. Some theories of “directional psychoacoustics” have been developed in
the past in order to drive the rotation matrices with the appropriate coefficients
[Ger92a]. Accurate implementations use frequency-dependent rotation matrices, at
least discriminating between low (less than about 500 Hz) and high (between 500
Hz and 3500 Hz) frequency components [PBJ98]. We will discuss directional psycho-
acoustics in further detail in section 6.4.4, in the context of Ambisonics surround
sound.

Music Applications and Control

Stereo panning has been applied to recordings of almost every music genre. In
some cases, the panoramic knob of domestic hi-fi systems has been exploited as
an artistic resource. Namely, the composition HPSCHD by John Cage and Lejaren
Hiller appears in the record [m-Cag69] accompanied by a sheet (unique for each
record copy) containing a computer-generated score for the listener. In the score,
panoramic settings are listed at intervals of 5 seconds together with values for the
treble and bass knobs.

6.2.2 Precedence Effect

Introduction

In a stereo loudspeaker set-up, if we step to one side of the central position and
listen to a monophonic music program, we locate the apparent sound source in the
same position as our closest loudspeaker, and the apparent position does not move
even if the other channel is significantly louder. The fact that the apparent source
collapses into one of the loudspeakers is due to the precedence effect, a well-known
perceptual phenomenon that can be exploited in certain musical situations.

Acoustic and Perceptual Foundations

Our hearing system is very sensitive to the direction of the first incoming wavefront,
so that conflicting cues coming after the first acoustic impact with the source signal
are likely to be ignored. It seems that spatial processing is inhibited for a few tens
of milliseconds after the occurrence of a well-localized acoustic event [Gri97]. This
is the precedence effect [Bla83]. Clearly, the first wavefront is related to a transient

142 6 Spatial Eflects

in sound production, and transients are wideband signals exciting a wide frequency
range where the directional properties of the outer ear (see section 6.3.4) can be
used to give a hint of incoming direction.

Signal Processing

In a standard stereo loudspeaker set-up, with the listener in central position as in
Fig. 6.1, a monophonic source material that feeds both loudspeakers with the same
loudness can be moved towards one of the loudspeakers just by inserting some delay
in the other channel. Figure 6.2.b shows the qualitative dependency of the apparent
azimuth on the relative delay between channels. The actual curve strongly depends
on the kind of sounds that are played [Bla83].

A simple circuit allowing a joint control of panorama and precedence effect is
shown in Fig. 6.3. The variable-length delay lines should allow delays up to lms.

Figure 6.3 Control of panorama and precedence effect.

Music Applications and Control

In a live electro-acoustic music performance, it is often desirable to keep all the
apparent sound sources in the front, so that they merge nicely, both acoustically
and visually, with the sounds coming from acoustic instruments on stage. However,
if only the front loudspeakers are playing it might be difficult to provide all the
audience with a well-balanced sound, even at the seats in the rear. A good solution,
called transparent amplification by Alvise Vidolin [RV96], is to feed the rear loud-
speaker with a delayed copy of the front signals. The precedence effect will ensure
that the apparent location is on stage as long as the delay of the rear signals is a t
least as long as the time taken by sounds to go from the stage to the rear loud-
speakers. Given the length of the room L and the speed of sound c M 340m/s, the
delay in seconds should be about

L T o = - . (6.6)
c

6.2 Basic Effects 143

6.2.3 Distance and Space Rendering

Introduction

In digital audio effects, the control of apparent distance can be effectively introduced
even in monophonic audio systems. In fact, the impression of distance of a sound
source is largely controllable by insertion of artificial wall reflections or reverberant
room responses.

Acoustic and Perceptual Foundations

There are no reliable cues for distance in anechoic or open space. Familiarity with
the sound source can provide distance cues related with air absorption of high fre-
quency. For instance, familiarity with a musical instrument tells us what the average
intensity of its sounds are when coming from a certain distance. The fact that tim-
bra1 qualities of the instrument will change when playing loudly or softly is also a cue
that helps with the identification of distance. These cues seem to vanish when using
unfamiliar sources or synthetic stimuli that do not resemble any physical sounding
object. Conversely, in an enclosure the ratio of reverberant to direct acoustic energy
has proven to be a robust distance cue [Bla83]. It is often assumed that in a small
space the amplitude of the reverberant signal changes little with distance, and that
in a large space it is roughly proportional to l / d E [Cho71]. The direct sound
attenuates as l/Distance if spherical waves are propagated.

Special, frequency-dependent cues are used when the source is very close to the
head. These cues are briefly described in section 6.3.2.

Signal Processing

A single reflection from a wall can be enough to provide some distance cues in
many cases. The physical situation is illustrated in Fig. 6.4a, together with a signal
processing circuit that reproduces it. A single delay line with two taps is enough
to reproduce this basic effect. Moreover, if the virtual sound source is close enough
to the listening point, the first tap can be taken directly from the source, thus

1/(1 + 2w - d)

(b)

Figure 6.4 Distance rendering via single wall reflection: (a) physical situation, (b) signal
processing scheme.

144 6 Spatial Effects

reducing the signal processing circuitry to a simple non-recursive comb filter. To
be physically consistent, the direct sound and its reflection should be attenuated as
much as the distance they travel, and the wall reflection should also introduce some
additional attenuation and filtering in the reflected sound, represented by the filter
H , in Fig. 6.4b. The distance attenuation coefficients of Fig. 6.4b have been set in
such a way that they become one when the distance goes to zero, just to avoid the
divergence to infinity that would come from the physical laws of a point source.

From this simple situation it is easy to see how the direct sound attenuates faster
than the reflected sound as long as the source approaches the wall.' This idea can
be generalized to closed environments adding a full reverberant tail to the direct
sound. An artificial yet realistic reverberant tail can be obtained just by taking an
exponentially decayed gaussian noise and convolving it with the direct sound. The
reverberant tail should be added to the direct sound after some delay (proportional
to the size of the room) and should be attenuated with distance in a lesser extent
than the direct sound. Figure 6.5 shows the signal processing scheme for distance
rendering via room reverberation.

Gaussian Noise

& f y n e n t i a l Decay

Y

1/(1 + d) H,

1/(1 + sqrt(d))

(a) (b)

Figure 6.5 Distance rendering via room reverberation: (a) physical situation, (b) signal
processing scheme.

The following M-file 6.2 allows experimentation with the situations depicted in
Fig. 6.4 and 6.5, with different listener positions, provided that x is initialized with
the input sound, and y, z , and W are long-enough vectors initialized to zero.

M-file 6.2 (distspace.m)
h = filter([0.5,0.5],1, . . .

random('norm',O,i,l,lenh).*exp(-[i:lenh]*O.Ol/distwall~/lOO~;
% reverb impulse response

offset = 100;
st = Fs/2;

for i = 1:i:distwall-l % several distances listener-source
dell = floor (i/c*Fs) ;

'Indeed, in this single reflection situation, the intensity of the reflected sound increases as the
source approaches the wall.

6.2 Basic Effects 145

de12 = floor((distwall*2 - i)/c*Fs);
y(i*st+l:i*st+dell) = zeros(1,dell);
y(i*st+dell+l:i*st+dell+length(x)) = x./(l+i); % direct signal
w(i*st+del2+1:i*st+del2+length(x)) = . . .

y(i*st+del2+1:i*st+del2+length(x)) + . . .
x./(l+(2*distwall-i)); % direct signal + echo

z(i*st+del2+1:i*st+del2+length(x)+lenh-l+offset) = . . .
y(i*st+del2+1:i*st+del2+length(x)+lenh-l+offset) + . . .
[zeros(l,offset) ,conv(x,h)l ./sqrt(l+i);

% direct signal + delayed reverb
end

Music Applications and Control

An outstanding example of musical control of distance is found in the piece “Ture-
nas” by John Chowning [m-Cho72], where the reverberant sound amplitude is de-
creased with the reciprocal of the square root of distance, much slower than the
decrease of direct sound. In the composition, distance cues are orchestrated with
direction (as in section 6.2.1) and movement (as in section 6.2.4) cues.

Panorama, precedence effect, and distance rendering taken as a whole contribute
to the definition of a sonic perspective [Cho99]. The control of such sonic perspec-
tive helps the task of segregation of individual sound sources and the integration of
music and architecture. A noteworthy example of fusion between architecture and
music is found in the piece “Prometeo”, by Luigi Nono [m-Non82]. In the original
performance the players were located in different positions of an acoustic shell de-
signed by architect Renzo Piano, and sounds from live-electronic processing were
subject to spatial dislocation in a congruent sonic architecture.

Another important piece that makes extensive use of space rendering is “R6pons”,
by Pierre Boulez [m-Bou84], which is performed with an unusual arrangement of
soloists, choir, and audience. The first spatial element exploited in the composition
is the physical distance between each soloist and the choir. Moreover, the sounds of
the soloists are analyzed, transformed, and spatialized by means of a computer and
a set of six loudspeakers. For the CD, sounds have been processed using the software
“Spatialisateur” [Jot991 in order to place the orchestra in front of the listener and to
enlarge the audio image of the soloists. The Spatialisateur, implemented at IRCAM
in Paris, makes use of panorama and distance rendering via room reverberation,
using sophisticated techniques such as those described in section 6.5.

6.2.4 Doppler Effect

Introduction

Movements of the sound sources are detected as changes in direction and distance
cues. Doppler effect is a further (strong) cue that intervenes whenever there is a
radial component of motion between the sound source and the listener. In a closed

146 6 Spatial Effects

environment, radial components of motion are likely to show up via reflections from
the walls. Namely, even if a sound source is moving at constant distance from the
listener, the paths taken by the sound waves via wall reflections are likely to change
in length. If the source motion is sufficiently fast, in all of these cases we have
transpositions in frequency of the source sound.

Acoustic and Perceptual Foundations

The principle of the Doppler effect is illustrated in Fig. 6.6, where the listener is
moving toward the sound source with speed c, . If the listener meets f s wave crests
per second at rest, he ends up meeting crests at the higher rate

f d f s (1 f 2)
when the source is moving. Here c is the speed of sound in air. We usually appre-
ciate the pitch shift due to Doppler effect in non-musical situations, such as when
an ambulance or a train is passing by. The perceived cue is so strong that it can
evocate the relative motion between source and listener even when other cues in-
dicate a relative constant distance between the two. In fact, ambulance or insect
sounds having a strong Doppler effect are often used to demonstrate how good a
spatialization system is, thus deceiving the listener who does not think that much of
the spatial effect is already present in the monophonic recording. Recent research in
psychoacoustics has also shown how the perception of pitch can be strongly affected
by dynamic changes in intensity, as are found in situations where the Doppler effect
occurs [Neu98]. Namely, a sound source approaching the listener at constant speed
determines a rapid increase in intensity when it traverses the neighborhood of the
listener. On the other hand, while the frequency shift is constant and positive before
passing the listener, and constant and negative after it has passed, most listeners
perceive an increase in pitch shift as the source is approaching. Such apparent pitch
increase is due to the simultaneous increase in loudness.

Figure 6.6 oppler effect. Illustration of the D

6.2 Basic Eflects 147

Signal Processing

The Doppler effect can be faithfully reproduced by a pitch shifter (see Chapter 7)
controlled by the relative velocity between source and listener. In particular, the
circuit of Fig. 7.16 can be used with sawtooth control signals whose slope increases
with the relative speed. Figure 6.7 shows the signal to be used to control one of
the delays of Fig. 7.16 for a sound source that approaches the listening point and
passes it. Before the source reaches the listener, the sound is raised in pitch, and it
is lowered right after.

Figure 6.7 Control signal for simulating the Doppler effect with a delay-based pitch
shifter.

Any sound processing model based on the simulation of wave propagation, such
as the model described in section 6.4.6, implements an implicit simulation of the
Doppler effect. In fact, these models are based on delay lines that change their length
according to the relative position of source and listener, thus providing positive or
negative pitch transpositions.

In general, the accuracy and naturalness of a Doppler shift reproduced by digital
means depend on the accuracy of interpolation in variable-length delays. If this
is not good enough, modulation products affect the transposed signal producing
remarkable artifacts. The enhanced techniques described in sections 3.2.4 and 7.4
can be applied for various degrees of fidelity.

Music Application and Control

The motion of source or listener in musical contexts has to be performed with
care, since uncontrolled frequency shifts completely destroy any harmonic relations
between the notes of a melody. However, there are notable examples of electro-
acoustic music works incorporating Doppler effects [m-Cho72, m-Pis951. In most
cases, the sounds that are subjected to Doppler shifting are various kinds of noises
or percussive patterns, so that they do not impose any special harmonic gliding
character on the piece.

6.2.5 Sound Trajectories

The first attempt to design spatial movements as an independent dimension of music
composition is probably Stockhausen’s “Gesang der Junglinge” [m-Sto56], where
directions and movements among five groups of loudspeakers, arranged in a circle
around the audience, were precisely programmed by the author. This piece is also
probably the origin of the “spatial utopia” of a large part of contemporary music,

148 6 Spatial Effects

since Stockhausen gave abundant and clear explanations of his aesthetics, where
velocities and spatial displacements are considered to be as important as pitches and
note durations. This suggestive idea seems to ignore some perceptual evidence and
the difficulties related to conveying consistent spatial information to an audience.
Nevertheless, sound trajectories in [m-Sto56] are certainly essential to the dramatic
development of the piece.

Since the work of Chowning [Cho71, m-Cho721, many computer systems have
been built in order to help the musician to compose with space. Most of these sys-
tems are based on a software interface that allows the musician to display orland
define trajectories of virtual sound sources in the listening space, where actual loud-
speakers are positioned. In fact, the manipulation of sound trajectories belongs to a
control layer built on top of the signal processing level that implements panoramic
or distance effects. Parameters such as angular position, distance from loudspeak-
ers, etc., are taken directly from the curves a t a rate that is high enough to ensure
smooth movements without noticeable artifacts. In this respect, if only panoramic
and distance effects are affected by trajectories, the control rate can be very low
(e.g., 20 Hz) thus allowing separation of the control layer from the signal processing
layer via a low-bandwidth communication channel. Vice versa, if the Doppler ef-
fect is somehow taken into account, the control rate must be much higher, because
the ear is sensitive to minuscule variations of sound pitch. Alternatively, control
signals can still be transmitted at low rate if at the signal processing end there
is an interpolation mechanism that reconstructs the intermediate values of control
parameters.

Sometimes spatial trajectories are taken as a metaphor for guiding transforma-
tions of sonic materials. For instance, Truax [m-Tru85] uses multiple epicycles to
control transformations of continuous sounds and to project them into space. In this
example, the consistency between spatial display and sound transformation helps
the listener to discriminate and follow several music lines without the aid of pitch
or rhythmic patterns.

Software systems for the definition and display of sound trajectories are com-
monly used in live electronics. For instance, Belladonna and Vidolin developed an in-
terface for two-dimensional panoramic control for the visual language MAX [BV95].
Trajectories can be memorized, recalled, and translated at runtime into MIDI mes-
sages sent to a MIDI-controlled audio mixer. External reverberating devices can
also be controlled and synchronized with panoramic messages in order to recreate
an impression of depth and distance. This system has been used in several music
productions and in various listening spaces. Figure 6.8 illustrates two erratic move-
ments of virtual sound sources (the actual sources are the two percussion sets) in
the big San Marco church in Milan, as it was programmed for a composition by
Guarnieri [m-Gua99]. This piece and listening space are noteworthy for the use of
intensity-controlled sound panning over a wide area, i.e., some sources move from
front to back as they get louder. In general, sound trajectories are rarely meaningful
per se, but they can become a crucial dramatic component if their variations are
controlled dynamically as a function of other musical parameters such as intensity,
or rhythm.

6.3 3D with Headphones 149

70 m .

Figure 6.8 Spatial layout and sonic trajectories for the performance of a composition by
G. Guarnieri.

A complex system to control sound trajectories in real-time was implemented
on the IRIS-MARS workstation [RBM95]. It implemented the room-within-the-
room model described in section 6.4.6 by reserving one of the two processors for
spatialization, and the other for reverberation. The coordinates of source motion
and other parameters of spat,ialization could be precomputed or controlled in real-
time via MIDI devices. This kind of spatial processing has been used in the piece
“Games” by F. Cifariello Ciardi [m-Cif95].

A sophisticated system providing real-time multichannel spatial audio process-
ing on a computer workstation is the “Spatialisateur” developed at IRCAM in
Paris [Jot92, Jot991. In this system, an intermediate level is interposed between the
signal processing level and the control level. Namely, the physical parameters of
virtual rooms are accessed through a set of perceptual attributes such as warmth,
brilliance, etc., in such a way that compositional control of space becomes easier.
As the interface is provided in the visual language MAX, it is easy to associate sets
of parameters to trajectories that are drawn in a 2-D space.

6.3 3D with Headphones

6.3.1 Localization

Introduction

Humans can localize sound sources in a 3D space with good accuracy using several
cues. If we can rely on the assumption that the listener receives the sound material
via a stereo headphone, we can reproduce most of the cues that are due to the filter-

150 6 Spatial Effects

ing effect of the pinna-head-torso system, and inject the signal artificially affected
by this filtering process directly to the ears.

Acoustic and Perceptual Foundations

Classic psychoacoustic experiments have shown that, when excited with simple sine
waves, the hearing system uses two strong cues to estimate the apparent direction
of a sound source. Namely, interaural intensity and time differences (IID and ITD)
are jointly used to that purpose. IID is mainly useful above 1500 Hz, where the
acoustic shadow produced by the head becomes effective, thus reducing the intensity
of the waves reaching the contralateral ear. For this high-frequency range and for
stationary waves, the ITD is also far less reliable, since it produces phase differences
in sine waves which often exceed 360". Below 1500 Hz the IID becomes smaller due to
head diffraction which overcomes the shadowing effect. In this low-frequency range
it is possible to rely on phase differences produced by the ITD. IID and ITD can
only partially explain the ability to discriminate among different spatial directions.
In fact, if the sound source moved laterally along a circle (see Fig. (6.9)) the IID and
ITD would not change. The cone formed by the circle with the center of the head has
been called cone of confusion. Front-back and vertical discrimination within a cone
of confusion are better understood in terms of broadband signals and Head-Related
Transfer Functions (HRTF). The system pinna-head-torso acts like a linear filter for
a plane wave coming from a given direction. The magnitude and phase responses
of this filter are very complex and direction dependent, so that it is possible for the
listener to disambiguate between directions having the same, stationary, ITD and
IID. In some cases, it is advantageous to think about these filtering effects in the
time domain, thus considering the Head-Related Impulse Responses (HRIR).

Figure 6.9 Interaural polar coordinate system and cone of confusion.

In section 6.3.4, we describe a structural model for HRTFs [BD981 where it is
possible to outline a few relevant direction-dependent cues obtained from simplifi-
cation of HRTFs. Even if the cues are simplified, when they are varied dynamically
they can give a strong impression of localization. In real life, the listener is never

6.3 3D with Headphones 151

static when listening to a sound source. Even small movements of the head greatly
help in discriminating possible confusions, such as the uncertainty between a cen-
tral source in front of the listener or the same source exactly behind the listener.
Therefore, a small set of cues such as ITD, IID, and the major notches of HRTFs
can be sufficient to give a strong impression of direction, as long as the cues are
related to movements of the listener's head.

6.3.2 Interaural Differences

Sound spatialization for headphones can be based on interaural intensity and time
differences. The amplitude and time delay of each channel should just be governed
by curves similar to those of Fig. 6.2. It is possible to use only one of the two cues,
but using both cues will provide a stronger spatial impression. Of course, interaural
time and intensity differences are just capable of moving the apparent azimuth
of a sound source, without any sense of elevation. Moreover, the apparent source
position is likely to be located inside the head of the listener, without any sense
of externalization. Special measures have to be taken in order to push the virtual
sound sources out of the head.

A finer localization can be achieved by introducing frequency-dependent interau-
ral differences. In fact, due to diffraction the low frequency components are barely
affected by IID, and the ITD is larger in the low frequency range. Calculations
done with a spherical head model and a binaural model [Kuh77, PKH991 allow the
drawing of approximated frequency-dependent ITD curves, one being displayed in
Fig. 6.10a for 30" of azimuth. The curve can be further approximated by constant
segments, one corresponding to a delay of about 0.38 ms at low frequencies, and
the other corresponding to a delay of about 0.26 ms a t high frequencies. The low-
frequency limit can in general be obtained for a general incident angle B by the
formula

1.56
ITD = - sin0 .

C

where 6 is the inter-ear distance in meters and c is the speed of sound. The crossover
point between high and low frequencies is located around 1 kHz. Similarly, the
IID should be made frequency dependent. Namely, the difference is larger for high-
frequency components, so that we have IID curves such as that reported in Fig. 6.10b
for 30" of azimuth. The IID and ITD are shown to change when the source is very
close to the head [DM98]. In particular, sources closer than five times the head
radius increase the intensity difference in low frequency. The ITD also increases
for very close sources but its changes do not provide significant information about
source range.

6.3.3 Externalization

Listening to binaural sound material through loudspeakers often causes internaliza-
tion of the sound sources in the head of the listener. It seems that human subjects

152 6 Spatial Effects

Intensity Difference

t

1 kHz frequency 1 kHz frequency

Figure 6.10 frequency-dependent interaural time (a) and intensity (b) difference for
azimuth 30".

tend to internalize the perceived objects when the total stimulation, as coming
from all sensorial modes, cannot be produced by natural situations involving dis-
tant sources [Dur92]. One technique that is recognized to be effective in externalizing
the sound sources when headphones are used, is decorrelation [Ken95b], and it is
justified by the fact that, in natural situations, the signals reaching the ears are sig-
nificantly decorrelated, especially because of room reverberation. The correlation of
the left and right channels is represented by the function

The argument r is the time lag between the two channels and U is a normalizing
factor defined as

(6.10)

If one channel is just a shifted copy of the other, the correlation function will have a
strong peak for a value of the argument equal to the time shift. Usually the degree
of correlation is measured by a single number taken as the absolute value of the
maximum of the correlation function. The normalization factor is chosen in order
to produce a degree of correlation equal to 1 for pure shift and -1 for signals that
are 180" out of phase. Two signals having a degree of correlation equal to 1 in
magnitude are called coherent. The coherence between the left and right channels
is maintained under time and intensity differences, and even under phase inversion.

When a subject, listens to two channels of broadband noise via headphones, the
relative degree of correlation produces a spatial image that ranges from central
inside the head to lateral right out of the ears (see Fig. 6.11). Partially coherent)
signals produce images that are larger and less sharply located [Bla83] than those of
perfectly coherent signals. The degree of correlation is generally reduced in presence
of reverberation. Thus, the techniques that are commonly used for artificial rever-
beration can also be used to decorrelate two channels. Of course, if the only purpose

6.3 3D with Headphones 153

Figure 6.11 Perceived sound image when listening to broadband noise with degree of
correlation equal to 1 (a), and 0 (b).

is to externalize a sound image, we want to avoid other artifacts such as excessive
coloration or reverberant tail. We will see in section 6.6.1 how a good decorrela-
tor can be built. It can be applied both to externalize a sound source in binaural
listening and to adjust the apparent source width in listening via loudspeakers.

The degree of correlation, beside helping to push the apparent sources out of
the head, is also useful in arranging an ensemble of sources in space. In fact, it has
been shown by experiments that the listener assigns a unique spatial image to sound
sources having similar degree of correlation. For instance, a coherent couple of voice
signals added to the broadband noise of Fig. 6.11b, produces a distinct image in
the center of the head. This property of the hearing system can be exploited to
augment the clarity of display of a mixture of sound sources.

A dramatic increase in externalization is achieved if the binaural stimulus is dy-
namically varied to follow the head movements in a consistent, natural way [Dur92].
However, this control of spatialization based on head tracking is too expensive and
too cumbersome in most cases. Therefore, it is usually assumed that the listener
keeps her head fixed while listening, for instance because she is watching a screen
in a standard computer desktop environment [Kyr98]. In this situation, the simul-
taneous presentation of visual stimuli correlated with sounds is also known to help
externalize the auditory events.

Recently, excellent results in localization accuracy and externalization have been
reported in anechoic rendering via headphones under fixed head conditions, even
when the details of the filtering characteristics of the head are smoothed signifi-
cantly [KC98]. It seems that if the playback apparatus preserves the acoustics of a
natural listening condition the sound sources do externalize in most cases. Unfortu-
nately, such a playback apparatus requires the correct coupling with the ear-canal
impedance and this is not what happens with conventional headphones. Therefore,
the control over the degree of correlation, even if its effectiveness and accuracy
are limited, seems to be the only way we have to externalize a sound source for a
generic listener. If we can afford signal processing specialized to the listener’s head
and headphone characteristics, better accuracy can be achieved by modeling the
HRTF. The effects of binaural spectral details on externalization were extensively
investigated in [HW96], where it was shown that sources are externalized well even
with frequency-independent ITD while, on the other hand, the effects of IID are
accumulated over the entire spectrum.

154 6 Spatial Eflects

6.3.4 Head-Related Transfer Functions

Several authors have measured the filtering properties of the system pinna-head-
torso by means of manikins or human subjects. A popular collection of measure-
ments was taken by Gardner and Martin using a KEMAR dummy head, and made
freely available [GM94, Gar98al. Measurements of this kind are usually taken in
an anechoic chamber, where a loudspeaker plays a test signal which approaches
the head from the desired direction. The directions should be taken in such a way
that two neighboring directions never exceed the localization blur, which ranges
from about f3" in azimuth for frontal sources, to about f20" in elevation for
sources above and slightly behind the listener [Bla83]. The test signal is usually
a pseudo-random noise such as a Maximum-Length Sequence (MLS) [RV891 or a
Golay code [ZGM92], which can easily be deconvolved from the measured response.
The result of the measurements is a set of HRIRs that can be directly used as coef-
ficients of a pair of FIR filters. Since the decay time of the HRIR is always less than
a few milliseconds, 256 to 512 taps are sufficient at a sampling rate of 44.1 kHz.

A cookbook of HRIRs and direct convolution seems to be a viable solution to
provide directionality to sound sources using today's technology. A fundamental
limitation comes from the fact that HRIRs vary widely between different subjects,
to such an extent that front-back reversals are fairly common when listening through
someone else's HRIRs. Using individualized HRIRs dramatically improves the qual-
ity of localization. Moreover, since we unconsciously use small head movements to
resolve possible directional ambiguities, head-motion tracking is also desirable.

There are several reasons that make a model of the external hearing system more
desirable than a raw catalog of HRIRs. First of all, a model might be implemented
more efficiently, thus allowing more sources to be spatialized in real time. Second, if
the model is well understood, it might be described with a few parameters having a
direct relationship with physical or geometric quantities. This latter possibility can
save memory and allow easy calibration.

As happens with models for sound synthesis, we can try to model the effects
or the causes of the modifications occurring on sound signals. The first approach
consists in applying data reduction and filter design techniques, especially in the
frequency domain, to the HRTFs. Much research has been devoted to discovering
the amount of approximation that is tolerated by human listeners and how to de-
sign efficient IIR filters that implement the approximated HRTFs [KW92]. A recent
experiment has shown that we are quite insensitive to the fine details of the HRTF
magnitude spectrum, and that the lack of externalization often reported in prior
studies might be due to incorrect coupling between the headphones and the ear
canal [KC98]. Filter design techniques have been applied to the problem of approx-
imating the desired HRTFs by means of low-order yet accurate linear systems. IIR
filters of order as low as ten can be designed so that they keep enough spectral
detail to allow good localization accuracy [MHV97]. Frequency warping has been
proposed as a technique to increase the accuracy of approximations in the low fre-
quency range [HZ991 by stretching the frequency axis according to the distribution
of critical bands [ZF90]. One of the problems of the models based on signal pro-

6.3 3D with Headphones 155

cessing is that they do not increase our understanding of the underlying physical
phenomena. As a consequence, it becomes difficult to control the parameters and
we have to rely on collections of static configurations.

Modeling the structural properties of the system pinna-head-torso gives us the
possibility of applying continuous variation to the positions of sound sources and
to the morphology of the listener. Much of the physical/geometric properties can
be understood by careful analysis of the HRIRs, plotted as surfaces, functions of
the variables time and azimuth, or time and elevation. This is the approach taken
by Brown and Duda [BD981 who came up with a model which can be structurally
divided into three parts:

0 Head Shadow and ITD

0 Shoulder Echo

0 Pinna Reflections

Starting from the approximation of the head as a rigid sphere that diffracts a
plane wave, the shadowing effect can be effectively approximated by a first-order
continuous-time system, i.e., a pole-zero couple in the Laplace complex plane:

(6.11)

sp = -2wo , (6.12)

where WO is related to the effective radius a of the head and the speed of sound c by

c
W O = - . (6.13)

a

The position of the zero varies with the azimuth 0 (see Fig. 6.9) according to the
function

a(0) = 1.05 + 0.95 COS -180" .
(1580") (6.14)

The pole-zero couple can be directly translated into a stable IIR digital filter by
bilinear transformation [Mit98], and the resulting filter (with proper scaling) is

(WO + aF,) + (WO - aYFJ2-l

= (WO + F,) + (WO - F,)z-l . (6.15)

The ITD can be obtained by means of a first-order allpass filter [OS89, SF851 whose
group delay in seconds is the following function of the azimuth angle 0:

(6.16)

Actually, the group delay provided by the allpass filter varies with frequency, but
for these purposes such variability can be neglected. Instead, the filter (6.15) gives

156 6 Spatial Effects

an excess delay a t DC that is about 50 percent that given by (6.16). This increase
in the group delay at DC is exactly what one observes for the real head [Kuh77],
and it has already been outlined in Fig. 6.10. The overall magnitude and group
delay responses of the block responsible for head shadowing and ITD are reported
in Fig. 6.12. The M-file 6.3 implements the head-shadowing filter.

201 ' I

frequency in kHz -+

-20 ' l
1 o-2 1 oo

frequency in kHz -+

Figure 6.12 Magnitude and group delay responses of the block responsible for head
shadowing and ITD (fs = 44100 Hz). Azimuth ranging from 0 (dashed line) to 7r at steps
of ~ j 6 .

M-file 6.3 (hsf ilter .m)
func t ion [ou tput] = h s f i l t e r (t h e t a , F s , i n p u t)
% h s f i l t e r (t h e t a , F s , i n p u t)

% f i l t e r s t h e i n p u t s i g n a l a c c o r d i n g t o h e a d s h a d o w i n g
% t h e t a i s t h e a n g l e w i t h t h e f r o n t a l p l a n e
% Fs i s the sample rate

%

t h e t a = t h e t a + 90;
t h e t a 0 = 150 ;alfa-min = 0.05 ;
c = 334; % speed of sound
a = 0.08; % radius of head
WO = c /a ;
a l f a = l+ alfa_min/2 + (1- alfa_min/2) * cos (the t a / t he t aO* p i) ;

B = [(a l f a+wO/Fs) / (l+wO/Fs) , (-a l f a+wO/Fs) / (l+wO/Fs) 1 ;
% numerator of Transfer Function

1 denominator of Transfer Function

gdelay = - Fs/wO*(cos(theta*pi/180) - 1)

gdelay = Fs/wO*((abs(theta) - 90)*pi/180 + 1)

A = [l, -(~-wO/FS)/(~+WO/FS)I ;

i f (a b s (t h e t a 1 9 0)

e lse

6.3 3D with Headphones 157

end ;
a = (l - gdelay) / (1 + gdelay) ;

out-magn = f i l t e r (B , A , i n p u t) ;
output = f i l t e r ([a, I], [I , a] , out-magn) ;

a l l p a s s f i l t e r c o e f f i c i e n t

The function hsf i l t e r has to be applied twice, for the left and right ears with
opposite values of argument t h e t a , to a given input sound.

In a rough approximation, the shoulder and torso effects are synthesized in a
single echo. An approximate expression of the time delay can be deduced by the
measurements reported in [BD98, Fig. 81

Tsh = 1.2 -' ((180" + Q
1 - 0.00004 (4 - 80')

180"
(6.17)

and it is depicted in Fig. 6.13. The echo should also be attenuated as the source
goes from frontal to lateral position.

7
Time delay of shoulder reflection

-0.5
-1 00 -50 0 50 100

Elevation in degrees +

Figure 6.13 Delay time of the echo generated by the shoulders as a function of azimuth
and elevation. Azimuth ranging from 0 (dashed line) to 7r/3 at steps of 7r/12.

Finally, the pinna provides multiple reflections that can be obtained by means
of a tapped delay line. In the frequency domain, these short echoes translate into
notches whose position is elevation dependent and that are frequently considered
as the main cue for the perception of elevation [Ken95a]. In [BD98], a formula for
the time delay of these echoes is given:

TP, = A, cos (8/2) sin (Dn(900 - 4)) + B,. (6.18)

The parameters are given in Table 6.1 together with the amplitude values ppn of the
reflections. The parameter D, allows the adjustment of the model to the individual
characteristics of the pinna, thus providing an effective knob for optimizing the
localization properties of the model. Figure 6.14 depicts the delay time of the first

158 6 Spatial Effects

Table 6.1 Parameters for calculating amplitude and time delay of the reflections produced
by the pinna model.

n
2

D, B,[samples] A,[samples] pp,
-1 2 1 0.5 N

2 0.5
13 2 0.5

2.2
0 20 40 60

elevation in degrees --f

Figure 6.14 Delay time (in samples at fs = 44100 Hz) of the first echo generated by the
pinna as a function of azimuth and elevation. Azimuth ranging from 0 (dashed line) to
7r/2 at steps of 7~112.

pinna echo (in samples at fs = 44100 Hz) as a function of azimuth and elevation.
The corresponding frequency notch lies somewhere between 7 and 10 kHz.

The structural model of the pinna-head-torso system is depicted in Fig. 6.15
with all its three functional blocks, repeated twice for the two ears. Even though
the directional properties are retained by the model, anechoic sounds filtered by
the model do not externalize well. As we have explained in section 6.3.3, there are
several ways to improve the externalization in binaural listening.

Music Applications and Control

Several widely used software systems allow the possibility of spatializing sound
sources for binaural listening. For instance, Tom Erbe's Soundhack, an award-
winning software for the Macintosh, has a cookbook of HRTF coefficients and allows
the musician to locate apparent sound sources in a 3D space. Similar operations can
be carried out using the Csound language [BCOO] and native opcodes.

We have already mentioned the IRCAM Spatialisateur as a powerful software

6.4 3D with Loudspeakers 159

monoaural
input

head shadow and ITD

1 3 ” r /
shoulder echo /

channel
right output

Figure 6.15 Structural model of the pinna-head-torso system.

spatialization system. It allows specification of a virtual room and virtual source
trajectories in 3D space, and the rendering can be done either for loudspeakers or for
headphones. In this latter case, HRTFs are used. The ability to provide two different
output formats with a single system has been used in the production of the CD of
Pierre Boulez’s “Rkpons” [rn-Bou84]. In fact, a few early and lucky customers could
get another CD for free from the publishing company, with the binaural version of
the same performance.

6.4 3D with Loudspeakers

6.4.1 Introduction

We outline three main approaches to sound spatialization by multi-loudspeaker
layouts: holophonic reconstruction, transaural techniques, and methods relying on
the precedence effect.

Holophonic reconstruction is the reproduction of a 2D or 3D soundfield in a
confined area as a result of the interference of the wavefronts generated by different
loudspeakers. Diffraction effects around the listener’s head and torso, described in
section 6.4.2, can be taken into account in order to optimize the rendering. We
discuss two specific holophonic techniques, namely, 3D panning and Ambisonics, in
sections 6.4.3 and 6.4.4.

160 6 Spatial Effects

Transaural spatialization is described in section 6.4.5 as a recasting of binaural
techniques for presentations based on loudspeaker layouts.

The relative arrival time of the wavefronts from different loudspeakers can have
a dramatic impact on the apparent source directions. A technique that introduces
explicit delays among the loudspeakers is the room-within-the-room model, pre-
sented in section 6.4.6. This technique, even though less accurate, is less sensitive
to changes of the listener position because it exploits the precedence effect.

6.4.2 Localization with Multiple Speakers

A listener facing a couple of loudspeakers receives the two signals X L L and X R L at
the left ear, the first coming from the left loudspeaker, and the second coming from
the right loudspeaker. Symmetrically, the two signals ZRR and X L R are received at
the right ear. If the right loudspeaker has a pure amplitude factor AR and a pure
time delay TR, a sinusoidal, unit-amplitude signal at the loudspeakers generates
two sinusoidal signals at the ears. These signals are attenuated and shifted by the
following complex weights:

where AH and ?-H are the amplitude factor and time delay given by the head transfer
function to the contralateral ear from the direction of the loudspeaker. The situation
is illustrated in Fig. 6.16. Since, in low frequency, AH is almost unity, it can be seen
from (6.19) with the help of Fig. 6.17 that a pure level difference (i.e. TR = 0) at the
loudspeakers generates a pure time delay at the ears. Conversely, a pure time delay
between the loudspeakers generates a pure level difference at the ears. As is shown
in [Bla83], the ear signal can even be stronger on the side of the lagging loudspeaker.
The analysis of stationary signals becomes more complicated at higher frequencies,
where the shadowing of the head cannot be ignored. In general, the time and level
differences at the ears can give cues that are in contradiction to the time and level
differences at the loudspeakers.

Figure 6.16 Transfer functions involved in a stereophonic layout.

6.4 3D with Loudspeakers 161

1 Left channel I Right channel

Figure 6.17 Vector illustration of the pure time difference (rotation of the bold vector)
at the ears generated by a pure level difference at the loudspeakers.

Michael Gerzon developed some theories of localization in a sound field [Ger92a]
that were somewhat validated by experiments and crafting experience. Gerzon called
the meta-theory collecting all these theories “directional psychoacoustics”. The basic
assumptions of directional psychoacoustics are:

0 At low frequencies (up to about 500 Hz) the signals arriving at the two ears
have a stable phase difference that is less than half a wavelength. The hearing
system produces a sense of direction from this phase difference. The phase
locking means that we can do a vector summation of the contributions from
all loudspeakers in order to obtain a “velocity vector gain”

U = c gi1i (6.20)
i

that is representative of the perceived direction in low frequency. In (6.20),
gi is the gain of the i-th loudspeaker and li is the unit-length vector pointing
from the loudspeaker to the listener (see Fig. 6.1).

0 At high frequencies (from about 500 Hz up to about 3500 Hz) the signals
arriving at the two ears are treated as incoherent, and the hearing system is
mainly sensitive to the “energy vector gain”

(6.21)

The facts or assumptions provided by directional psychoacoustics are used to im-
prove the quality of multichannel reproduction in several ways (see section 6.4.4).

6.4.3 3D Panning

The matrix-based approach used for stereo panning in section 6.2.1 can be general-
ized to an arbitrary number of loudspeakers located at any azimuth though nearly

162 6 Spatial Effects

equidistant from the listener. Such a generalization is called Vector Base Ampli-
tude Panning (VBAP) [Pu197] and is based on a vector representation of positions
in a Cartesian plane having its center in the position of the listener. The unit-
magnitude vector pointing toward the virtual sound source U can be expressed as a
linear combination of the unit-magnitude column vectors 1~ and 1~ pointing toward
the left and right loudspeakers, respectively. In matrix form, this combination can
be expressed as

(6.22)

Except for degenerate loudspeaker positions, the linear system of equations (6.22)
can be solved in the vector of gains g . This vector has not, in general, unit mag-
nitude, but can be normalized by appropriate amplitude scaling. The solution of
system (6.22) implies the inversion of matrix L, but this can be done beforehand
for a given loudspeaker configuration.

The generalization to more than two loudspeakers in a plane is obtained by
considering, at any virtual source position, only one couple of loudspeakers, thus
choosing the best vector base for that position.

The generalization to three dimensions is obtained by considering vector bases
formed by three independent vectors in space. The vector of gains for such a 3D
vector base is obtained by solving the system

(6.23)

Of course, having more than three loudspeakers in a 3D space implies, for any
virtual source position, the selection of a local 3D vector base.

As indicated in [Pu197], VBAP ensures the maximum sharpness in sound source
location. In fact:

0 If the virtual sound source is located at a loudspeaker position, only that
loudspeaker has nonzero gain;

0 If the virtual sound source is located on a line connecting two loudspeakers,
only those two loudspeakers have nonzero gain;

If the virtual sound source is located on the triangle delimited by three adja-
cent loudspeakers, only those three loudspeakers have nonzero gain.

The formulation of VBAP given here is consistent with the low frequency formula-
tion of directional psychoacoustics. The extension to high frequencies has also been
proposed with the name Vector Base Panning (VBP) [PBJ98].

6.4 3D with Loudspeakers 163

6.4.4 Ambisonics and Holophony

Ambisonics is a technique for spatial audio reproduction introduced in the early
seventies by Michael Gerzon [Ger85, "951. While Vector Base Panning aims at
projecting sound material into a 3D listening space, the focus of Ambisonics is really
spatial recording, efficient encoding in a few audio channels, and reproduction by
an appropriate loudspeaker set-up.

In Ambisonics the sound field is preferably encoded using the so-called B-format.
3D B-format is composed of four signals: W , X , Y , and 2, where W is a signal
as taken from an omni-directional microphone, and X , Y , and 2 are signals as
taken from figure-of-eight microphones aligned with the orthogonal axes. If the four
signals have to be produced starting from a monophonic sound signal S , the following
encoding equations will apply:

(6.24)

where 8 is the azimuth and $ is the elevation, as indicated in Fig. 6.9. The signal
W is called the zero-order spherical harmonic of the sound field, and X , Y , and Z
are called the first-order spherical harmonic components. The gain factors of the X ,
Y , and 2 signals are the Cartesian coordinates of the unit length vector pointing
to the virtual sound source.

The decoding stage will depend upon the actual loudspeaker layout. In the 3D
case, the simplest layout is given by loudspeakers positioned at the corners of a
cube. If the i-th loudspeaker is found along the direction of the unit vector li, the
corresponding gain is

g' - - [GIW + G2 [X Y 21 . li] . 1
* - 2

(6.25)

As mentioned in section 6.4, some theories of directional psychoacoustics have
been developed, mainly by Michael Gerzon [Ger92a], when to design the gains to be
applied to the loudspeakers for setting the apparent direction of the sound source in
a way consistent with our perception in a multichannel loudspeaker layout. These
theories translate into different values of the gains G1 and G2 in (6.25). Ideally, these
gains should be made frequency dependent, and replaced by filters whose shape can
be carefully controlled [FU98].

If the i-th loudspeaker is aligned with one of the axes, the gain factors are the
same as found in VBP, except for the zero order harmonic and for the scaling factor
G2. In Ambisonics, if G1 = G2 = 1, when a sound source is located in the direction
of a loudspeaker, the opposite loudspeaker has a null gain. This property is used
to avoid antiphase signals from couples of loudspeakers, thus adding stability to
the sound image. This is not necessary in VBP, since it uses only a local base of

164 6 Spatial Eflects

loudspeakers and it does not treat the whole loudspeaker layout as a vector base. In
this sense, Ambisonics is a global technique. The fact that VBP is a local panning
method allows the use of arbitrary loudspeaker layouts. Extensions of Ambisonics to
general layouts were also proposed by Gerzon [Ger92a], especially for applications
in surround sound for home theater.

Ambisonics and VBP have been compared in terms of the direction and strength
of the velocity and energy vectors [PBJ98], which are obtained by normalizing (6.20)
and (6.21) to the total pressure gain and the total energy gain, respectively [Ger92a].
According t o directional psychoacoustics these vectors should point in the same
direction and should be as close as possible to one in order to provide a sharp sound
image. The comparison showed that VBP outperforms Ambisonics for steady sound
sources, as expected for the sharpness of a local panning. However, Ambisonics gives
smoother transitions between loudspeakers, in such a way that it is more difficult
to tell where the loudspeakers really are. The conclusions drawn by comparison
of the vector gains have been confirmed by informal listening tests on real time
implementations.

It should be pointed out that these kinds of assessments make some sense only
if the following assumptions are met:

0 the listener remains steady in the sweet spot

0 the loudspeakers generate plane waves

0 anechoic or free field listening.

In practice, these assumptions are rarely met and one should rely on assessment
tools based on interference patterns emerging in a realistic model of the actual
room and audience area [LS99].

Ambisonics can induce dramatic shifts in the apparent source position as the
listener moves out of the sweet spot. For instance, the sound image can switch from
front to back if we just move one step backward. For home theater applications,
the need for sharper frontal images in Ambisonics was addressed by introduction
of vector transformations on the encoded signals [GB98], thus giving a knob for
controlling the forward dominance of sound distribution.

In the literature, techniques such as Holophony and Wave-Field Synthesis can
be found. These are based 011 the mathematical property of analytic fields in an en-
closure that make them describable as an integral over the boundary. If we can put
infinitely many loudspeakers on a closed contour line, we can reproduce any pressure
field in the plane area within the contour. In practice, with a finite number of loud-
speakers, spatial aliasing puts a severe limit on accuracy. It has been shown [NE981
that Ambisonics is a special case of Holophony obtained for loudspeakers placed
at infinity (i.e., generating plane waves), and that using a numerous circular array
of microphones and loudspeakers is a feasible way of extending the sweet spot of
accurate acoustic field reconstruction to something more than a square meter.

6.4 3 0 with Loudspeakers 165

6.4.5 Transaural Stereo

If binaural audio material is played through a stereo loudspeaker layout, then almost
any spatialization effect is likely to disappear. However, a relatively inexpensive
signal processing apparatus, proposed in the early sixties by Schroeder [SchGl], can
recreate the 3D listening experience a t selected positions by preconditioning the
signals feeding the loudspeakers. The audio display based on loudspeakers is often
preferable because it is immune to fatigue and internalization problems that often
arise with headphones.

L R

Figure 6.18 Binaural and transaural listening: geometry.

Assume that we want to recreate, by means of a couple of loudspeakers, the
signals as they arrive to the ears from a couple of headphones. Referring to Fig. 6.18,
8 is the distance between the ears in spatial samples, i.e., the distance in meters
multiplied by f s / c , where c is the speed of sound and fs is the sample rate, D is
the distance in samples between a loudspeaker and the nearest ear, 0 is the angle
subtended by a loudspeaker with the median plane. Under the assumption of point-
like loudspeakers, the excess distance from a loudspeaker to the contralateral ear
produces an attenuation that can be approximated by

D
&sin$ + D

g = - (6.26)

As we saw in section 6.3, the head of the listener introduces a shadowing effect which
can be expressed by a lowpass transfer function H (z) . These considerations lead to
the following matrix relationship between the signals at the ears (e l (z) , e2(z)) and
the signals at the loudspeakers (L (z) , R (z)) :

where d is the arrival time difference in samples of the signals at the ears. We should
consider d a function of frequency, as in Fig. 6.10.a, but it is usually enough to set it
to the low-frequency limit d E 1.5Ssin0, easily derived from (6.8). The symmetric
matrix A can be easily inverted, thus giving

(6.28)

....................................

Figure 6.19 Binaural to transaural conversion.

The conversion from binaural to transaural is realized by the 2-input 2-output
system represented by matrix (6.28) and depicted in Fig. 6.19. Here we have outlined
two functional blocks: T (z) is a lattice section, and C (z) is a comb filter with
a lowpass in the feedback loop. This decomposition is useful when cascading the
transaural processor to a mono-to-binaural-stereo converter (see, e.g., section 6.6.1).
In such a case, the linearity and time invariance of the functional blocks allow the
use of a single comb filter before the mono-to-stereo converter. This equivalence is
illustrated in Fig. 6.20. From a comparison of Figures 6.19 and 6.20 it is clear how
the switch from transaural to binaural processing can be done simply by zeroing
the coefficient g in both the lattice section and the comb filter.

-
~

e1 L

Mono W)
+

Mono-to-
Binaural

Figure 6.20 Mono-to-transaural-stereo converter.

6.4 3D with Loudspeakers 167

Apparently, transaural stereo imposes strict requirements on the position of the
listener and the absence of reflections in the room. However, a certain amount
of head rotation and shift can be tolerated and, if the walls are not too close to
the loudspeakers, the early room reflections arrive after the impulse response of
the crosstalk canceller has vanished [CB89], so that its effectiveness is preserved.
In his book [Gar98a], William Gardner presents different topologies and practical
implementation details of transaural stereophonic processors, including a thorough
physical and psychophysical validation.

6.4.6 Room-Within-the-Room Model

Panning and Ambisonics are methods for controlling the gains applied to the loud-
speakers in order to approximate a target sound field at a privileged listener position.
A completely different approach can be taken by controlling the relative time delay
between the loudspeaker feeds. A model supporting this approach was introduced
by Moore [Moo82], and can be described as a physical and geometric model. The
metaphor underlying the Moore model is that of the room within a room, where
the inner room has holes in t8he walls, corresponding to the positions of loudspeak-
ers, and the outer room is the virtual room where sound events have to take place
(Fig. 6.21). The simplest form of spatialization is obtained by drawing direct sound

Figure 6.21 Moore’s room in a room model.

rays from the virtual sound source to the holes of the inner room. If the outer room
is anechoic, these are the only paths taken by sound waves to reach the inner room.
The loudspeakers will be fed by signals delayed by an amount proportional to the
length of these paths, and attenuated according to the relationship of inverse pro-
portionality valid for propagation of spherical waves. In formulas, if l i is the path
length from the source to the i-th loudspeaker, and c is the speed of sound in air,
the delay in seconds is set to

di = li/c , (6.29)

168

and the gain is set to

6 Spatial Effects

(6.30)

The formula for the amplitude gain is such that sources within the distance of l m
from the loudspeaker2 will be connected to unity gain, thus avoiding the asymptotic
divergence in amplitude implied by a point source of spherical waves.

The model is as accurate as the physical system being modeled would permit.
A listener within a room would have a spatial perception of the outside soundscape
whose accuracy will increase with the number of windows in the walls. Therefore,
the perception becomes sharper by increasing the number of holes/loudspeakers. In
reality, some of the holes will be masked by some walls, so that not all the rays will
be effective3 (e.g. the rays to loudspeaker 3 in Fig. 6.21). In practice, the directional
clarity of spatialization is increased if some form of directional panning is added to
the base model, so that loudspeakers opposite the direction of the sound source are
severely attenuated. In this case, it is not necessary to burden the model with an
algorithm of ray-wall collision detection. The Pioneer Sound Field Controller is an
example of 15-loudspeaker hemispherical array governed by these principles [MarOl].

A special case of the room in a room model is obtained when the loudspeakers
are all located along a straight line, for instance above the listeners' heads. In this
case we can think of holes in the ceiling of the inner room, and this layout is
especially effective in reproducing movements of the virtual sound source along one
dimension. Figure 6.22 illustrates this one-dimensional reduction of the model in
the case of four loudspeakers and two listeners. From Fig. 6.22, it is easy to visualize
the robustness of the method to different listener positions.

L1

os4 -

Figure 6.22 One-dimensional spatialization model.

In fact, the spatialization methods based on amplitude panning are generally
designed for a tight listener position, and are overwhelmed by the precedence effect

'This distance is merely conventional.
3We are ignoring diffraction from this reasoning.

6.4 3D with Loudspeakers 169

as soon as the listener is in a different position. The fact that most of the sound
images collapse into one of the loudspeakers can be easily experienced by attending
a pop music concert, or listening to a conventional car audio system. On the other
hand, the Moore model relies explicitly on the precedence effect, in the sense that
the sound image is biased toward the first loudspeaker being reached by the acoustic
rays. As illustrated in Fig. 6.22 for one-dimensional spatialization, in general there
is a wide area that is biased toward the same loudspeaker, just because the time
delay of the virtual acoustic rays sums with the time delay of the actual paths
connecting the loudspeakers with the listener. For instance, a virtual sound source
located in the neighborhood of the loudspeaker S2 will be perceived as radiating
from S2 by both listeners L1 and L2, even though the loudspeaker S1 is closer than
S2 to L1. This is an intuitive explanation of the claim that the Moore model is
able to provide consistent and robust spatialization to extended audiences [Moo82].
Another reason for robustness might be found in the fact that simultaneous level
and time differences are applied to the loudspeakers. This has the effect of increasing
the lateral displacement [Bla83] even for virtual sound sources such that the rays
to different loudspeakers have similar lengths. Indeed, the localization of the sound
source becomes even sharper if the level control is driven by laws that roll off more
rapidly than the physical l / d law of spherical waves.

An added benefit of the room within a room model is that the Doppler effect is
intrinsically implemented. As the virtual sound source is moved in the outer room
the delay lines representing the virtual rays change their lengths, thus producing
the correct pitch shifts. It is true that different transpositions might affect different
loudspeakers, as the variations are different for different rays, but this is consistent
with the physical robustness of the technique. For instance, if in Fig. 6.22 the
source is moving downwards starting from the middle of the room, the loudspeaker
2 will produce a downward transposition, and loudspeaker 4 will produce an upward
transposition. Accordingly, the listeners located close to one of the loudspeakers will
perceive the transposition that is most consistent with their position with respect
to the virtual sound source.

The model of the room within a room works fine if the movements of the sound
source are confined to a virtual space external to the inner room. This corresponds
to an enlargement of the actual listening space and it is often a highly desirable
situation. Moreover, it is natural to try to model the physical properties of the
outer room, adding reflections at the walls and increasing the number of rays going
from a sound source to the loudspeakers. This configuration, illustrated in Fig. 6.21
with first-order reflections, is a step from spatialization to reverberation and will be
further discussed in section 6.5.

Music Applications and Control

Sound spatialization by means of loudspeakers has accompanied the history of
electro-acoustic music in the second half of the twentieth century. An early spa-
tialization system, the potentiomitre d’espace was used by J. Poullin to project
Schaeffer’s sounds of musique concrite into space [Pou57]. It is interesting that,

170 6 Spatial Eflects

even in the fifties, the limitations of reproduction by loudspeakers, such as the in-
evitability of the sweet spot, and the difficult interplay between the actual listening
room and the simulated space, were very clear [DiS98].

In section 6.2.5 we talked about spatialization in the music of Stockhausen since
his influential work “Gesang der Junglinge” [m-Sto56]. In the early realizations, the
loudspeakers were treated as actual sources, and trajectories were programmed by
detailed control of the relative gains of multiple audio channels. The idea of having
virtual sound sources that are detached from the actual loudspeaker positions be-
came popular after the works of John Chowning in the USA, and Hans Peter Haller
in Europe. The former proposed a fully-computerized system for designing spatial
trajectories. The latter designed an analog device, called a Halaphon, that allowed
control of rotational trajectories in real time, by means of sliding potentiometers.
The halaphon was used in many important compositions, for instance, early versions
of “R6pons” by Boulez [m-Bou84], or “Prometeo” [m-Non82] by Nono. Indeed, that
device is especially important because it helped establish a practice of real-time
performance by means of electronic devices (also called Live Electronics) [Ha195].

The layout of Fig. 6.22 was used in live electro-acoustic music performance to
simulate sound wavefronts going back and forth above the audience [m-Pis95]. In
this case, the Doppler shift affecting noisy sounds is a desirable side-effect of the
spatialization system that magnifies the direction and velocity of movements. A
two-dimensional implementation of the Moore spatialization model was used in a
piece by Cifariello Ciardi [m-Cif95], where the main electro-acoustic gesture is that
of the rolling metallic ball of a pinball being launched.

6.5 Reverberation

6.5.1 Acoustic and Perceptual Foundations

In the previous sections, our main concern has been the apparent positions of sound
sources. The effects of the surrounding environment have been confined to changes
in the perceived distance and position of the apparent source. In this section, we
focus on sound reverberation as a natural phenomenon occurring when sound waves
propagate in an enclosed space. Reverberation brings information about the nature
and texture of materials, and about the size and shape of the room and of the
objects inside it.

In order to analyze the various acoustical aspects of reverberation, we will con-
sider a rectangular room containing an omni-directional point source. Other, more
complicated and realistic situations can be considered to a large extent as a gener-
alization of this simple case.

Point Source in an Enclosed Space

Consider the pressure wave generated by a small sphere pulsing at the radian fre-
quency W . The corresponding wave number is defined as IC = w/c . The particle

6.5 Reverberation 171

velocity of air is radial, in phase with the pressure for large distances T (r >> l /k)
and in phase quadrature with pressure for small distances (T < l / k) [MI86]. At long
distance from the source (far field), we approximate the condition of propagation
of plane waves. On the other hand, near the source (near field), there is a large
velocity component that, being in quadrature with pressure, is responsible for some
reactive energy that does not radiate. A simplified analysis may conclude that, as
soon as the sound waves have traveled for a sufficiently long path from the source,
we can consider them as plane waves, thus leaving the more complicated formalism
of spherical propagation. We will see that the plane wave description can be eas-
ily interpreted in the frequency domain and it allows a straightforward analysis of
steady-state responses. In the proximity of the excitation event, we need descrip-
tions based on spherical waves. Such descriptions are better carried on in the time
domain.

Later on, we will introduce a third level of description, useful to account for
“fine grain” phenomena that are not easily described by the two other approaches.
Namely, we will introduce a particle description of sound, which we will take ad-
vantage of when describing the diffusion due to rough walls.

Frequency Domain: Normal Modes

The acoustics of an enclosed space can be described as a superposition of normal
modes, which are standing waves that can be set up in the gas filling the box. Such
a description can be derived analytically for simple shapes, such as the rectangular
one, and it represents a powerful tool for understanding the behavior of the room
in the frequency domain.

It is easier to calculate the normal modes under the assumption that the sound
waves are propagating in the far field and after the end of the initial transient. This
assumption allows consideration of all the wavefronts as planes. The normal modes
of a rectangular room having sizes [Zz, 1, , Z z] can be derived by forcing a plane-wave
solution into the 3D wave equation and setting the particle velocity to zero at the
boundary [MI86]. As a result, we get the frequencies of the normal modes

where

(6.31)

(6.32)

is a triplet of non-negative integer numbers characterizing the normal mode.

Each normal mode is supported by a plane wave propagating in the direction
represented by the vector

(6.33)

172 6 Spatial Effects

It is clear from (6.31) and (6.33) that a direction is associated with the modes hav-
ing frequencies that are multiples of the same fundamental. In other words, all the
triplets that are multiples of an irreducible triplet are associated with a harmonic
series of resonant frequencies with the same direction in space. This property sug-
gests that a harmonic series of normal frequencies can be reproduced by means of
a comb filter, i.e. by means of a feedback delay line whose length is

1 d = - ,
f o

(6.34)

where f o is the fundamental of the harmonic series.

The collection of a normal mode and all its multiples can be thought of as
a plane wave bouncing back and forth in the enclosure. In order for an enclosure
having finite extent to support an infinite plane wavefront, it is necessary to bend the
wavefront at the walls in such a way that it forms a closed constant-area surface.
This interpretation can be visualized in two dimensions by means of plane wave
loops having constant length (see Fig. 6.23). In this representation it is easy to
verify that the time interval d is the time lag between two consecutive collisions of
plane wavefronts along the diagonal.

Figure 6.23 Plane wave loops for the normal mode n, = 1, nu = 1.

Not all the modes are excited with the same intensity in all positions. For in-
stance, in the central point of a rectangular box, only one-eighth of the modes
get excited, i.e. only those modes having all even components in the triplet n, as
the other modes have a nodal point in the middle. The most intense excitation is
obtained at the corners of the room.

Time Domain: Acoustic Rays

Another kind of description of room acoustics considers the propagation of acoustic
rays, i.e. portions of spherical waves having small aperture. This is the approach
taken in geometrical acoustics, which is analogous to geometrical optics for light
waves.

Some basic assumptions have to be made in order to ensure the validity of de-
scription by geometric rays. The first assumption is that the wavelengths interested
by propagation are much smaller than the finest geometric description of the room.

6.5 Reverberation 173

The second assumption is that we can ignore all the phenomena of diffraction and
interference. The first assumption is not very restrictive, since acoustic rays are used
to represent events in a short time-scale, i.e. in a very large frequency range, and
diffraction is also negligible at high frequencies. The absence of interference is also
verified in most practical cases, where rays are mutually incoherent.

Along an acoustic ray, the pressure decreases as the reciprocal of distance, since
the energy conveyed by a spherical wavefront has to be conserved during propaga-
tion, and the area occupied by the front increases as the square of distance from
the source.

When a ray hits a surface, it is reflected in a way that depends on the nature
of the surface. Smooth walls produce mirror reflections, i.e. the angle 0 formed by
the incoming ray with the normal to the surface is equal to the angle formed by the
outgoing ray with the same normal. Moreover, the incoming ray, the outgoing ray,
and the normal, all lie on the same plane.

Usually there is some filtering associated with a reflection, due to the absorbing
properties of the wall material. In general, there is a frequency-dependent attenua-
tion and a non constant time delay. Such filtering can be represented by a complex
reflection function R relating the outgoing and incoming pressure wavefronts. R is
dependent on the angle 0 according to the formula [KutSl]

R = ZcosB - 1
ZcosB + 1 ’ (6.35)

where Z is the characteristic impedance of the wall. If the wall is smooth and rigid
Z approaches infinity. In this case we say that the reflection is perfect, and the
reflection function R is unitary at all frequencies and for any angle.

There are two popular approaches to compute acoustic rays for room acoustics:
ray tracing and the image method. Ray tracing has been very popular in computer
graphics since the eighties as a technique for producing realistic images. In graphics,
an image is constructed by tracing light rays back from the eye (or the focal plane)
to the light sources. In audio, an acoustic image is obtained by tracing acoustic rays
back from the ear (or the microphone points) to the sound sources. In both cases,
the scene is traversed by the rays and all the reflections are correctly reproduced.
An important difference between sounds and images is that, while in graphics the
light can be considered as propagated in all the points of the scene in a frame
sample, in audio the sample rate is much higher and the speed of propagation is
much smaller. As a consequence, each ray has to be associated with a delay line,
thus adjoining memory occupation and computational complexity to a method that
is already quite time-consuming.

The image method [AB791 is trivial when explained by means of a 2-D medium
(e.g. a rectangular membrane). In Fig. 6.24 a source S is reflected symmetrically at
the boundaries, and the source images are reflected about the images of the bound-
aries. The resulting tessellation of the plane is such that every segment connecting
an image of the source with a receiving point R corresponds to one unique path
connecting the source to the receiver after a certain number of specular reflections.

174 6 Spatial Effects

This method is easily extended to 3-D and, with many complications and increase
in complexity, to rooms described as arbitrary polyhedra [Bor84].

Both the ray tracing technique and the image method are mainly used by ar-
chitects in acoustic Computer Aided Design, where there is no special concern for
real-time performance. On the other hand, in these applications the accuracy of
results is particularly important in predicting the acoustic quality of a hall before
it is constructed.

r - - - - ~ - - - -
I I
I I

T - - - - i
I

' 0 I
I
l

I
I

I I

Figure 6.24 The image method in 2-D.

Sounds as Particles: Diffusion

Up to this point we have discussed room acoustics at the level of macroscopic phe-
nomena, i.e. rays and normal modes. If the target is complexity (or realism) at
the final result, we need to consider also the microscopic phenomena occurring in
a physical environment. The most important of these second-order phenomena is
diffusion of sound waves due to the fine grain geometry of the enclosure. Diffusion
is better described using a particle representation of sound. In computer graphics a
similar representation is used for modeling surface light diffusion and shadows. In
order to adapt the same tools to acoustics, we need to keep the assumption of broad-
band signals. Moreover, we are interested in local interactions with surfaces having
geometric irregularities (roughness) that are comparable with the wavelengths we
are dealing with. Still, we need to assume that the acoustic particles are mutually
incoherent, in order to avoid cancellations between particles. Once these hypothe-
ses are assumed to be valid, it is natural to consider a sound particle as any brief
acoustic signal having a broad frequency extension.

The diffusion model that is commonly used in computer graphics [CW93] can
be readily adapted to the acoustic domain [Roc96], so that we can use the same
symbols and terminology. In particular, diffusion a t a certain point of the enclosure
is described by a Bidirectional Reflection Distribution Function (BRDF) fr($i, $ o) ,

which is the ratio between the radiance reflected along direction $o and the irradi-
ance incident along direction $i.

The diffusion is said to be Lambertian when the BRDF is constant. In this
case the sound particles are diffused in any direction with the same probability,

6.5 Reverberation 175

regardless of the incident direction. Vice versa, if all the sound particles arriving
from direction $Ji are redirected to the specular direction $, = -$Ji we have a mirror
reflection, i.e. no diffusion at all. Actual walls are always somewhere in between a
mirror reflector and a Lambertian diffusor.

Quantities such as those defined in this section have been useful in improving
the accuracy of estimates of the reverberation time of real rooms [Kut95].

Objective and Subjective Attributes of Room Acoustics

A very short sound pulse, such as a gun shot, generates a reverberating tail that has
in most cases an exponentially decaying shape. The fundamental objective attribute
of room acoustics is the reverberation time, defined by W.C. Sabine as the time
interval in which the reverberation level drops down by 60 dB.

Extensive experimentation by computer music researchers showed that a very
good, if not the best, impulse response for reverberation is obtained by generat-
ing Gaussian white noise and enveloping it with an exponential decay [Moo79].
The actual reverberated sound can be obtained by convolution, even though this
operation is computationally expensive. Any frequency-dependent attenuation can
be introduced by pre-filtering the impulse response. A finer control of the quality
of reverberation can be exerted by modification of “perceptual factors”, which are
subjective attributes that have been extracted from psychophysical experimenta-
tion. Research in this field proceeds by extracting scales of subjective acoustical
experience and by correlating them with physical parameters. Most of the studies
conducted up to 1992 were summarized in [Ber92].

Research at IRCAM in Paris [Ju195] tried to provide a minimal set of independ-
ent parameters that give an exhaustive characterization of room acoustic quality.
These parameters are divided into three categories [Jot99]:

1. Source perception (related to the spectrum and relative energy of direct sound
and early reflections):

presence (ratio between direct sound and early reverberated energy)

0 brilliance (high frequency variation of early reverberated energy)

0 warmth (low frequency variation of early reverberated energy)

2. Source/Room interaction (related to the relative energies of direct sound, early
and late reflections, and to the early decay time):

0 envelopment (energy of early reflections relative to direct sound)

0 room presence (energy of late reverberated sound)

0 running reverberance (early decay time of the room impulse response)

3. Room perception (related to the late decay time and to its frequency varia-
tions) :

176 6 Spatial Effects

0 late reverberance (late decay time of the room impulse response)

0 heaviness (low frequency variation of decay time)

0 liveness (high frequency variation of decay time).

In a model that provides these parameters as knobs in a “perceptual interface”,
the “presence” parameter can be controlled to give an impression of distance of the
sound source, in a way similar to what we showed in section 6.2.3, and the “envelop-
ment” parameter can be adjusted to control the impression of being surrounded by
sound. Some of the parameters are perceived as timbral colorations while the source
is playing (running reverberance), while some others are perceived from the sound
tails left in pauses between sound events (late reverberance). Griesinger [Gri99]
gives a definition of these two quantities that is based on slicing the room impulse
response into segments of 160 ms each. Running reverberation, “the amount of self
support one hears while playing”, is defined as the ratio between the energies in the
second and first segments of the impulse response, and it is a measure of reverberant
loudness that is independent of reverberation time. A room impulse response with
a reverberation time of 0.5 S can sound just as loud (in terms of running reverber-
ance) as a room with a reverberation time of 2 S [Gri94]. The running reverberance
is an important parameter of room acoustics and its preferred value depends on
the instrument and on the music genre [Gri94], being low for speech and relatively
high for orchestral romantic music. Therefore, in artificial reverberation it is useful
to have a knob that allows adjustment of the running reverberance to fit the music
that is being played. Most of the times, the goal is to make reverberation audible
but not overwhelming.

Envelopment is a controversial attribute, that is difficult to formalize but is
known to be a key component of a pleasant source/room combination. The most re-
cent investigations tend to relate envelopment to fluctuations in ITD and IID due to
the spatial perception of early reflections. Therefore, to appreciate envelopment the
early reflections should be appropriately spatialized. Blauert and Lindemann [BL86]
showed that lateral reflections below 3 kHz contribute to a sense of depth, while
higher frequency components contribute to a sense of surround. However, since
lateral reflections produce ITD fluctuations and ITD is direction and frequency de-
pendent, the most effective angle for a lateral reflection depends on frequency. Low
frequency reflections produce the largest fluctuations if they come from lateral di-
rections that are perpendicular to the median plane, while higher frequencies are
more effective if the are closer to the median plane [Gri97]. Griesinger [Gri97, Gri991
developed a theory of spatial impression (another term meaning envelopment) that
puts this multifaceted attribute of room acoustics into a cognitive framework where
it is related t o other phenomena such as the precedence effect. Namely, there is a
“continuous spatial impression” that is perceived when lateral reflections are added
to the perception of continuous sounds. Abrupt changes, which are always accom-
panied by the precedence effect, give rise to an “early spatial impression” by means
of lateral reflections coming within 50 ms of the sound event, and to a “background
spatial impression” by means of spatialized late reverberation. This latter form of
spatial impression is considered to be the most important for the overall perception

6.5 Reverberation 177

of envelopment, as it is perceptually segregated from the streams of sound events
that form a sonic foreground. Envelopment is considered to be a desirable feature of
large rooms, and is absent in small rooms. However, sometimes envelopment is con-
fused with the apparent source width, which is also an attribute of the source/room
combination, but this can be high even in small rooms. The apparent source width
will be further discussed in section 6.6.1.

6.5.2 Classic Reverberation Tools

In the second half of the twentieth century, several engineers and acousticians tried
to invent electronic devices capable of simulating the long-term effects of sound
propagation in enclosures. The most important pioneering work in the field of ar-
tificial reverberation has been that of Manfred Schroeder at the Bell Laboratories
in the early sixties [SchGl, Sch62, Sch70, Sch73, SL61]. Schroeder introduced the
recursive comb filters and the delay-based allpass filters as computational structures
suitable for the inexpensive simulation of complex patterns of echoes. In particular,
the allpass filter based on the recursive delay line has the form

y(n) = - g . x(.) + z (n - m) + g . y(n - m) , (6.36)

where m is the length of the delay in samples. The filter structure is depicted in
Fig. 6.25, where A (z) is usually replaced by a delay line. This filter allows a dense
impulse response and a flat frequency response to be obtained. Such a structure
rapidly became a standard component used in almost all the artificial reverberators
designed until nowadays [Moo79]. It is usually assumed that the allpass filters do not
introduce coloration in the input sound. However, this assumption is valid from a
perceptual viewpoint only if the delay line is much shorter than the integration time
of the ear, i.e. about 50 ms [ZF90]. If this is not the case, the time-domain effects
become much more relevant and the timbre of the incoming signal is significantly
affected.

Figure 6.25 The allpass filter structure.

In the seventies, Michael Gerzon generalized the single-input single-output all-
pass filter to a multi-input multi-output structure, where the delay line of m samples

178 6 Spatial Effects

has been replaced by a order-N unitary network [Ger76]. Examples of trivial uni-
tary networks are orthogonal matrices, and parallel connections of delay lines or
allpass filters. The idea behind this generalization is that of increasing the complex-
ity of the impulse response without introducing appreciable coloration in frequency.
According to Gerzon’s generalization, allpass filters can be nested within allpass
structures, in a telescopic fashion. Such embedding is shown to be equivalent to
lattice allpass structures [Gar98b], and it is realizable as long as there is at least
one delay element in the block A (z) of Fig. 6.25.

An extensive experimentation on structures for artificial reverberation was con-
ducted by Andy Moorer in the late seventies [Moo79]. He extended the work done
by Schroeder [&h701 in relating some basic computational structures (e.g., tapped
delay lines, comb and allpass filters) with the physical behavior of actual rooms.
In particular, it was noticed that the early reflections have great importance in the
perception of the acoustic space, and that a direct-form FIR filter can reproduce
these early reflections explicitly and accurately. Usually this FIR filter is imple-
mented as a tapped delay line, i.e. a delay line with multiple reading points that
are weighted and summed together to provide a single output. This output signal
feeds, in Moorer’s architecture, a series of allpass filters and a parallel group of
comb filters. Another improvement introduced by Moorer was the replacement of
the simple gain of feedback delay lines in comb filters with lowpass filters resembling
the effects of air absorption and lossy reflections.

An original approach to reverberation was taken by Julius Smith in 1985, when
he proposed the Digital Waveguide Networks (DWN) as a viable starting point for
the design of numerical reverberators [Smi85]. The idea of Waveguide Reverberators
is that of building a network of waveguide branches (i.e., bidirectional delay lines
simulating wave propagation in a duct or a string) capable of producing the desired
early reflections and a diffuse, sufficiently dense reverb. If the network is augmented
with lowpass filters it is possible to shape the decay time with frequency. In other
words, waveguide reverberators are built in two steps: the first step is the con-
struction of a prototype lossless network, the second step is the introduction of the
desired amount of losses. This procedure ensures good numerical properties and a
good control over stability [Smi86, Vai931. In ideal terms, the quality of a prototype
lossless reverberator is evaluated with respect to the whiteness and smoothness of
the noise that is generated as response to an impulse. The fine control of decay time
at different frequencies is decoupled from the structural aspects of the reverberator.

Among the classic reverberation tools we should also mention the structures
proposed by Stautner and Puckette [SP82], and by Jot [Jot92]. These structures
form the basis of the Feedback Delay Networks, which will be discussed in greater
detail in section 6.5.3.

Clusters of Comb/Allpass Filters

The construction of high-quality reverberators is half an art and half a science.
Several structures and many parameterizations were proposed in the past, espe-
cially in non-disclosed form within commercial reverb units [Dat97]. In most cases,

6.5 Reverberation 179

Figure 6.26 Moorer’s reverberator.

the various structures are combinations of comb and allpass elementary blocks, as
suggested by Schroeder in his early works. As an example, we briefly describe the
Moorer’s preferred structure [Moo79], depicted in Fig. 6.26. The block (a) of the
Moorer’s reverb takes care of the early reflections by means of a tapped delay line.
The resulting signal is forwarded to the block (b), which is the parallel of a direct
path on one branch, and a delayed, attenuated diffuse reverberator on the other
branch. The output of the reverberator is delayed in such a way that the last of
the early echoes coming out of block (a) reaches the output before the first of the
non-null samples coming out of the diffuse reverberator. In Moorer’s preferred im-
plementation, the reverberator of block (b) is best implemented as a parallel group
of six comb filters, each with a first-order lowpass filter in the loop, and a single
allpass filter. In [Moo79], it is suggested setting the allpass delay length to G ms
and the allpass coefficient to 0.7. Despite the fact that any allpass filter does not
add coloration in the magnitude frequency response, its time response can give a
metallic character to the sound, or add some unwanted roughness and granularity.
The feedback attenuation coefficients and the lowpass filters of the comb filters can
be tuned to resemble a realistic and smooth decay. In particular, the attenuation

180 6 Spatial Effects

coefficients gi determine the overall decay time of the series of echoes generated by
each comb filter. If the desired decay time (usually defined for an attenuation level
of 60 dB) is T d , the gain of each comb filter has to be set to

gi = 10- , 3% (6.37)

where fs is the sampling rate and mi is the delay length in samples. Further at-
tenuation at high frequencies is provided by the feedback lowpass filters, whose
coefficient can also be related with decay time at a specific frequency or fine tuned
by direct experimentation. In [Moo79], an example set of feedback attenuation and
allpass coefficients is provided, together with some suggested values for the delay
lengths of the comb filters. As a general rule, they should be distributed over a ratio
1 : 1.5 between 50 and 80 ms. Schroeder suggested a number-theoretic criterion for
a more precise choice of the delay lengths [Sch73]: the lengths in samples should be
mutually coprime (or incommensurate) to reduce the superimposition of echoes in
the impulse response, thus reducing the so called flutter echoes. This same criterion
might be applied to the distances between each echo and the direct sound in early
reflections. However, as it was noticed by Moorer [Moo79], the results are usually
better if the taps are positioned according to the reflections computed by means of
some geometric modeling technique, such as the image method. As will be explained
in section 6.5.3, even the lengths of the recirculating delays can be computed from
the geometric analysis of the normal modes of actual room shapes.

6.5.3 Feedback Delay Networks

In 1982, J. Stautner and M. Puckette [SP82] introduced a structure for artificial
reverberation based on delay lines interconnected in a feedback loop by means of
a matrix (see Fig. 6.27). More recently, structures such as this have been called
Feedback Delay Networks (FDN). The Stautner and Puckette FDN was obtained
as a vector generalization of the recursive comb filter

y(n) = z (n - m) + g . y(n - m) , (6.38)

where the m-sample delay line was replaced by a bunch of delay lines of different
lengths, and the feedback gain g was replaced by a feedback matrix G. Stautner
and Puckette proposed the following feedback matrix:

0 1 1
G - g [- l

f i 1 0 0
(6.39)

0 1 - 1 0

Due to its sparse special structure, G requires only one multiply per output channel.

More recently, Jean-Marc Jot has investigated the possibilities of FDNs very
thoroughly. He proposed using some classes of unitary matrices allowing efficient
implementation. Moreover, he showed how to control the positions of the poles of

6.5 Reverberation 181

'1,l a1,2 '1.3 a1.4

'2.1 a2.2 a3,2 a4.2

'3.1 a3.2 a3,3 a3.4

a4.1 '4.2 a4,3 a4,4 I
I ~n

I ~n

I 1
=&

Figure 6.27 Fourth-order feedback delay network.

the structure in order to impose a desired decay time at various frequencies [Jot92].
His considerations were driven by perceptual criteria and the general goal is to
obtain an ideal diffuse reverb. In this context, Jot introduced the important design
criterion that all the modes of a frequency neighborhood should decay at the same
rate, in order to avoid the persistence of isolated, ringing resonances in the tail of
the reverb [JC91]. This is not what happens in real rooms though, where different
modes of close resonance frequencies can be differently affected by wall absorption
[Morgl]. However, it is generally believed that the slow variation of decay rates with
frequency produces smooth and pleasant impulse responses.

General Structure

Referring to Fig. 6.27, an FDN is built starting from N delay lines, each being
~i = miT, seconds long, where T, = l/fs is the sampling interval. The FDN is

182 6 Spatial Effects

completely described by the following equations:

N

N

sz(n + mi) = c ai , js j (n) + biz(n)
j=1

(6.40)

where s i (n) , 1 5 i 5 N , are the delay outputs at the n-th time sample. If mi = 1
for every i , we obtain the well-known state space description of a discrete-time
linear system [Kai80]. In the case of FDNs, mi are typically numbers of the orders
of hundreds or thousands, and the variables s i (n) are only a small subset of the
system state at time n, being the whole state represented by the content of all the
delay lines.

From the state-variable description of the FDN, it is possible to find the system
transfer function [Roc96, RS97] as

A]-'b + d. (6.41)

The diagonal matrix D(z) = diag (zPm1, z-mz ,... z - ~ ~) is called the delay ma-
trix, and A = [a i , j] ~ ~ ~ is called the feedback matrix.

The stability properties of a FDN are all ascribed to the feedback matrix. The
fact that llAll" decays exponentially with n ensures that the whole structure is
stable [Roc96, RS971.

The poles of the FDN are found as the solutions of

det[A - D(z-l)] = 0 . (6.42)

In order to have all the poles on the unit circle, it is sufficient to choose a unitary
matrix. This choice leads to the construction of a lossless prototype but this is not
the only choice allowed.

The zeros of the transfer function can also be found [Roc96, RS97] as the solu-
tions of

det[A - b-cT - D(.-')] = 0
1
d

(6.43)

In practice, once we have constructed a lossless FDN prototype, we must insert
attenuation coefficients and filters in the feedback loop. For instance, following the
indications of Jot [JC91], we can cascade every delay line with a gain

g . - (p
2 - (6.44)

This corresponds to replacing D (z) with D (z / a) in (6.41). With this choice of the
attenuation coefficients, all the poles are contracted by the same factor a. As a

6.5 Reverberation 183

consequence, all the modes decay with the same rate, and the reverberation time
(defined for a level attenuation of 60 dB) is given by

T d = - .
- 3Ts
log a (6.45)

In order to have a faster decay at higher frequencies, as happens in real en-
closures, we must cascade the delay lines with lowpass filters. If the attenuation
coefficients gi are replaced by lowpass filters, we can still get a local smoothness of
decay times at various frequencies by satisfying the condition (6.44), where gi and
a have been made frequency dependent:

G ~ (z) = ami(^), (6.46)

where A (z) can be interpreted as per-sample filtering [JS83, JC91, Smi921.

It is important to note that a uniform decay of neighboring modes, even though
commonly desired in artificial reverberation, is not found in real enclosures. The
normal modes of a room are associated with stationary waves, whose absorption
depends on the spatial directions taken by these waves. For instance, in a rectangn-
lar enclosure, axial waves are absorbed less than oblique waves [Morgl]. Therefore,
neighboring modes associated with different directions can have different reverber-
ation times. Actually, for commonly found rooms having irregularities in the geom-
etry and in the materials, the response is close to that of a room having diffusive
walls, where the energy rapidly spreads among the different modes. In these cases,
we can find that the decay time is quite uniform among the modes [Kut95].

Parameterization

The main questions arising once we have established a computational structure
called FDN are: What are the numbers that can be put in place of the many
coefficients of the structure? How should these numbers be chosen?

The most delicate part of the structure is the feedback matrix. In fact, it governs
the stability of the whole structure. In particular, it is desirable to start with a
lossless prototype, i.e. a reference structure providing an endless, flat decay. The
reader interested in general matrix classes that might work as prototypes is referred
to the literature [Jot92, RS97, Roc97, Gar98bl. Here we only mention the class of
circulant matrices, having the general form

A matrix such as this is used in the Csound babo opcode. The stability of a FDN is
related to the magnitude of its eigenvalues, which can be computed by the Discrete
Fourier Transform of the first row, in the case of a circulant matrix. By keeping

184 6 Spatial Effects

these eigenvalues on the unit circle (i.e., magnitude one) we ensure that the whole
structure is stable and lossless. The control over the angle of the eigenvalues can
be translated into a direct control over the degree of diffusion of the enclosure
that is being simulated by the FDN. The limiting cases are the diagonal matrix,
corresponding to perfectly reflecting walls, and the matrix whose rows are sequences
of equal-magnitude numbers and (pseudo-)randomly distributed signs [Roc97].

Another critical set of parameters is given by the lengths of the delay lines. Sev-
eral authors suggested the use of sample lengths that are mutually coprime numbers
in order to minimize the collision of echoes in the impulse response. However, if the
FDN is linked to a physical and geometrical interpretation, as it is done in the
Ball-within-the-Box (BaBo) model [Roc95], the delay lengths are derived from the
geometry of the room being simulated and the resulting digital reverb quality is
related to the quality of the actual room. How such derivation of delay lengths is
actually performed is understandable from Fig. 6.23. A delay line will be associated
to a harmonic series of normal modes, all obtainable from a plane wave loop that
bounces back and forth within the enclosure. The delay length for the particular
series of normal modes represented in Fig. 6.23 is given by the time interval between
two consecutive collisions of the plane wavefront along the main diagonal, i.e. twice
the time taken to travel the distance

(6.47)

being fo the fundamental frequency of the harmonic modal series. The extension of
the BaBo model to spherical enclosures was presented in [RDOl].

6.5.4 Convolution with Room Impulse Responses

If the impulse response of a target room is readily available, the most faithful
reverberation method would be to convolve the input signal with such a response.
Direct convolution can be done by storing each sample of the impulse response as a
coefficient of an FIR filter whose input is the dry signal. Direct convolution becomes
easily impractical if the length of the target response exceeds small fractions of a
second, as it would translate into several hundreds of taps in the filter structure. One
solution is to perform the convolution block by block in the frequency domain: Given
the Fourier transform of the impulse response, and the Fourier transform of a block
of input signal, the two can be multiplied point by point and the result transformed
back to the time domain. As this kind of processing is performed on successive
blocks of the input signal, the output signal is obtained by overlapping and adding
the partial results [OS89]. Thanks to the FFT computation of the discrete Fourier
transform, such techniques can be significantly faster. A drawback is that, in order
to be operated in real time, a block of N samples must be read and then processed
while a second block is being read. Therefore, the input-output latency in samples is
twice the size of a block, and this is not tolerable in practical real-time environments.

The complexity-latency trade-off is illustrated in Fig. 6.28, where the direct-form
and the block-processing solutions can be located, together with a third efficient yet

6.5 Reverberation 185

low-latency solution [Gar95, Mii1991. This third realization of convolution is based
on a decomposition of the impulse response into increasingly large chunks. The
size of each chunk is twice the size of its predecessor, so that the latency of prior
computation can be occupied by the computations related to the following impulse-
response chunk. Details and discussion on convolution were presented in section
2.2.4.

l Direct form FIR

I Block-based FFT

latency

Figure 6.28 Complexity vs. latency trade-off in convolution.

Even if we have enough computer power to compute convolutions by long im-
pulse responses in real time, there are still serious reasons to prefer reverberation
algorithms based on feedback delay networks in many practical contexts. The rea-
sons are similar to those that make a CAD description of a scene preferable to a
still picture whenever several views have to be extracted or the environment has
to be modified interactively. In fact, it is not easy to modify a room impulse re-
sponse to reflect some of the room attributes, e.g. its high-frequency absorption,
and it is even less obvious how to spatialize the echoes of the impulse response
in order to get a proper sense of envelopment. If the impulse response is coming
from a spatial rendering algorithm, such as ray tracing, these manipulations can be
operated at the level of room description, and the coefficients of the room impulse
response transmitted to the real-time convolver. In the low-latency block based im-
plementations, we can even have faster update rates for the smaller early chunks
of the impulse response, and slower update rates for the reverberant tail. However,
continuous variations of the room impulse response are rendered more easily using
a model of reverberation operating on a sample-by-sample basis, such as those of
section 6.5.3.

Music Applications and Control

Reverberation has been used as a compositional dimension by some authors. Again,
Chowning gave one of the most important examples in the piece “Turenas”, es-
pecially for the use of reverberation as a means to achieve a sense of distance, as
explained in section 6.2.3.

186 6 Spatial Effects

Luigi Nono made extensive use of reverberators to extend the possibilities of ac-
tual performance halls. For instance, in [m-Non88] sudden changes in reverberation
time give the impression of doors that momentarily open the view to larger spaces.
Moreover, the timbral features of running reverberance, with an ultra-natural decay
time of 30 S, are used to give an intense expressive character to a sustained low note
of the tuba.

There are several examples of reverberation by direct convolution with the pe-
culiar impulse response of existing spaces. In the work of some authors, such as
Barry Truax or Agostino Di Scipio, reverberation is often a byproduct of granular
synthesis that can be somehow controlled by governing the density and distribution
of concrete or synthetic sound grains.

Feedback delay networks can be interpreted as models of 3-D resonators rather
than strict reverberators. If these resonators are varied in time in their size and
geometry, several kinds of interesting filtering effects can be achieved, ranging from
irregular comb-filtering of the voice [m-Bat93] to colored drones carrying an intrinsic
sense of depth [m-Doa98].

A new interesting perspective on spatial control of audio effects has been opened
up by some recent works by Di Scipio, where the amplification chain and the lis-
tening room become parts of the composition itself as they concur to determine
the overall character of a piece. For instance, in [m-DiSOO] the live performance
makes use of a few microphones, whose input is compared with the synthetic sound
material, and the difference signals are used to control several aspects of the sound
transformation process. In this way, the final result is a combination of the original
material, the sound transformation algorithms, the peculiarities and variability of
the room/audience combination, and the real-time actions of the performer [DiS98].

6.6 Spatial Enhancements

6.6.1 Stereo Enhancement

In this chapter, we have looked at the problem of reproducing the spatial image
of a sound source using different approaches. At one extreme, one can record a
couple of sound signals by means of a dummy head and reproduce it by means
of headphones or transaural loudspeaker arrangements. This approach has both
practical advantages and drawbacks that have previously been explained in sec-
tions 6.3.4 and 6.4.5. Moreover, when it is used to collect samples to be played
by sound samplers, another severe problem occurs: the waveform loops, commonly
used to lengthen a steady sound beyond its stored length, tend to magnify any
spatial shift of the sound image, which is perceived as floating cyclically in space.
Instead of doing such an “integral sampling”, the spatial information can be intro-
duced in a post-processing stage by implementation of HRTF filters. However, this
approach tends to consider sources as being point-like and not too close to the ears.
A typical example of instrumental sound that is difficult to spatialize properly is

6.6 Spatial Enhancements 187

the piano. For the pianist, the sound source is perceived as changing its spatial cen-
troid according to the note that is being played (the hammers are displaced along
a relatively wide area) and during a single note decay (as different contributions
from the soundboard, the frame, and the resonating strings become evident). It is
clear that any form of binaural or transaural processing that reproduces this kind
of effects would be quite complicated. Fortunately, there are simplified approaches
to the rendering of spatial attributes of extended sound sources. The general idea
is that of constructing a simple parametric model that captures the spatial sound
features of interest. The most interesting feature is the mutual correlation between
two audio channels, already defined in (6.9). If the two channels are presented bin-
aurally, a low degree of correlation is usually perceived as an externalization of the
sound image, and the fluctuations of the correlation function in time are associ-
ated with a spatial impression of the enclosed space. Some authors [Ken95b, K0831
have investigated how the cross-correlation between two audio channels is perceived
through a pair of loudspeakers. The peak value R of the function (6.9), computed
on windowed portions of discretized signal, can take values in the range between
-1 and +l, where

1 identical signals (modulo a time shift)

0 uncorrelatecl signals .
R = { -1 180-degrees out of phase signals (modulo a time shift) } (6.48)

Experiments with noise and natural sources have shown that, in a standard stereo
loudspeaker layout, changes in the degree of correlation R give rise to a combination
of changes in apparent source width and distance, as depicted in Fig. 6.29. This
picture illustrates a qualitative behavior, the actual width and distance of sound
sources will depend on their own sonic nature, as well as on the kind of processing
that leads to a specified value of R. In fact, aspects of the correlation function other
than the peak value will also contribute to the perceived imagery, for instance by
changing the degree of coupling between distance and width.

Apparent Source Width * *

R=O

R=-l

Figure 6.29 Apparent source width and distance for varying degrees of correlation R.

Kendall [Ken95b] proposes adjusting the degree of correlation between two audio
channels by means of a couple of filters whose impulse responses are set to the desired
value of R. Even though the perception of spatial width seems to be mainly affected

188 6 Spatial Effects

by frequencies below 2-3 kHz, a proposed filter design criterion consists of taking the
full-range Inverse Fourier Transform (IFT) of two sequences having flat magnitude
and random phases 41 and $2. Values of R between 0 and If1 are obtained by
composition of the two phase sequences, and taking the inverse transform with the
phase sequences (41, k41 + 4 2) . In this way, a catalog of FIR filters having various
degrees of mutual correlation can be pre-constructed. The underlying assumption
is that a flat magnitude response would not induce coloration in the decorrelated
signals. However, this assumption collides with the following facts:

As explained in section 6.4.2, a pure phase difference between two sinusoidal
components at the loudspeakers induces a level difference at the ears. There-
fore, the presumed magnitude transparency of the filters is not preserved at
the ears.

Between the specified frequency points, the magnitude can vary widely. One
can increase the number of points (and the size of the IFT), but this comes at
the expense of longer FIR filters. Besides being more expensive, if these filters
extend their impulse response beyond 20 ms, a diffusion effect is introduced.

Still under the assumption that a flat magnitude response at the loudspeaker
is an important requirement, an alternative decorrelation is proposed in [Ken95b],
which makes use of allpass filters whose poles are randomly distributed within the
unit circle. This technique ensures that the magnitude response at the loudspeakers
is flat in the whole frequency range. Moreover, it is easier to implement dynamic
variations of the filter coefficients without reading precomputed values in a table.
Dynamic filter variations produce interesting effects that resemble variations in the
geometry of a source or a room. In both the FIR and the allpass decorrelators,
the filter order has to be quite high (several hundred) to achieve good degrees of
decorrelation. Also, working only with random phase variations can introduce an
unpleasant character, called “phasiness” [Ger92b, Ger92a1, to the perceived spatial
image. If we consider the Fourier transforms y1 and y2 of the two channels of a
binaural recording, we can define the two quantities

0 Apparent position: X(E)
Phasiness: S (z) .

The phasiness is considered as a negative attribute, especially because it induces
listening fatigue. In order to minimize phasiness, Gerzon [Ger92a] proposes linear
phase FIR filters with irregular magnitude. Between the filters applied to the two
channels, the magnitude responses should be complementary to avoid coloration.
Since realizing these requirements in practice can be difficult and expensive, one
possibility is to use allpass filters networked to form a multi-input multi-output
allpass block.

Considering the prescriptions of Kendall, who recommends using flat-magnitude
decorrelation filters, and those of Gerzon, who recommends using linear-phase fil-
ters, one might argue that in practice neither of the two ways is necessarily the

6.6 Spatial Enhancements 189

best. A third way is found by using a feedback delay network (see section 6.5.3),
where two relatively uncorrelated outputs can be taken by using two distinct sets
of output coefficients. The scheme for such a decorrelator is depicted in Fig. 6.30,
where the d coefficients weight the contribution of the stereo input, ma and m, are
the delays of direct signals, and mf is the delay of the signal circulated in the FDN.
The delay lengths can be set long enough to avoid coloration and coprime to each
other to minimize temporal artifacts. Alternatively, if one is aware of the physical
reasons for decorrelation at the ears, the delay lengths might be tuned based on
some physical object involved in sound diffusion and propagation. For instance, in
the case of the piano it is likely that the soundboard plays a key role in providing
the appropriate decorrelation to the ears of the pianist. Therefore, the delay lengths
can be tuned to match the lowest resonances of a piano soundboard.

'1,1 a1.2 a1,3 '1.4

'2.1 ' 2 . 2 '3.2 a4,2

'3.1 a3,2 a3.3 '3.4 I
Figure 6.30 Decorrelation of a stereo input pair by means of a feedback delay network.

The model in Fig. 6.30 allows a fine tuning of the central position of the sound
image by adjustment of interaural time and intensity differences, without changing
the overall width of the sound image, which is essentially due to the FDN. It can also
be augmented and made more accurate by means of the structural binaural model
presented in section 6.3.4. Finally, the properly decorrelated signals can be played
through headphones or, using the structures of section 6.4.5, through a loudspeaker
pair.

Figure 6.31 shows the measured interchannel ratio of magnitudes, apparent po-
sition, and phasiness of a lowpass filtered and subsampled binaural piano recording,
taken in a time window that extends for 100 ms right after the attack. The same
quantities can be plotted after replacing the two binaural channels with the out-
puts of the network of Fig. 6.30. This kind of visualization, together with plots of
the short-time inter-channel correlation, is beneficial as a complement to the aural
feedback in the fine tuning stage of the decorrelator coefficients.

190 6 Spatial Effects

20

15

l a

5

a

-5

-1 a

-1 5

-20

-
2000 4000 n2

3

21
I

1

0

-1

-2 -

-3 -

-4 -
2000 4000

-4
2000 4000 H2

Figure 6.31 Frequency-dependent ratio of magnitudes, apparent position, and phasiness
of a binaural piano sample.

Reported
image
position'

image shift

displaced from
the loudspeakers

precedence effect

collapsing at
one loudspeaker

1 rns Precedence time delay

release
echoic

Figure 6.32 Reported apparent sound image position for perfectly correlated (thin line)
and decorrelated (thick line) signals (after Kendall [Ken95b]).

As noted in [Ken95b], a decorrelator is not only useful to increase the apparent
width of a sound source, but can also be effective in defeating the precedence effect
to some extent. Figure 6.32 shows how the listener perceives musical sounds coming
from a loudspeaker pair as a function of the relative time difference between signals
(for instance, due to off-axis listening positions) and for two extreme degrees of
correlation.

6.6 Spatial Enhancements 191

6.6.2 Sound Radiation Simulation

In common musical thinking, loudspeakers are often considered transparent sources
of either spherical (point source) or plane (planar infinitely extended source) waves.
These assumptions are also made, for the sake of simplicity, by the designers of most
spatialization systems. However, no loudspeaker system is transparent because it
introduces linear and nonlinear distortion, and its radiation pattern can never be
described as a sphere or a plane. As a consequence, there are spatial and signal
distortions that can degrade the quality of music played by means of loudspeakers.
These distortions become easily audible when there are acoustic instruments ampli-
fied by loudspeaker systems. As any sound engineer can confirm, obtaining a good
balance between the natural source and the loudspeakers can be quite difficult, so
that delays are often introduced to deceive the audience using the precedence effect
(see section 6.2.2), so that they believe that sounds are coming from the natural
source only.

Sometimes, it is interesting to reproduce the radiation pattern of an acoustic
source, such as a musical instrument, by means of a system of loudspeakers. This
is seldom the case in regular concert layouts, but it can be effective in sound in-
stallations and sound sculptures, where the listeners are supposed to move around
and through the loudspeaker system. Another special application of sound radiation
simulation is found in digital pianos: even if sound samples are perfectly recorded
from a high-quality instrument, the spatial impression given to the pianist by sounds
as they are played through a few small loudspeakers can be quite disappointing.

Actual Source (1)
c.

Loudspeaker Ensemble (2)
-.

Figure 6.33 Sound source radiation measured along a boundary (l), and reconstruction
of the sound field within the boundary by means of a loudspeaker set (2).

Sound radiation simulation can be formulated as a problem of reconstruction of
the acoustic field in a space by means of a finite number of sources. The situation
is depicted in Fig. 6.33, where the target sound source is depicted within a volume
enclosed by a boundary, and the same volume encloses a set of loudspeakers. The
goal is to apply some filtering to the loudspeakers so that the system on the right

192 6 Spatial Effects

has the same radiation properties as the system on the left. In mathematical terms,
this is expressed by

N c ai(w)Pi(r,w) = R(r,w), for any point r on the boundary d V , (6.49)
i=l

where Pi(r, W) is the frequency response of loudspeaker i measured at point r , and
R(r, W) is the frequency response of the target sound source measured at the same
point r. If (6.49) holds at the boundary, the equivalence of the two systems of
Fig. 6.33 is also true in the whole enclosed space [EH69]. The frequency responses
Pi can be thought of as vectors identifying a vector space V , so that the set of
coefficients ai that gives the vector closest to R is obtained by orthogonal projection
of R onto V (see Fig. 6.34). The projection is such that the scalar product between
the distance vector R - C j ajPj and each basis vector Pj is identically zero. Since
the scalar product is computed by integration over the boundary [DCW95], we have

Figure 6.34 Finding the minimum distance between a vector R and a vector space V by
orthogonal projection.

The solution to (6.50) can be expressed as the solution to a linear system of
equations in the unknowns a j , to be solved for each frequency W of interest. The
resulting frequency responses aj (W) , to be imposed on each audio channel, can then
be approximated by filter design techniques, or inverted and implemented by direct
or fast convolution. With a small number of loudspeakers, the radiation pattern
can be fairly approximated only up to a few hundreds Hz [DCW95]. However,
accurate tuning of low-frequency directivity can be enough to give the impression
of a directional tone color similar to an acoustic source. Some researchers have
started collecting directional impulse responses of musical instruments [CT98], so
that a database of filter coefficients can be designed, and they can be switched and
interpolated interactively in electroacoustic music performances.

6.7 Conclusion 193

6.7 Conclusion

Playing with the spatial attributes of sound has been an intriguing and challen-
ging task for many musicians and sound designers. The multiplicity of techniques
developed so far has been roughly overviewed in the previous pages. Despite the
thickness of this chapter, we have certainly missed many important contributions to
the field. However, we endeavored to communicate the main structural, perceptual,
or technological limitations and possibilities of spatial audio. We hope that the
sound designer, after reading this chapter, will be able to model some spatial features
of sound or, at least, to be conscious of those features that will be part of the
aesthetics of the design process rather than part of the sonic outcome.

Technological progress will stimulate more research in spatial audio in the future.
A particularly promising area is that of audio embedded in everyday objects as a
feasible form of display for ubiquitous computing. As the number and flexibility
of sound sources are likely to increase in this new context, it is likely that new
paradigms for spatial sound design will emerge.

Sound and Music

[m-Bat93] G. Battistelli. Frau Frankenstein. 1993. In: CD BMG RICORDI
74321465302, 1997.

[m-Bou84] P. Boulez. Rkpons. 1981-84. In: CD Deutsche Grammophon 457 605-2,
1998.

[m-Cag69] J. Cage and L. Hiller. HPSCHD. 1967-69. In: LP Nonesuch Records
H-71224, 1969. CD IDEAMA 069. Karlsruhe: ZKM, 1996.

[m-Cho72] J. Chowning. Threnas. 1972. In: CD Wergo WER 2012-50, 1988.

[m-Cif95] F. Cifariello Ciardi. Games. 1995. Edipan Ed., Rome. In: CD PAN
3064. 1999.

[m-DiSOO] A. Di Scipio. 5 Difference-Sensitive Circular Interactions. 2000. In:
CD of the International Computer Music Conference. Berlin, Germany,
2000. ICMA.

[m-Doa98] R. Doati. Inventario delle Eclissi. 1996. In: CD annex to the book
Poetronics: A1 confine tra suono, parola, tecnologia, A. Di Vincenzo and
A.G. Immertat, eds., Edizioni Tracce, Pescara - Italy, 1999.

[m-Gua94] A. Guarnieri. Orfeo cantando ... tolse 1994. In: CD BMG RICORDI
74321526802,1997.

[m-Gua99] A. Guarnieri. Passione secondo Matteo. 1999. Ricordi Ed., Milan.

[m-Non82] L. Nono. Prometeo. 1982. Ricordi Ed., Milan.

194 6 Spatial Effects

[m-Non88] L. Nono. Post-Prae-Ludium per Donau. 1987. In: CD ARTIS ARC0
032, 1993.

[m-Pis95] M. Pisati. ZONE I: zone hack a direzione virtuale. 1995. Ricordi Ed.,
Milan.

[m-Sto56] K. Stockhausen. Gesang der Junglinge. 1955-56. In: CD-3 of the Stock-
hausen Complete Edition, Stockhausen Verlag.

[m-Tru85] B. Truax. Solar Ellipse. 1984-85. In: CD Wergo WER 2017-50, 1988.

Bibliography

[AB791

[BC001

[Berg21

[BD981

[Bla83]

[BL86]

[Bor84]

[BV95]

[CB891

[Cho7l]

J. Allen and D. Berkley. Image method for efficiently simulating small-
room acoustics. J . Acoust. Soc. Am., 65(4):912-915, April 1979.

R. Bianchini and A. Cipriani. Virtual Sound. ConTempo, Rome, Italy,
2000.

L.L. Beranek. Concert hall acoustics - 1992. J. Acoust. Soc. Am., 92(1):1-
39, July 1992.

C.P. Brown and R.O. Duda. A structural model for binaural sound syn-
thesis. IEEE Trans. Speech and Audio Processing, 6(5):476-488, Sept.
1998.

J. Blauert. Spatial Hearing: The Psychophysics of Human Sound Local-
ization. MIT Press, 1983.

J . Blauert and W. Lindemann. Auditory spaciousness: Some further
psychoacoustic analyses. J. Acoust. Soc. Am., 80(2):533-542, August
1986.

J. Borish. Extension of the image model to arbitrary polyhedra. J.
Acoust. Soc. Am., 75(6):1827-1836, June 1984.

A. Belladonna and A. Vidolin. spAAce: un programma di spazializzazione
per il Live Electronics. In Proc. Second Int. Conf. on Acoustics ana!
Musical Research, pages 113-118, Ferrara, Italy, 1995.

D.H. Cooper and J.L. Bauck. Prospects for transaural recording. J.
Audio Eng. Soc., 37(1/2):3-19, Jan/Feb 1989.

J.M. Chowning. The simulation of moving sound sources. J . Audio Eng.
Soc., 19(1):2-6, 1971. Reprinted in the Computer Music Journal, June
1977.

Bibliography 195

[Cho99] J.M. Chowning. Perceptual fusion and auditory perspective. In P.R. Cook
(ed), Music, Cosgnition, and Computerized Sound: An Introduction to
Psychoacoustics. MIT Press, Cambridge, MA, 1999. Pages 261-275.
Reprinted in the Computer Music Journal, June 1977.

[CT98] P.R. Cook and D. Theman. NBody: interactive multidirectional musi-
cal instrument body radiation simulators, and a database of measured
impulse responses. In Proc. International Computer Music Conference,
Ann Arbor, MI, :pages 353-356, 1998.

[CW93] M.F. Cohen and J.R. Wallace. Radiosity and Realistic Image Synthesis.
Academic Press, 1993.

[Dat97] J. Dattorro. Effect design - Part 1: Reverberator and other filters. J.
Audio Eng. Soc., 45(19):660-684, September 1997.

[DCW95] P. Derogis, R. Causse, and 0. Warusfel. On the reproduction of directiv-
ity patterns using multi-loudspeaker sources. In Proc. Intern. Symp. on

[DiS98]

[DM981

[Dur92]

[EH691

[FU98]

[Gar951

[Gar98a]

[Gar98b]

[GB981

Musical Acoustics, Dourdan, France, pages 387-392, 1995.

A. Di Scipio. El sonido en el espacio, el espacio en el sonido. Doce Notas
Preliminares, 2:133-157, December 1998.

R.O. Duda and W.L. Martens. Range dependence of the response of a
spherical head model. J. Acoust. Soc. Am., 104(5):3048-3058, November
1998.

N. Durlach. On the externalization of auditory images. Presence,
1(2):251-257, Spring 1992.

W.C. Elmore and M.A. Heald. Physics of Waves. McGraw-Hill, 1969.
Reprinted by Dover Publications, Inc., 1985.

A. Farina and E. Ugolotti. Software implementation of B-format encoding
and decoding. Psreprint of the Audio Eng. Soc. Convention, Amsterdam,
Netherlands, May, 1998.

W.G. Gardner. Efficient convolution without input-output delay. J.
Audio Eng. Soc.:, 43(3):127-136, March 1995.

W.G. Gardner. 3-0 Audio using Loudspeakers. Kluwer Academic Pub-
lishers, 1998.

W.G. Gardner. Reverberation algorithms. In M. Kahrs and K. Bran-
denburg (eds), Applications of Digital Signal Processing to Audio and
Acoustics, Kluwer Academic Publishers, pages 85-131, 1998.

M.A. Gerzon and G.J. Barton. Surround sound apparatus, 1998. 1J.S.
Patent no. 5,757,927.

196 6 Spatial Effects

[Ger76] M.A. Gerzon. Unitary (energy preserving) multichannel networks with
feedback. Electronics Letters V, 12(11):278-279, 1976.

[Ger85] M.A. Gerzon. Ambisonics in multichannel broadcasting and video. J .
Audio Eng. Soc., 33959-871, November 1985.

[Ger92a] M.A. Gerzon. Optimum reproduction matrices for multispeaker stereo.
J. Audio Eng. Soc., 40(7/8):571-589, 1992.

[Ger92b] M.A. Gerzon. Signal processing for simulating realistic stereo images.
Preprint of the Audio Eng. Soc. Convention, San Francisco, October
1992.

[GM941 W.G. Gardner and K. Martin. HRTF measurements of a KEMAR
dummy-head microphone. Technical report # 280, MIT Media Lab, 1994.

[Gri94] D. Griesinger. Subjective loudness of running reverberation in halls and
stages. In Proc. W.C. Sabine Centennial Symposium, Cambridge, MA,
pages 89-92, June 1994.

[Gri97] D. Griesinger. The psychoacoustics of apparent source width, spacious-
ness and envelopment in performance spaces. Acustica, 83:721-731,1997.

[Gri99] D. Griesinger. Objective measures of spaciousness and envelopment. In
Proc. Audio Eng. Soc. Int. Conference, Rovaniemi, Finland, pages 27-41,
April 1999.

[Ha1951 H.P. Haller. Das Experimental Studio der Heinrich-Strobel-Stiftung
des Sudwestfunks Freiburg 1971-1989. Die Erforschung der Elektronis-
chen Klangumformung und ihre Geschichte. Siidwestfunk, Schriftenre-
iche, Rundfunkgeschichte, Band 6/1 und 6/2 Nomos Verlagsgesellschaft,
Baden-Baden, Germany, 1995.

[HW96] W.M. Hartmann and A. Wittenberg. On the externalization of sound
images. J. Acoust. Soc. Am., 99(6):3678-3688, 1996.

[HZ991 J. Huopaniemi and N. Zacharov. Objective and subjective evaluation
of head-related transfer function filter design. J. Audio Eng. Soc.,
47(4):218-239, April 1999.

[IAS98] 3D Working Group of the Interactive Audio Special Interest Group. In-
teractive 3 0 Audio Rendering Guidelines. Level 1.0. MIDI Manufacturers
Association, June 9, 1998.

[IAS99] 3D Working Group of the Interactive Audio Special Interest Group. In-
teractive 3 0 Audio Rendering Guidelines. Level 2.0. MIDI Manufacturers
Association, September 20, 1999.

[JC91] J.-M. Jot and A. Chaigne. Digital delay networks for designing artifi-
cial reverberators. Preprint of the Audio Eng. Soc. Convention, Paris,
February 1991.

Bibliography 197

[Jot921 J.-M. Jot. Etude et Redhation d’un Spatialzsateur de Sons par Moddes
Physiques et Perceptifs. PhD thesis, TELECOM, Paris 92 E 019, 1992.

[Jot991 J.-M. Jot. Real-time spatial processing of sounds for music, multimedia,
and interactive human-computer interfaces. Multimedia Systems, 7(1):55-
69, 1999.

[JS83] D.A. Jaffe and J.O. Smith. Extensions of the Karplus-Strong plucked
string algorithm. Computer Music J., 7(2):56-69, 1983.

[Ju195] J.-P. Jullien. Structured model for the representation and the control of
room acoustical quality. In Proc. 15th Int. Conf. on Acoustics, Trond-
heim, Norway, pages 517-520, 1995.

[Kai80] T. Kailath. Linear Systems. Prentice-Hall, 1980.

[KC981 A. Kulkarni and €[.S. Colburn. Role of spectral detail in sound-source
localization. Nature, 396747-749, December 1998.

[Ken95a] G.S. Kendall. A 3-D sound primer: directional hearing and stereo repro-
duction. Computer Music J . , 19(4):23-46, Winter 1995.

[Ken95b] G.S. Kendall. The decorrelation of audio signals and its impact on spatial
imagery. Computer Music J., 19(4):71-87, Winter 1995.

[K0831 K. Kurozumi and K. Ohgushi. The relationship between the cross-
correlation coefficient of two-channel acoustic signals and sound image
quality J. Acoust. Soc. Am., 74:1728-1733, 1983.

[Kuh77] G. Kuhn. Model for the interaural time differences in the azimuthal
plane. J. Acoust. Soc. Am., 62:157-167, July 1977.

[KutSl] H. Kuttruff. Room Acoustics. Elsevier Science, Essex, 1991. 3rd ed; 1st
ed 1973.

[Kut95] H. Kuttruff. A simple iteration scheme for the computation of decay
constants in enclosures with diffusely reflecting boundaries. J . Acoust.
Soc. Am., 98(1):288-293, July 1995.

[KVOl] M. Kubovy and D. Van Valkenburg. Auditory and visual objects. Cog-
nition, 90:97-126, 2001.

[KW92] D.J. Kistler and F.L. Wightman. A model of head-related transfer func-
tions based on principal components analysis and minimum-phase recon-
struction. J . Acoust. Soc. Am., 91(3):1637-1647, March 1992.

[Kyr98] C. Kyriakakis. Fundamental and technological limitations of immersive
audio systems. Proc. IEEE, 86(5):941-951, May 1998.

[LS99] C. Landone and M. Sandler. Issues in performance prediction of surround
systems in sound reinforcement applications. In Proc. DAFX-99 Digital
Audio Effects Workshop, pages 77-82, Trondheim, December 1999.

198 6 Spatial Effects

[MarOl] W.L. Martens Psychophysical calibration for controlling the range of a
virtual sound source: multidimensional complexity in spatial auditory dis-
play. In Int. Conf. on Auditory Display, pages 197-207, ESPOO, Finland,
2001.

[MHV97] J. Mackenzie, J. Huopaniemi, and V. Valimaki. Low-order modeling of
head-related transfer functions using balanced model truncation. IEEE
Signal Processing Letters, 4(2):39-41, February 1997.

[MI861 P.M. Morse and K.U. Ingard. Theoretical Acoustics. McGraw-Hill, 1968.
Reprinted in 1986, Princeton University Press.

[Mit98] S.K. Mitra. Digital Signal Processing: A Computer-Based Approach.
McGraw-Hill, 2nd edition, 2001.

[MM951 D. G. Malham and A. Myatt. 3-D sound spatialization using ambisonic
techniques. Computer Music J., 19(4):58-70, Winter 1995.

[Moo791 J.A. Moorer. About this reverberation business. Computer Music J.,
3(2):13-18, 1979.

[Moo821 F.R. Moore. A general model for spatial processing of sounds. Computer
MUSZC J., 7(3):6-15, 1982.

[Mor911 P.M. Morse. Vibration and Sound. American Institute of Physics for the
Acoustical Society of America, 1991. 1st ed 1936, 2nd ed 1948.

[Mu1991 C. Muller-Tomfelde Low-latency convolution for real-time applications.
In Proc. Audio Eng. Soc. Int. Conference, pages 454-459, Rovaniemi,
Finland, April 1999.

[NE981 R. Nicol and M. Emerit. Reproducing 3D-sound for videoconferencing: a
comparison between holophony and ambisonic. In Proc. DAFX-98 Digital
Audio Effects Workshop, pages 17-20, Barcelona, November 1998.

[Neu98] J.G. Neuhoff. A perceptual bias for rising tones. Nature, 395(6698):123-
124, 1998.

[OS891 A.V. Oppenheim and R.W. Schafer. Discrete-Time Signal Processing.
Prentice-Hall, 1989.

[PBJ98] J.-M. Pernaux, P. Boussard, and J.-M. Jot. Virtual sound source position-
ing and mixing in 5.1 implementation on the real-time system Genesis. In
Proc. DAFX-98 Digital Audio Effects Workshop, pages 76-80, Barcelona,
November 1998.

[PKH99] V. Pulkki, M. Karjalainen, and J. Huopaniemi. Analyzing virtual sound
source attributes using binaural auditory models. J. Audio Eng. Soc.,
47(4):203-217, April 1999.

[Pou57] J. Poullin. Son et espace. La Revue Musicale, 1957.

Bibliography 199

[Pu197] V. Pulkki. Virtual sound source positioning using vector base amplitude
panning. J. Audio Eng. Soc., 45(6):456-466, 1997.

[RBM95] D. Rocchesso, 0. 13allan, and L. Mozzoni. Sound spatialization for live

[RDOl]

[Roc951

[Roc961

[Roc971

[Its971

[RV891

[RV961

[&h611

[%h621

[Sch70]

[%h731

[SF851

music performance. Proc. Second Int. Conf. on Acoustics and Musical
Research, pages 183-188, Ferrara, Italy, 1995.

D. Rocchesso and P. Dutilleux. Generalization of a 3-D resonator model
for the simulation of spherical enclosures. Applied Signal Processing,
2001:15-26, 2001.

D. Rocchesso. The Ball within the Box: a sound-processing metaphor.
Computer Music J., 19(4):47-57, Winter 1995.

D. Rocchesso. Strutture ed Algoritmi per l%laborazione del Suono basati
su Reti di Linee di Ritardo Interconnesse. PhD thesis, University of
Padua, February 1996.

D. Rocchesso. Maximally-diffusive yet efficient feedback delay networks
for artificial reverberation. IEEE Signal Processing Letters, 4(9):252-255,
September 1997.

D. Rocchesso and J.O. Smith. Circulant and elliptic feedback delay net-
works for artificial reverberation. IEEE Transactions on Speech and AIL-
dio Processing, 5(1):51-63, January 1997.

D. Rife and J. Vanderkooy. Transfer-function measurements using
maximum-length sequences. J. Audio Eng. Soc., 37(6):419-444, June
1989.

D. Rocchesso and A. Vidolin. Sintesi del movimento e dello spazio nella
musica elettroacustica. In Atti del Convegno La Terra Fertile, L’Aquila,
Italy, October 1996.

M.R. Schroeder. Improved quasi-stereophony and “colorless” artificial
reverberation. J. ,4coust. Soc. Am., 33(8):1061-1064, August 1961.

M.R. Schroeder. Natural-sounding artificial reverberation. J. Audio Eng.
SOC., 10(3):219-233, July 1962.

M.R. Schroeder. Digital simulation of sound transmission in reverberant
spaces. J . Acoust. Soc. Am., 47(2):424-431, 1970.

M.R. Schroeder. Computer models for concert hall acoustics. American
Journal of Physics, 41:461-471, 1973.

J.O. Smith and B. Friedlander. Adaptive interpolated time-delay esti-
mation. IEEE Trans. Aerospace and Electronic Systems, 21(2):180-199,
March 1985.

200 6 Spatial Effects

[SL61] M.R. Schroeder and B. Logan. “Colorless” artificial reverberation. J.
Audio Eng. Soc., 9:192-197, July 1961. Reprinted in the IRE Trans. on
Audio.

[Smi85] J.O. Smith. A new approach to digital reverberation using closed waveg-
uide networks. In Proc. International Computer Music Conference, pages
47-53, Vancouver, Canada, 1985. Also available in [Smi87].

[Smi86] J.O. Smith. Elimination of limit cycles and overflow oscillations in time-
varying lattice and ladder digital filters. In Proc. IEEE Conf. Circuits and
Systems, San Jose, California, May 1986. Longer version also available
in [Smi87].

[Smi87] J.O. Smith. Music applications of digital waveguides. Report stan-m-39,
CCRMA - Stanford University, Stanford, California, 1987.

[Smi92] J.O. Smith. Physical modeling using digital waveguides. Computer Music
J . , 16(4):74-91, Winter 1992.

[SP82] J. Stautner and M. Puckette. Designing multichannel reverberators.
Computer Music J., 6(1):52-65, Spring 1982.

[Vai93] P.P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice-Hall,
1993.

[ZGM92] B. Zhou, D. Green, and J. Middlebrooks. Characterization of external ear
impulse responses using golay codes. J. Acoust. Soc. Am., 92:1169-1171,
1992.

[ZF90] E. Zwicker and H. Fastl. Psychoacoustics: Facts and Models. Springer-
Verlag, Berlin, Germany, 1990.

Chapter 7

Time-segment Processing

P. Dutilleux, G. De Poli, U. Zolzer

7.1 Introduction

In this chapter we discuss several time domain algorithms which are a combina-
tion of smaller processing blocks like amplitude/phase modulators, filters and delay
lines. These effects mainly influence the pitch and the time duration of the audio
signal. We will first introduce some basic effects like variable speed replay and pitch-
controlled resampling. They are all based on delay line modulation and amplitude
modulation. Then we will discuss two approaches for time stretching (time scaling)
of audio signals. They are based on an analysis stage, where the input signal is
divided into segments (blocks) of fixed or variable length, and a synthesis stage
where the blocks of the analysis stage are recombined by an overlap and add pro-
cedure. These time stretching techniques perform time scaling without modifying
the pitch of the signal. The fourth section focuses on pitch shifting, and introduces
three techniques: block processing based on time stretching and resampling, delay
line modulation and pitch-synchronous block processing. Block processing based on
delay line modulation performs pitch shifting by scaling the spectral envelope of
each block. Pitch-synchronous block processing performs pitch shifting by resam-
pling the spectral envelope of each block and thus preserving the spectral envelope.
The last section on time shuffling and granulation presents a more creative use of
time-segment processing. Short segments of the input signal are freely assembled
and time placed in the output signal. In this case the input sound can be much
less recognizable. The wide choice of strategies for segment organization implies a
sound composition attitude from the user.

201

202 7 Time-segment Processing

7.2 Variable Speed Replay
Introduction

Analog audio tape recorders allow replay mode over a wide range of tape speeds.
Particularly in fast forward/backward transfer mode, a monitoring of the audio
signal is possible which is used to locate a sound. During faster playback the pitch
of the sound is raised and during slower playback the pitch is lowered. With this
technique the duration of the sound is lengthened, if the tape is slowed down, and
shortened if the tape speed is increased. Figure 7.1 illustrates a sound segment
which is lenghtened and shortened and their corresponding spectra.

Signal Processing

Variable speed replay (v=I), time domain signals

-0.5 1 i
0 2000 4000 6000 8000

(~ 0 . 5)

-0.5 1 1
I I

0 2000 4000 6000 8000
(v=2)

I 1

h t o

-0.5 1
l I
0 2000 4000 6000 8000

n - t

0

-20

ti -40
-

-60

-80

Variable speed replay (v=l), spectra

P

0 1000 2000 3000 4000 5000
(~=0.5)

-20

F -40

-60

-80
0 1000 2000 3000 4000 5000

(v=2)

-40

-60

-80
0 1000 2000 3000 4000 5000

f in Hz -t

Figure 7.1 Pitch shifting: Variable speed replay leads to time compression/expansion and
compression and expansion of the spectral envelope.

The phrase “variable speed replay” is used to mean that what has happened
initially during the time period nTs,in is now happening during

n T s , r e p l a y nTs,in/v (7.1)

7.2 Variable Speed Replay 203

at the relative speed v, where Ts,in and Ts,replay are the initial and replay sampling
periods. Time expansion corresponds to W < 1. A straightforward method of imple-
menting the variable speed replay is hence to modify the sampling frequency while
playing back the sound according to

fs,replay = fs,in ‘ v (7.2)

where fs,in and fs,replay are the initial and replay sampling frequencies. One should
distinguish whether the output should be digital or may be analog. If the output
is analog, then a very effective method is to modify the sampling frequency of
the output DAC. The spectrum of the signal is scaled by W and the analog recon-
struction filter should be tuned in order to remove the spectral images after the
conversion [Gas87, Mas981.

If a digital output is required, then a sampling frequency conversion has to be
performed between the desired replay frequency fs,replay and the output sampling
frequency fs+,%t which is usually equal to f s , i n .

If v < 1 (time expansion) then fs,in > fs,replay < fS ,OPl t and more output samples
are needed than available from the input signal. The output signal is an interpolated
(over-sampled) version by the factor 1/v of the input signal. If v > 1 (time com-
pression) then fs,in < fs,Teplay > fs+t and less output samples than available in
the input signal are necessary. The input signal is decimated by the factor v. Before
decimation, the bandwidth of the input signal has to be reduced to f s , T e p l a y / 2 by a
digital lowpass filter [McN84]. The quality of the sampling rate conversion depends
very much on the interpolation filter used. A very popular method is the linear
interpolation between two adjacent samples. A review of interpolation methods can
be found in [Mas98, CR83].

A discrete-time implementation can be achieved by increasing/decreasing the
transfer rate of a recorded digital audio signal to the DA converter, thus chan-
ging the output sampling frequency compared to the recording sampling frequency.
If the output signal has to be in digital format again, we have to resample the
varispeed analog signal with the corresponding sampling frequency. A discrete-time
implementation without a DA conversion and new AD conversion was proposed
in [McN84] and is shown in Fig. 7.2. It makes use of multirate signal processing
techniques and performs an approximation of the DA/AD conversion approach. A
further signal processing algorithm to achieve the acoustical result of a variable
speed replay is the delay line modulation with a constant pitch change, which will
be discussed in section 7.4.3.

Musical Applications and Control

As well as for analog tape-based audio editing, the variable speed replay is very
popular in digital audio editing systems. See [m-Wis94c, ID 2.9 and 2.101 for a
straightforward demonstration of the effect on a voice signal.

The effect of tape speed transposition has been used by Les Paul in the piece
called “Whispering” in 1951 [Lee72]. This method is very often used in electro-
acoustic music when the pitch of concrete sounds cannot be controlled at the time

204 7 Time-segment Processing

fs

sampling frequency
output
sampling frequency

Figure 7.2 Variable speed replay scheme.

of recording. P. Schaeffer designed the Phonogine chromatique to transpose a sound
to any one of the 12 degrees of the equal tempered scale. The device was based on
a tape recorder with 12 capstans and pinch rollers. The operation of the pinch
rollers could be controlled by a piano-like keyboard. An additional gear extended
the range of operation to two octaves [Mo160, p. 71];[Roa96, p. 119];[Ges00]. Jacques
Poullin developed another version, the Phonogkne ci coulisse, which allowed contin-
uous speed modifications. A pair of cones, with a friction wheel in between, consti-
tutes a variable-ratio mechanical link between the motor and the capstan of the tape
player. The position of the friction wheel, and hence the replay speed, is controlled
by a mechanical lever. Stockhausen, in “Hymnen”, transposed orchestral sounds to
give them an overwhelming and apocalyptic character [Chi82, p. 531.

In computer music too, the variable speed replay provides an effective transposi-
tion scheme. J.-C. Risset says: by “mixing a sound with transpositions of itself with
a minute frequency difference (say, a twentieth of a Hertz), one can turn steady peri-
odic tones into a pattern where the harmonics of the tone wax and wave a t different
rates, proportional to the rank of the harmonic” [Ris98, p. 255];[m-INA3, Sud]. In
“The Gates of H.”, Ludger Brummer exploits the fact that variable speed replay
modifies both the pitch and the duration of a sample [m-Bru93, 14’40”-17’25”].
Seven copies of the same phrase, played simultaneously a t speeds 7.56, 4.49, 2.24,
1.41, 0.94, 0.67, 0.42, 0.31 are overlapped. The resulting sound begins with a com-
plex structure and an extended spectrum. As the piece continues, the faster copies
vanish and the slower versions emerge one after the other. The sound structure
simplifies and it evolves towards the very low registers.

The character of the transposed sounds is modified because all the features of
the spectrum are simultaneously scaled. The formants are scaled up leading to a
“Mickey Mouse effect” or down, as if the sounds were produced by oversized objects.
The time structure is modified as well. The transients are spread or contracted. A
vibrato in the initial sound will lose its character and will appear as a slower or
faster modulation. The sounds can also be played at negative speeds. A speed -1
yields a sound with the same average spectrum although sounding very different.
Think about speech or percussive sounds played backwards. Other transposition
schemes that are free from these drawbacks are achieved by more sophisticated
methods described in further sections of this book.

A particular application was desired by the composer Kiyoshi Furukawa. He
wanted a sampler for which the speed would be controlled by the amplitude of an

7.3 Time Stretching 205

acoustical instrument. A sound is stored in a sampler and is played as a loop. In
the meantime, the RMS amplitude of an incoming controlling signal is computed
and time averaged with independent attack and decay time constants. This ampli-
tude is converted to decibels and scaled before driving the speed of the sampler.
The parameters have to be tuned in such a way that the speed remains within a
valid range and the speed variations are intimately related to the loudness and the
dynamics of the instrument (see Fig. 7.3).

I Loop-sampler

I Decay time-constant
Attack time-constant

Figure 7.3 A loop-sampler controlled by an acoustical signal.

This effect is controlled by a clarinet in “Swim, swan” and by a viola in “den
ungeborenen Gottern” [m-Fur93, m-F‘ur971. The pitch of the acoustical instrument
selects words out of a predefined set whereas the loudness controls the replay speed
of these words.

7.3 Time Stretching
Introduction

In order to understand the issue of time stretching, let us take the example of a
signal whose duration does not fit the time slot that is allocated to its application.
Think about a speaker that has already recorded 33 seconds of speech but whose
contribution to a commercial may not be longer than 30 seconds. If he does not want
to record his text again, the sound engineer may artificially contract his speech by
10%. With the term “time stretching” we mean the contraction or expansion of
the duration of an audio signal (time compression, time expansion, time scaling -+
signal processing term). We have studied in 7.2 a method that alters the duration
of a sound, the variable speed replay, but it has the drawback of simultaneously
transposing the sound. The Harmonizer could be used to transpose the sound in the
opposite direction and the combination of both methods leads to a time stretching
algorithm.

The main task of time stretching algorithms is to shorten or lengthen a sound
file of M samples to a new particular length M‘ = (Y . M , where Q is the scaling
factor. For performing time stretching algorithms the sound file has to be available
in a stored form on a storage medium like a sampler, DAT or a hard disc. Time
stretching of a sequence of audio samples is demonstrated in Fig. 7.4. The original
signal is shown in the upper plot. The middle plot shows the sequence which is

206 7’ Time-segment Processing

Time stretching (a=i), time domain signals
0

-20

B -40

Time stretching (a=l), spectra

0.5

5 0
h

-0.5
-60

0 2000 4000 6000 8000
-80

0 1000 2000 3000 4000 5000
(a=0.5) (a=0.5)

0.5
-20

G O 2 -40

-0.5
-60

-80
0 2000 4000 6000 8000 0 1000 2000 3000 4000 5000

(a=2) (a=2)
0

-20

-40

0.5

-
t o -

-60
-0.5

0 2000 4000 6000 8000 0 1000 2000 3000 4000 5000
-80

n + f in Hz +

Figure 7.4 Time stretching with scaling factor a = 0 .5 ,2 .

shortened by a scaling factor a = 0.5 and the lower plot shows the stretching by a
scaling factor Q = 2.

Signal Processing

The intended time scaling does not correspond to the mathematical time scaling
as realized by vary-speed. We rather require a scaling of the perceived timing at-
tributes, such as speaking rate, without affecting the perceived frequency attributes,
such as pitch. We could say that we want the time scaled version of an acoustic sig-
nal to be perceived as the same sequence of acoustic events as the original signal
being reproduced according to a scaled time pattern. The time stretching algorithms
should not affect the pitch or the frequency contents of the processed signals. This
is demonstrated by the corresponding spectra (first 2000 samples) of the discrete-
time signals in Fig. 7.4. For comparison only the traditional technique for time
stretching based on the variable speed replay introduces a pitch shift (see section
7.2 and Fig. 7.1). The basic idea of time stretching by time-segment processing is to
divide the input sound into segments. Then if the sound is to be lengthened, some
segments are repeated, while if the sound is to be shortened, some segments are dis-
carded. A possible problem is amplitude and phase discontinuity at the boundaries

7.3 Time Stretching 207

of the segments. Amplitude discontinuities are avoided by partially overlapping the
blocks, while phase discontinuities are avoided by a proper time alignment of the
blocks. Two different strategies will be presented in subsections 7.3.2 and 7.3.3.

Applications

Special machines such as the Phonogbne universe1 of Pierre Schaeffer or the Tem-
pophon used by Herbert Eimerts allowed alteration of the time duration as well as
the pitch of sounds. The Phonogbne found many applications in rnusique concrbte
as a “time regulator”. In its composition “Epitaph fur Aikichi Kuboyama” , Herbert
Eimerts uses the Tempophon in order to iterate spoken word fragments. The device
allowed the scanning of syllables, vowels and plosives and could make them shorter,
longer or iterate them at will [Ha195, p. 13];[m-Eim62].

As mentioned in the Introduction, the stretching of signals can be used to match
their duration to an assigned time-slot. In Techno music, different pieces of music
are played one after the other as a continuous stream. This stream is supposed to
have only very smooth tempo or bpm (beat per minute) transitions although the
musical excerpts usually do not have the same tempo. In order to adjust the tempo
to each other, the disc jockey modifies the replay speeds at the transition from one
excerpt to the other. This method leads to temporary pitch modifications which
could be objectionable. The use of time stretching methods could eliminate this
problem.

After a brief presentation of the technology of the Phonogkne, the following
sections discuss two signal processing techniques which perform time stretching
without pitch modifications.

7.3.1 Historical Methods - Phonoghe

Fairbanks, Everitt and Jaeger report in 1954 on a modified tape recorder for time or
frequency compression-expansion of speech [Lee72, Lar981. Springer develops a sim-
ilar machine [Spr55, Spr591 and Pierre Schaeffer praises a machine called Phonogbne
universe1 that was designed as a combination of the aforementioned Phonogbne chro-
matique and Phonogbne h coulisse with the rotating head drum of Springer [Mo160,
p. 71-76];[Sch73, p. 47-48]; [m-Sch98, CD2, ID. 50-52];[Pou54, PS57, GesOO].

The modified tape recorder has several playback heads mounted on a rotating
head drum. The absolute speed of the tape at the capstan determines the duration
of the sound whereas the relative speed of the heads to that of the tape determines
the amount of transposition. By electrical summation of the outputs of the different
heads, a continous sound is delivered (Fig. 7.5). Moles reports a typical operating
range of +lo% to -40% [Mo160, p. 761. The Springer machine was also known as
Laufieitregler or Zeitdehner [Car92, p. 479-480];[End97].

208 7 Tame-segment Processing

Figure 7.5 Tape-based time compression-expansion system (After [Mo160]).

7.3.2 Synchronous Overlap and Add (SOLA)

A simple algorithm for time stretching based on correlation techniques is proposed
in [RW85, MEJ861. The input signal is divided into overlapping blocks of a fixed
length, as shown in Fig. 7.6. In a second step these overlapping blocks are shifted
according to the time scaling factor Q. Then the similarities in the area of the
overlap intervals are searched for a discrete-time lag of maximum similarity. At this
point of maximum similarity the overlapping blocks are weighted by a fade-in and
fade-out function and summed sample by sample.

overlap overlap
interval interval

Figure 7.6 SOLA time stretching.

7.3 Time Stretching 209

Algorithm description:

1. Segmentation of the input signal into blocks of length N with time shift of S,
samples.

2. Repositioning of blocks with time shift S, = a . S, with scaling factor a.

3. Computation of the cross-correlation

~ L-m-l

between z~l(n) and x ~ Z (n) , which are the segments of q (n) and x2(n) in the
overlap interval of length L.

4. Extracting the discrete-time lag 5, where the cross-correlation
~,,,,,,(5,) = r,,, has its maximum value (see Fig. 7.7a).

5 . Using this discrete-time lag IC,, fade-out z1(n) and fade-in x2(n).

6. Overlap-add of z l (n) and z2(n) for new output signal.

Figure 7.7 illustrates the difference between simple overlap and add with fade-
out and fade-in of the blocks and the refined synchronous method with the point of
maximum similarity IC,. The SOLA implementation leads to time scaling with small
complexity, where the parameters S,, N , L are independent of the pitch period of
the input signal.

The following M-file 7.1 demonstrates the implementation of the SOLA time
scaling algorithm:

M-file 7.1 (TimeScaleS0LA.m)
% TimeScaleS0LA.m
% Time Scaling with Synchronized Overlap and Add
%
% Parameters:
%
% analysis hop size Sa = 256 (default parmater)
% block length N = 2048 (default parameter)

% overlap interval L = 256*alpha/2
time scaling factor 0.25 <= alpha <= 2

clear allyclose all

[signal,Fs] = wavread(’xi.wav’);
DAFx-in = signal’;

Sa = input(’Ana1ysis hop size Sa in samples = ’) ;
N = input(’Ana1ysis block size N in samples = ’>;

210 7 Time-segment Processing

S,=aSa

S,=aS, . .
overlap
interval

overlap
interval

-L

km2

Figure 7.7 SOLA: cross-correlation and time stretching.

if Sa > N
disp(’Sa must be less than N ! ! ! ’)

end
M = ceil(length(DAFx-in)/Sa);

% Segmentation into blocks of length N every Sa samples
% leads to M segments

alpha =input(’Time stretching factor alpha = ’);
Ss =round(Sa*alpha) ;
L =input(’Overlap in samples (even) = ’) ;

7.3 Time Stretching 211

if Ss >= N disp(’a1pha is not correct, Ss is >= N’)
elseif Ss > N-L disp(’a1pha is not correct, Ss is > N-L’)
end

DAFx-in(M*Sa+N)=O;
Overlap = DAFx-in(l:N);

% **** Main TimeScaleSOLA loop ****
for ni=l:M-l
grain=DAFx-in(ni*Sa+l:N+ni*Sa);
XCORRsegment=xcorr(grain(i:L),Overlap(i,ni*Ss:ni*Ss+(L-l)));
[xmax(l,ni) ,index(l,ni)]=max(XCORRsegment);
fadeout=i: (-l/(length(Overlap)-(ni*Ss-(L-l)+index(l,ni)-l))) :O;
fadein=O:(i/(length(Overlap)-(ni*Ss-(L-l)+index(l,ni)-i))):l;
Tail=Overlap(l,(ni*Ss-(L-l))+ . . .

Begin=grain(l:length(fadein)).*fadein;
Add=Tail+Begin;
Overlap=[Overlap(l,l:ni*Ss-L+index(l,ni)-l) ...

index(1,ni)-l:length(Overlap)).*fadeout;

Add grain(length(fadein)+l:N)l ;
end ;
% **** end TimeScaleSOLA loop ****
% Output in WAV file
sound(Overlap,44100);
wavwrite(Overlap,Fs,’xl-time-stretch’);

7.3.3 Pitch-synchronous Overlap and Add (PSOLA)

A variation of the SOLA algorithm for time stretching is the Pitch Synchronous
Overlap and Add (PSOLA) algorithm proposed by Moulines et al. [HMC89, MC901
especially for voice processing. It is based on the hypothesis that the input sound
is characterized by a pitch, as for example human voice and monophonic musical
instruments.

In this case PSOLA can exploit the knowledge of the pitch to correctly syn-
chronize the time segments, avoiding pitch discontinuities. When we perform time
stretching of an input sound, the time variation of the pitch P (t) should be stretched
accordingly. If t = at describes the time scaling function or time warping function
that maps the time t of the input signal into the time 2 of the output signal, the local
pitch of the output signal p(i) will be defined by P (i) = P(&) = P (t) . More gen-
erally, when the scaling factor a is not constant, a nonlinear time scaling function
can be defined as i = 7 (t) = S, C X (T) ~ T and used instead of i = a t .

The algorithm is composed of two phases: the first phase analyses and segments
the input sound (see Fig. 7.8), and the second phase synthesizes a time stretched
version by overlapping and adding time segments extracted by the analysis algo-
rithm.

t

212 7 Tame-segment Processing

Pitch Synchronous Analysis

-0.5
I l l I I I I 1

0 1000 2000 3000 4000 5000 6000 7000 8000
n +

Figure 7.8 PSOLA: Pitch analysis and block windows.

Analysis algorithm (see Fig. 7.9):

Determination of the pitch period P (t) of the input signal and of time instants
(pitch marks) t i . These pitch marks are in correspondence with the maximum
amplitude or glottal pulses at a pitch synchronous rate during the periodic
part of the sound and at a constant rate during the unvoiced portions. In
practice P(t) is considered constant P (t) = P(ti) = ti+l - ti on the time
interval (t i , t i+l) .

Extraction of a segment centered a t every pitch mark ti by using a Hanning
window with the length Li = 2P(ti) (two pitch periods) to ensure fade-in and
fade-out.

PSOLA analysis

I - ' segments

7
I I

Figure 7.9 PSOLA pitch analysis.

Synthesis algorithm (see Fig. 7.10): for every synthesis pitch mark [k

1. Choice of the corresponding analysis segment i (identified by the time mark
t i) minimizing the time distance lati - f k l .

7.3 Time Stretching 213

2. Overlap and add the selected segment. Notice that some input segments will
be repeated for a > 1 (time expansion) or discarded when a < 1 (time
compression).

3. Determination of the time instant ik+,+l where the next synthesis segment will
be centered, in order to preserve the local pitch, by the relation

U - segments - -LA time stretching

Synthesis
pitch marks

Figure 7.10 PSOLA synthesis for time stretching.

The basic PSOLA synthesis algorithm can be implemented in MATLAB by the
following M-file 7.2:

M-file 7.2 (pso1a.m)
function out=psola(in,m,alpha,beta)
% in input signal
% m pitch marks
% alpha time stretching factor
% beta pitch shifting factor

P = diff (m) ; %compute pitch periods

if m(l)<=P(l) , %remove first pitch mark
m=m(2 : length (m)) ;
P=P(2:length(P));

end

214 7 Time-segment Processing

if m(length(m))+P(length(P))>length(in) %remove last pitch mark
m=m(l:length(m)-l);
else
P=[P P(length(P))I ;

end

Lout=ceil(length(in)*alpha) ;
out=zeros(l,Lout); %output signal

tk = P(l)+l; %output pitch mark

while round(tk)<Lout
[minimum i] = min(abs(alpha*m - tk)) ; %find analysis segment
pit=P (i) ;
gr = in(m(i)-pit:m(i)+pit) .* hanning(2*pit+l);
iniGr=round(tk)-pit;
endGr=round(tk)+pit;
if endGr>Lout, break; end
out(iniGr:endGr) = out(iniGr:endGr)+gr; %overlap new segment
tk=tk+pit/beta;

end %while

It should be noticed that the determination of the pitch and of the position of
pitch marks is not a trivial problem and could be difficult to implement robustly in
real-time. Stretching factors typically range from Q = 0.25 to 2 for speech. Audible
buzziness appears in unvoiced sound when larger values are applied, due to the
regular repetition of identical input segments. In order to prevent the algorithm
from introducing such an artificial short-term correlation in the synthesis signal,
it is advisable to reverse the time axis of every repeated version of an unvoiced
segment. With such an artifice, speech can be slowed down by a factor of four, even
though some tonal effect is encountered in voiced fricatives, which combine voiced
and unvoiced frequency regions and thus cannot reversed in time.

It is possible to further exploit the analysis phase. In fact, uniformly applied time
stretching can produce some artifacts on the non-periodic parts of the sound. For
example a plosive consonant can be repeated if the synthesis algorithm chooses the
time segment containing the consonant twice. The analysis can then be extended
in order to detect the presence of fast transitions. During synthesis, the time scale
will not be modified at these points, thus the segments will not be repeated. This
approach can be generalized for non-speech sounds where a large time scale change
during transitions (e.g. attacks) would dramatically change the timbre identity. Also
in this case it is possible to limit time stretching during transitions and apply it
mainly to the steady state portion of the input sound. This technique is usually
applied to digital musical instruments based on wavetable synthesis. On the other
hand, the deformation of transient parts can be considered an interesting timbre
transformation and can be appreciated as a musically creative audio effect.

7.4 Patch Shafting 215

7.4 Pitch Shifting
Introduction

Transposition is one of the basic tools of musicians. When we think about providing
this effect by signal processing means, we need to think about the various aspects
of it. For a musician, transposing means repeating a melody after pitch shifting it
by a fixed interval. Each time the performer transposes the melody, he makes use of
a different register of his instrument. By doing so, not only the pitch of the sound
is modified but also the timbre is affected.

In the realm of DAFx, it is a matter of choice to transpose without taking
into account the timbre modification or whether the characteristic timbre of the
instrument has to be maintained in each of its registers. The first method could
be called “variable timbre transposition” whereas the second approach would be
called “constant timbre transposition”. To get an insight into the problem we have
to consider the physical origins of the audio signal.

The timbre of a sound heavily depends on the organization of its spectrum. A
model can be derived from the study of the singing voice. The pitch of a singing
voice is determined by the vocal chords and it can be correlated with the set of
frequencies available in the spectrum. The timbre of the voice is mainly determined
by the vocal cavities. Their effect is to emphasize some parts of the spectrum which
are called formants. A signal model can be derived where an excitation part is
modified by a resonance part. In the case of the voice, the excitation is provided
by the vocal chords, hence related to the frequencies of the spectrum, whereas the
resonances correspond to the formants. When a, singer transposes a tune, he has, to
some extent, the possibility of modifying the pitch and the formants independently.
In a careful signal processing implementation of this effect, each of these two aspects
should be considered.

If only the spectrum of the excitation is stretched or contracted, a pitch trans-
position up or down, with a constant timbre, is achieved. If only the resonances are
stretched or contracted, then the pitch remains the same but the timbre is varied.
The harmonic singing relies on this effect. If both excitation and resonance are de-
liberately and independently altered, then we enter the domain of effects that can
be perceived as unnatural, but that might have a vast musical potential.

The separation of a sound into its excitation and resonance part is a complex
process that will be addressed in Chapter 9. We will present here methods which
simultaneously alter both aspects such as the harmonizer or pitch shifting by delay-
line modulation in section 7.4.3. A more refined method based on PSOLA, which
allows pitch shifting with formant preservation, will be discussed in section 7.4.4.
For more advanced pitch shifting methods we refer to Chapters 8-11.

Musical Applications

Typical applications of pitch shifting in pop music are the correction of the into-
nation of instruments or singers as well as the production of an effect similar to a

216 7 Time-segment Processing

chorus. When the voice of a singer is mixed with copies of itself that are slightly
transposed, a subtle effect appears that gives the impression that one is listening to
a choir instead of a single singer.

The harmonizer can also produce surprising effects such as a man speaking
with a tiny high pitched voice or a female with a gritty low-pitched one. Extreme
sounds can be produced such as the deep snare drum sound on David Bowie’s
“Let’s Dance” record [Whi99]. It has also been used for scrambling and unscram-
bling speech [GRH73]. In combination with a delay line and with feedback of the
transposed sound to the input, a kind of spiral can be produced where the sound is
always transposed higher or lower at each iteration.

A subtle effect, similar to a phasing, can be achieved with a set of harmonizers
[Dut88] coupled in parallel and mixed to the input sound, as shown in Fig. 7.11. The
transposition ratio of the nth harmonizer should be set to 1 + nr where r is of the
order of 1/3000. If fo is the pitch of the sound, the outputs of the nth harmonizer
will provide a pitch of fo + nA f, where A f = r fo. If A f is small enough (a few
1/100 Hz) the interferences between the various outputs of the harmonizers will
be clearly audible. When applied, for example, to a low-pitched tuba sound, one
harmonic after the other will be emphasized. Flanging and chorus effects can also
be achieved by setting the pitch control for a very slight amount of transposition
(say, 1/10 to 1/5 of a semitone) and adding regeneration [And95, p. 531. It appears
here that tuning an audio effect is very dependent on the sound being processed. It
frequently happens that the tuning has to be adjusted for each new sound or each
new pitch.

r=l.O003

+* r=l.O009 +P -*B-t------ri__l r=1.0012

Figure 7.11 A set of harmonizers that produce a phasing-like effect. It is particularly
effective for low-pitched (typ. 100 Hz) signals of long duration.

Hans Peter Haller describes in [Ha195, pp. 51-55] some applications of the har-
monizer for the production of musical works from Luigi Nono and Andrk Richard.

7.4.1 Historical Methods - Harmonizer

The tape-based machines described in 7.3.1 were also able to modify the pitch of
sounds while keeping their initial duration. The Phonogdne universe1 was bulky
and could not find a broad diffusion but in the middle of the 1970s, a digital device
appeared that was called a Harmonizer. It implemented in the digital domain a

7.4 Pitch Shifting 217

process similar to that of the Phonogdne universeb From there on the effect became
very popular. Since Harmonizer is a trade mark of the Eventide company, other
companies offer similar devices under names such as pitch transposer or pitch shifter.

The main limitation of the use of the harmonizer is the characteristic quality
that it gives to the processed sounds. Moles states that the operating range of
the Phonogbne universel, used as a pitch regulator, was a t least -4 to +3 semi-
tones [Mo160, p. 741. Geslin estimates that the machines available in the late six-
ties found application in musique concr6te also at much larger transposition ratios
[GesOO].

The digital implementations in the form of the harmonizer might allow for a
better quality but there are still severe limitations. For transpositions in the order
of a semitone, almost no objectionable alteration of the sounds can be heard. As the
transposition ratio grows larger, in the practical range of plus or minus 2 octaves,
the timbre of the output sound obtains a character that is specific to the harmonizer.

This modification can be heard both in the frequency domain and in the time
domain and is due to the modulation of the signal by the chopping window. The
spectrum of the input signal is indeed convolved with that of the window. The
time-domain modulation can be characterized by its rate and by the spectrum of
the window, which is dependent on its shape and its size. The longer the window,
the lower the rate and hence the narrower the spectrum of the window and the less
disturbing the modulation. The effect of a trapezoidal window will be stronger than
that of a smoother one, such as the raised cosine window.

On the other hand, a larger window tends to deliver, through the overlap-add
process, audible iterated copies of the input signals. For the transposition of per-
cussive sounds, it is necessary to reduce the size of the window. Furthermore, to
accurately replay transients and not smooth them out, the window should have
sharp transit.ions. We see that a trade-off between audible spectral modulation and
iterated transients has to be found for each type of sound. Musicians using the
computer as a musical instrument might exploit these peculiarities in the algorithm
to give their sound a unique flavor.

7.4.2 Pitch Shifting by Time Stretching and Resampling

The variable speed replay discussed in section 7.2 leads to a compression or ex-
pansion of the duration of a sound and to a pitch shift. This is accomplished by
resampling in the time domain. Figure 7.1 illustrates the discrete-time signals and
the corresponding spectra. The spectrum of the sound is compressed or expanded
over the frequency axis. The harmonic relations

of the sound are not altered but are scaled according to

218 7 Tame-segment Processing

The amplitudes of the harmonics remain the same a;'" = In order to rescale the
pitch shifted sound towards the original length a further time stretching algorithm
can be applied to the sound. The result of pitch shifting followed by a time stretching
algorithm is illustrated in Fig. 7.12.

Pitch scaling (GI), time domain signals

0 2000 4000 6000 8000
(a=0.5)

-0.5 1 1
0 2000 4000 6000 8000

-0.5 1 1
0 2000 4000 6000 8000

n +

O 7

Pitch scaling (a=l), spectra

-20

2 -40
-60

-80

-

0 1000 2000 3000 4000 5000

-20 O+ -
-40

-60

-an ""
0 1000 2000 3000 4000 5000

(a=2)

-20t h h i
h 2 -40
-60

-an
I-

O 1000 2000 3000 4000 5000
f in Hz +

Figure 7.12 Pitch shifting followed by time correction.

The order of pitch shifting and time scaling can be changed, as shown in Fig. 7.13.
First, a time scaling algorithm expands the input signal from length NI to length NZ.
Then a resampling operation with the inverse ratio Nl/N2 performs pitch shifting
and a reduction of length NZ back to length N I .

x(n,d l ime Scaling I 4 Resampling y(n)
(ratio NZ/N1) (ratio NlJN2)

Figure 7.13 Pitch shifting by time scaling and resampling.

The following M-file 7.3 demonstrates the implementation of the SOLA time
scaling and pitch scaling algorithm:

M-file 7.3 (PitchSca1eSOLA.m)
% PitchScaleS0LA.m

7.4 Pitch Shifting 219

% Parameters:
% analysis hop size Sa = 256 (default parmater)
% block length N = 2048 (default parameter)
% pitch scaling factor 0.25 <= alpha <= 2
% overlap interval L = 256*alpha/2
clear al1,close all
[signal,Fs] = wavread(’x1.wav’);
DAFx-in = signal’;

Sa=256;N=2048; % time scaling parameters
M=ceil(length(DAFx-in)/Sa);

ni=512;n2=256; % pitch scaling ni/n2
Ss=round(Sa*ni/n2) ;
L=256* (ni/n2) /2;

DAFx-in(M*Sa+N)=O;
Overlap=DAFx-in(1:N);

% ****** Time Stretching with alpha=n2/ni******
. include main loop TimeScaleS0LA.m

% ****** End Time Stretching ******

% ****** Pitch shifting with alpha=ni/n2 ******
lfen=2048;lfen2=lfen/2;
wI=hanningz(lfen);w2=~1;

% for linear interpolation of a grain of length lx to length lfen
Ix=f loor (If en*ni/n2) ;
x=i+(o:lfen-i)’*lx/lfen;
ix=floor(x);ixi=ix+i;
dx=x-ix;dxi=i-dx;
%
lmax=max (If en, 1x) ;
Overlap=Overlap’;
DAFx-out=zeros(length(DAFx-in) ,l) ;

pin=O;pout=O;
pend=length(Overlap)-lmax;

while pincpend
Pitch shifting by resampling a grain of length lx to length lfen

grain2=(0verlap(pin+ix).*dxi+Overlap(pin+ixi).*dx).* wi;
DAFx~out(pout+i:pout+lfen)=DAFx_out(pout+l:pout+lfen)+grain2;
pin=pin+nl;pout=pout+n2;

end ;

220 7 Time-segment Processing

7.4.3 Pitch Shifting by Delay Line Modulation

Pitch shifting or pitch transposing based on block processing is described in several
publications. In [BB891 a pitch shifter based on an overlap add scheme with two
time-varying delay lines is proposed (see Fig. 7.14). A cross-fade block combines
the outputs of the two delay lines according to a cross-fade function. The signal is
divided in small chunks. The chunks are read faster to produce higher pitches or
slower to produce lower pitches. In order to produce a continuous signal output,
two chunks are read simultaneously with a time delay equal to one half of the
block length. A cross-fade is made from one chunk to the other at each end of a
chunk [WG94, pp. 257-2591.

Figure 7.14 Pitch shifting.

The length of the delay lines is modulated by a sawtooth-type function. A similar
approach is proposed in [Dat87] where the same configuration is used for time
compression and expansion. A periodicity detection algorithm is used for calculating
the cross-fade function in order to avoid cancellations during the cross-fades.

An enhanced method for transposing audio signals is presented in [DZ99]. The
method is based on an overlap-add scheme and does not need any fundamental
frequency estimation. The difference from other applications is the way the blocks
are modulated and combined to the output signal. The enhanced transposing system
is based on an overlap-add scheme with three parallel time-varying delay lines.

Figure 7.15 illustrates how the input signal is divided into blocks, which are
resampled (phase modulation with a ramp type signal), amplitude modulated and
summed yielding an output signal of the same length as the input signal. Adjacent
blocks overlap with 2/3 of the block length.

The modulation signals form a system of three 120"-phase shifted raised cosine
functions. The sum of these functions is constant for all arguments. Figure 7.16
also shows the topology of the pitch transposer. Since a complete cosine is used for
modulation, the perceived sound quality of the processed signal is much better than
in simple twofold overlap-add applications using several windows. The amplitude
modulation only produces sum and difference frequencies with the base frequency of
the modulation signal, which can be very low (6-10 Hz). Harmonics are not present

7.4 Pitch Shifting 221

input backward jump backward jump
r'. . , P : . . 1 block 1 I block 2

output

Figure 7.15 Pitch transposer: block processing, time shifting and overlap-add.

in the modulation signal a,nd hence cannot form sum or difference frequencies of
higher order. The perceived artifacts are phasing-like effects and are less annoy-
ing than local discontinuities of other applications based on twofold overlap-add
methods.

v
Z-O+frac3

Figure 7.16 Pitch transposer: block diagram.

If we want to change the pitch of a signal controlled by another signal or signal
envelope, we can also make use of delay line modulation. The effect can be achieved
by performing a phase modulation of the recorded signal according to y(n) = x(n -
D(n)) . The modulating factor D (n) = M + DEPTH. x,,,(n) is now dependent on
a modulating signal xmOd(n). With this approach the pitch of the input signal ~ (n)
is changed according to the envelope of the modulating signal (see Fig. 7.17).

222 7 Time-segment Processing

Modulation Depth

Figure 7.17 Pitch controlled by envelope of signal zmOd(n).

7.4.4 Pitch Shifting by PSOLA and Formant Preservation

This technique is the dual operation to resampling in time domain, but in this
case a resampling of the short-time spectral envelope is performed. The short-term
spectral envelope describes a frequency curve going through all amplitudes of the
harmonics. This is demonstrated in Fig. 7.18, where the spectral envelope is shown.
The harmonics are again scaled according to f:"" = p . &'ld, but the amplitudes
of the harmonics U?" = env(f,""") # .:ld are now determined by sampling the
spectral envelope. Some deviations of the amplitudes from the precise envelope can
be noticed. This depends on the chosen pitch shifting algorithm.

The PSOLA algorithm can be conveniently used for pitch shifting a voice sound
maintaining the formant position, and thus the vowel identity [ML95, BJ951. The
basic idea consists of time stretching the position of pitch marks, while the segment
waveform is not changed. The underlining signal model of speech production is a
pulse train filtered by a time varying filter corresponding to the vocal tract. The
input segment corresponds to the filter impulse response and determines the for-
mant position. Thus, it should not be modified. Conversely, the pitch mark distance
determines the speech period, and thus should be modified accordingly. The aim of
PSOLA analysis is to extract the local filter impulse response. As can be seen in Fig.
7.19, the spectrum of a segment extracted using a Hanning window with a length
of two periods approximates the local spectral envelope. Longer windows tend to
resolve the fine line structure of the spectrum, while shorter windows tend to blur
the formant structure of the spectrum. Thus if we do not stretch the segment, the
formant position is maintained. The operation of overlapping the segments at the
new pitch mark position will resample the spectral envelope at the desired pitch
frequency. When we desire a pitch shift by a factor p, defined as the ratio of the
local synthesis pitch frequency to the original one p = & (i) / f o (t) , the new pitch
period will be given by P (i) = P(t) /P , where in this case i = t because time is not
stretched.

The analysis algorithm is the same as that previously seen for PSOLA time
stretching in section 7.3.3 (see Fig. 7.9). The synthesis algorithm is modified (see
Fig. 7.20) according to the following steps:

for every synthesis pitch mark fk

1. Choice of the corresponding analysis segment i (identified by the time
mark t i) minimizing the time distance (ti - &l.

7.4 Pitch Shafting 223

Pitch scaling (GI), time domain signals

.l

0 2000 4000 6000 8000
(a=0.5)

O 7

Pitch scaling (a=l), spectra

-20

8 -40
-60

-80

c

0 1000 2000 3000 4000 5000
(e0.5)

- -
C O x -40

-0.5
-60

-80
0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000

k-2)

0.5 l J
C O

-0.5 1 i
0 2000 4000 6000 8000

n +

O 7

(a=2)

g -40
-60

-80
0 1000 2000 3000 4000 5000

f in Hz +

Figure 7.18 Pitch shifting by the PSOLA method: frequency resampling the spectral
envelope.

2. Overlap and add the selected segment. Notice that some input segments
will be repeated for p > 1 (higher pitch) or discarded when p < 1 (lower
pitch).

3. Determination of the time instant l k + l where the next synthesis segment
will be centered, in order to preserve the local pitch, by the relation

&+l = ik + P&) = ik + P(tZ)/O.

0 for large pitch shifts, it is advisable to compensate the amplitude variation,
introduced by the greater or lesser overlapping of segments, by multiplying
the output signal by l /p .

It is possible to combine time stretching by a factor a! with pitch shifting. In this
case for every synthesis pitch mark & the first step of the synthesis algorit,hm
above presented will be modified as choice of the corresponding analysis segment i
(identified by the time mark ti) minimizing the time distance Iati - fkl.

The PSOLA algorithm is very effective for speech processing and is computation-
ally very efficient, once the sound has been analyzed, so it is widely used for speech

224 7 Tame-segment Processing

-1 ' 1 I I I I l l I I

5 10 15 20 25 30 35 40 45
time in msec --f

0-

-70
0 1000 2000 3000 4000 5000

v
- I "

0 1000 2000 3000
VI

4000
li

5000
f i n Hz --f

Figure 7.19 Spectrum of segments extracted from a vowel /a/ by using a Hanning window
respectively long 4 (dotted line), 2 (solid line), and 1 (dashed line) pitch periods. It can
be noticed that the solid line approximates the local spectral envelope.

synthesis from a database of diphones, for prosody modification, for automatic an-
swering machines etc. For wide variation of the pitch it presents some artifacts. On
the other hand the necessity of a preliminary analysis stage for obtaining a pitch
contour makes the real-time implementation of an input signal modification diffi-
cult. Also the estimation of glottal pulses can be difficult. A solution is to place
the pitch marks a t a pitch synchronous rate, regardless of the true position of the
glottal pulses. The resulting synthesis quality will be only slightly decreased (see
for example Fig. 7.21).

A further effect that can be obtained by a variation of PSOLA is linear scaling
of formant frequencies (see Fig. 7.22). In fact, we saw that a time scale of a signal
corresponds to an inverse frequency scale. Thus when we perform time scaling of the
impulse response of a filter, we inversely scale the frequency of formants. In PSOLA
terms, this corresponds to time scaling the selected input segments before overlap
and add in the synthesis step, without any change in the pitch marks calculation. To
increase the frequencies of formants by a factor y, every segment should be shortened
by a factor l/y by resampling. For example, the average formant frequencies of
female adults are about 16 percent higher than those of male adults, and children's

7.4 Patch Shifting 225

Figure 7.20 PSOLA: synthesis algorithm for pitch shifting.

formants are about 20 percent higher than female formants. Notice that care should
be taken when the frequencies increase in order to avoid foldover. Ideally band-
limited resampling should be used.

The following M-file 7.4 shows the implementation of the basic PSOLA synthesis
algorithm. It is based on the PSOLA time stretching algorithm shown in sect,ion
7.3.3.

M-file 7.4 (psolaf .m)
function out=psolaF(in,m,alpha,beta,gamma)
% . . .
% gamma newFormantFreq/oldFormantFreq
%
% the internal loop as
tk = P(1)+1; %output pitch mark
while round(tk)<Lout

. . .

[minimum i]=min(abs(alpha*m-tk)) ; % find analysis segment
pit=P(i) ;pitStr=floor(pit/gamma) ;
gr=in(m(i)-pit:m(i)+pit) .*hanning(2*pit+l);
gr=interpl(-pit:l:pit,gr,-pitStr*gamma:gamma:pit);% stretch segm.
iniGr=round(tk)-pitStr;endGr=round(tk)+pitStr;
if endGr>Lout, break; end
out(iniGr:endGr)=out(iniGr:endGr)+gr; % overlap new segment
tk=tk+pit/beta;
end % end of while

226 7' Tame-segment Processing

x IO4
2

W 1
-0

.-
E O
E
m -1

-2

100 200 300 400 500 600 700
n +

.- c m,
5 -1 l

-2 -60 -

50 100 150 200 250 300 0 1000 2000 3000 4000 5000
freq in Hz

50 100 150 200 250 300 0 1000 2000 3000 4000 5000
n-, freq in Hz

Figure 7.21 Comparison of a segment extracted in the correspondence with glottal pulse
with one extracted between pitch pulses.

7.5 Time Shuffling and Granulation

7.5.1 Time Shuffling

Introduction

Musique concrbte has made intensive use of splicing of tiny elements of magnetic
tape. When mastered well, this assembly of hundreds of fragments of several tens
of milliseconds allows an amalgamation of heterogeneous sound materials, at the
limit of the time discrimination threshold. This manual operation called micro-
splicing was very time-consuming. Bernard Parmegiani suggested in 1980 at the
Groupe de Recherches Musicales (GRM) that this could be done by computers.
An initial version of the software was produced in the early eighties. After being
rewritten] improved and ported several times, it was eventually made available on
personal computers in the form of the program called brassage in French that will
be translated here as time shuffling [Ges98, GesOO].

7.5 Tame Shuflang and Granulation

x lo4 original grain

227

spectrum

2

1
0)
U
c .- i i o
E

-1

-2

-

-150 -100 -50 0 50 1 0 0
n +

2 7

x lo4 time-stretched grain

-150 -100 -50 0 50 100 150
n +

freq in Hz

spectrum

freq. in Hz

Figure 7.22 PSOLA: variation of PSOLA as linear formant scaling.

Signal Processing

Let us describe here an elementary algorithm for time shuffling that is based on the
superposition of two time segments that are picked randomly from the input signal
(see Fig. 7.23):

1. Let x(n) and y(n) be the input and output signals.

2. Specify the duration d of the fragments and the duration D 2 d of the time
period [n - D, n] from which the time segments will be selected.

3. Store the incoming signal x(.) in a delay line of length D .

4. Choose at random the delay time T I with d 5 TI 5 D.

5 . Select the signal segment x 1 d of duration d beginning at x(n - 7 1) .

6. Follow the same procedure (steps 4 and 5) for a second time segment x2d.

7. Read x 1 d and x 2 d and apply an amplitude envelope W to each of them in
order to smooth out the discontinuities at the borders.

228 7 Time-segment Processing

x(n) Input signal
I

n-D n-rr n-r9 n l
I ,

; / *Time

x I d x 2d Input buffer of length D

Overlap and
Add

P Output buffer

4 Y(n) Output signal

Figure 7.23 Time shuffling: 2 input segments, selected at random from the past input
signal, are overlap-added to produce an output time segment. When one of the input
segment is finished, a new one is selected.

8. When the reading of xld or x 2 d is finished, iterate the procedure for each of
them.

9. Compute the output as the overlap add of the sequence of x1d and x 2 d with
a time shift of d/2 .

Musical Applications and Control

The version described above introduces local disturbances into the signal’s actual
timing, while preserving the overall continuity of its time sequence. Many further
refinements of this algorithm are possible. A random amplitude coefficient could be
applied to each of the input segments in order to modify the density of the sound
material. The shape of the envelope could be modified in order to retain more of
the input time structure or, on the contrary, to smooth it out and blend different
events with each other. The replay speed of the segments could be varied in order
to produce transposition or glissandi.

At a time when computer tools were not yet available, Bernard Parmegiani
magnificently illustrated the technique of tape-based micro-splicing in works such
as “Violostries” (1964) or “Dedans-Dehors” (1977) Im-Par64, m-Par771. The ele-
mentary algorithm presented above can be operated in real time but other off-line
versions have also been implemented which offered many more features. They have
the ability to merge fragments of any size, sampled from a random field, also of
any dimension: from a few samples to several minutes. Thus apart from generating
fusion phenomena, for which the algorithm was conceived, the software was able to
produce cross-fading of textured sound and other sustained chords, infinitely small

7.5 Time Shufling and Granulation 229

variations in signal stability, interpolation of fragments with silence or sounds of
other types [Ges98]. Jean-Claude Risset used this effect to perform sonic develop-
ments from short sounds, such as stones and metal chimes [m-INA3, Sud-I, 3’44” to
4’38”];[Ris98, GesOO] and to produce a “stuttering” piano, further processed by ring
modulation [m-INA3, Sud-I, 4’30”, 5’45”J. Starting from “found objects” such as
bird songs, he rearranged them in a compositional manner to obtain first a pointil-
listic rendering, then a stretto-like episode [m-INA3, Sud-I, 1’42” to 2’49”l.

7.5.2 Granulation

Introduction

In the previous sections about pitch shifting and time stretching we have proposed
algorithms that have limitations as far as their initial purpose is concerned. Beyond
a limited range of modification of pitch or of time duration, severe artifacts appear.
The time shuffling method considers these artifacts from an artistic point of view and
takes them for granted. Out of the possibilities offered by the methods and by their
limitations, it aims to create new sound structures. Whereas the time shuffling effect
exploits the possibilities of a given software arrangement, which could be considered
here as a “musical instrument”, the idea of building a complex sound out of a large
set of elementary sounds could find a larger framework.

The physicist Dennis Gabor proposed in 1947 the idea of the quantum of sound,
an indivisible unit of information from the psychoacoustical point of view. According
to his theory, a granular representation could describe any sound. Granular synthesis
was first suggested as a computer music technique for producing complex sounds by
Iannis Xenakis (1971) and Curtis Roads (1978). This technique builds up acoustic
events from thousands of sound grains. A sound grain lasts a brief moment (typically
1 to 100 ms), which approaches the minimum perceivable event time for duration,
frequency, and amplitude discrimination [Roa96, Roa98, TruOOa].

The granulation effect is an application of granular synthesis where the material
out of which the grains are formed is an input signal. Barry Truax has developed this
technique [Tru88, Tru941 by a first real-time implementation and using it extensively
in his compositional pieces.

Signal Processing

Let x (n) and y(n) be the input and output signals. The grains g k (i) are extracted
from the input signal with the help of a window function z u k (i) of length L k by

g k (i) = x(i + i k) w k (i) (7.6)

with i = 0 , . . . , L k - 1 . The time instant a k indicates the point where the segment
is extracted; the length L k determines the amount of signal extracted; the window
waveform w k (i) should ensure fade-in and fade-out at the border of the grain and
affects the frequency content of the grain. Long grains tend to maintain the timbre

230 7 Time-segment Processing

identity of the portion of the input signal, while short ones acquire a pulse-like
quality. When the grain is long, the window has a flat top and it used only to
fade-in and fade-out the borders of the segment.

The following M-files 7.5 and 7.6 show the extraction of short and long grains:

M-file 7.5 (grainSh.m)
function y = grainSh(x,init,L)
% extract a short grain
% x input signal
% init first sample
% L grain length (in samples)
y=x(init:init+L-l).*hanning(L)’;

M-file 7.6 (grainLn.m)
function y = grainLn(x,iniz,L,Lw)
% extract a long grain
% x input signal
% init first sample
% L grain length (in samples)
% LW length fade-in and fade-out (in samples)
if length(x) <= iniz+L , error(’length(x) too short.’), end
y = x(iniz: iniz+L-l) ; % extract segment
W = hanning(2*Lw+l)’;

y(L-Lw+l:L) = y(L-Lw+l:L) .*w(Lw+2:2*Lw+l); fade-out
y(1:Lw) = y(1:Lw) .*w(i:Lw); % fade-in

The synthesis formula is given by

where ak is an eventual amplitude coefficient and nk is the time instant where the
grain is placed in the output signal. Notice that the grains can overlap. To overlap
a grain gk (grain) at instant n k = (iniOLA) with amplitude ak, the following
MATLAB instructions can be used

endOLA = iniOLA+length(grain)-1;
y(ini0LA:endOLA) = y(ini0LA:endOLA) + ak * grain;

An example of granulation with random values of the parameters grain initial
point and length, output point and amplitude is shown in Fig. 7.24. The M-file 7.7
shows the implementation of the granulation algorithm.

M-file 7.7 (granu1ation.m)
% granulation. m
f=fopen(’a-male.mI1’);
x=f read (f , int 16) ;

7.5 Tame Shuflang and Gran,ulataon 231

Ly=length(x) ; y=zeros (1, Ly) ;
% Constants
nEv=4; maxL=200; minL=50; Lw=20;

L = round((maxL-minL)*rand(l,nEv))+minL;
initIn = ceil((Ly-maxL)*rand(l,nEv));
initout= ceil((Ly-maxL)*rand(l,nEv));
a = rand(1,nEv);
endOut=initOut+L-1;
Synthesis

for k=l:nEv,
grain=grainLn(x,initIn(k) ,L(k) ,LW) ;

Initializations

%output signal

%grain length
%init grain
%init out grain
%ampl. grain

y(initOut(k) :endOut(k))=y(initOut(k) :endOut(k))+a(k)*grain;
end

Figure 7.24 Example of granulation.

This technique is quite general and can be employed to obtain very different
sound effects. The result is greatly influenced by the criterion used to choose the
instants nk. If these points are regularly spaced in time and the grain waveform
does not change too much, the technique can be interpreted as a filtered pulse train,
i.e. it produces a periodic sound whose spectral envelope is determined by the grain
waveform interpreted as impulse response. An example is the PSOLA algorithm
shown in the previous sections 7.3.3 and 7.4.4. When the distance between two
subsequent grains is much greater than Lk, the sound will result in grains separated
by interruptions or silences. with a specific character. When many short grains
overlap (i.e. the distance is less than Lk) , a sound texture effect is obtained.

232 7 Time-segment Processing

The strategies for choosing the synthesis instants can be grouped into two rather
simplified categories: synchronous, mostly based on deterministic functions; and
asynchronous, based on stochastic functions. Grains can be organized in streams.
There are two main control variables: the delay between grains for a single stream,
and the degree of synchronicity among grains in different streams. Given that the
local spectrum affects the global sound structure, it is possible to use input sounds
that can be parsed in grains without altering the complex characteristics of the
original sound, as water drops for stream-like sounds.

It is further possible to modify the grain waveform with a time transformation,
such as modulation for frequency shifting or time stretching for frequency scal-
ing [DP91]. The main parameters of granulation are: grain duration, selection order
from input sound, amplitude of grains, temporal pattern in synthesis, grain density
(i.e. grains per second). Density is a primary parameter, as it determines the overall
texture, whether sparse or continuous. Notice that it is possible to extract grains
from different sound files to create hybrid textures, e.g. evolving from one texture
to another.

Musical Applications

A demonstration of the effect is provided in [m-Tod99]. Further examples can be
found in [m-Wis94c]. Barry Truax has used the technique of granulation to process
sampled sound as compositional material. In “The Wings of Nike” (1987) he has
processed only short “phonemic” fragments but longer sequences of environmental
sound have been used in pieces such as “Pacific” (1990). In each of these works, the
granulated material is time stretched by various amounts and thereby produces a
number of perceptual changes that seem to originate from within the sound [TruOOb,
m-Tru951.

In “Le Tombeau de Maurice”, Ludger Brummer uses the granulation technique
in order to perform timbral, rhythmic as well as harmonic modifications [m-Bru97].
A transition from the original sound color of an orchestral sample towards noise
pulses is achieved by reducing progressively the size of the grains. At an intermediate
grain size, the pitch of the original sound is still recognizable although the time
structure has already disappeared [m-Bru97, 3’39”-4’12”]. A melody can be played
by selecting grains of different pitches and by varying the tempo at which the
grains are replayed [m-Bru97, 8’38”-9’10”]. New melodies can even appear out of a
two-stage granulation scheme. A first series of grains is defined out of the original
sample whereas the second is a granulation of the first one. Because of the stream
segregation performed by the hearing system, the rhythmic as well as the harmonic
grouping of the grains is constantly evolving [m-Bru97, 9’30”-10’33”l.

7.6 Conclusion

The effects described in this chapter are based on the division of the input sound
into short segments. These segments are processed by simple methods such as time

Sound and Music 233

scaling by resampling or amplitude multiplication by an envelope. The segment
waveform is not changed, thus maintaining the characteristic of the source signal.

Two categories of effects can be obtained, depending on the strategy used to
place the segments in time during the synthesis. If the order and organization of
extracted segments are carefully maintained, time stretching or pitch shifting can be
performed. Basic methods, SOLA and PSOLA, are presented and their characteris-
tics are discussed. These effects aim to produce sounds that are perceived as similar
to the original, but are modified in duration or pitch. As often happens with digital
audio effects, the artifacts produced by these methods can be used as a method for
deformation of the input sound, whilst maintaining its main characteristics. The
low computational complexity of time-segment processing allows efficient real-time
applications. Nevertheless, these algorithms produce artifacts that limit their scope
of application. More advanced methods for time stretching and pitch shifting will
be introduced in Chapters 8-11.

The second category changes the organization and the order of the segments to
a great extent, and thus leads to time shuffling and granulation. In this case, the
input sound can be much less recognizable. The central element becomes the grain
with its amplitude envelope and time organization. These techniques can produce
results from sparse grains to dense textures, with a very loose relationship with
the original sound. It should be noticed that the wide choice of strategies for grain
organization implies a sound composition attitude from the user. Thus granulation
became a sort of metaphor for music composition starting from the microlevel.

Sound and Music

[m-Bru93]

[m-Bru97]

[m-Eim62]

[m-Fur93]

[m-Fur97]

[m-INA3]

[m-Par64]

L. Brummer: The Gates of H. Computer music. CCRMA 1993. In:
CRI, “The listening room”, CD edel 0014522TLR, Hamburg, 1995.

L. Brummer: Le Tombeau de Maurice, for computer-generated tape.
In: Computer music @ CCRMA. CD CCRMAV02, 1997.

H. Eimert: Epitaph fur Aikichi Kuboyama. Electronic music composi-
tion, 1962. Studio-Reihe neuer Musik, Wergo, LP WER 60014. Reedi-
tion as a CD, Koch/Schwann, 1996.

K. F’urukawa: Swim, Swan, composition for clarinet and live-
electronics. ZKM, 1993.

K. Furukawa: Den ungeborenen Gottern. Multimedia-Opera, ZKM,
1997.

J.-C. Risset: Sud, Dialogues, Inharmonique, Mutations. CD INA
C1003.

B. Parmegiani: Violostries, 1964. IDEAMA CD 051 Target Collection,
ZKM and CCRMA, 1996.

234 7 Time-segment Processing

[m-Par77] B. Parmegiani: Dedans-Dehors, 1977. INA-GRM.

[m-Sch98] P. Schaeffer and G. Reibel: Solfege de l'objet sonore. Booklet + 3 CDs.
First published 1967. INA-GRM, 1998.

[m-Tod99] T. Todoroff Real-time granulation. Revenant.aif, Reven2G.aif,
RevenCmb.aif. DAFX-Sound Library.

[m-Tru95] B. Truax: Granular Time-shifting and Transposition Composition Ex-
amples. In Computer Music Journal, Volume 19 Compact Disc, Index
6, 1995.

[m-Wis94c] T. Wishart: Audible design, Sound examples. CD. Orpheus the Pan-
tomime, York, 1994.

Bibliography

[And951

[BB891

[BJ95]

[Car921

[Chi821

[CR83]

[Dat87]

[DP91]

[Dut88]

[DZ99]

C. Anderton. Multieffects for Musicians. Amsco Publications, 1995.

K. Bogdanowicz and R. Blecher. Using multiple processors for real-time
audio effects. In A E S 7th International Conference, pp. 337-342, 1989.

R. Bristow-Johnson. A detailed analysis of a time-domain formant-
corrected pitch shifting algorithm. J . Audio Eng. Soc., 43(5):340-352,
1995.

T. Cary. Illustrated Compendium of Musical Technology. Faber and Faber,
1992.

M. Chion. La musique dectroacoustique. QSJ No 1990, PUF, 1982.

R.E. Crochiere and L.R. Rabiner. Multirate Digital Signal Processing.
Prentice-Hall, 1983.

J. Dattoro. Using digital signal processor chips in a stereo audio time
compressor/expander. In Proc. 83rd AES Convention, Preprint 2500,
1987.

G. De Poli and A. Piccialli. Pitch-synchronous granular synthesis. In
G. De Poli, A. Piccialli, and C. Roads (eds), Representations of Musical
Signals, pp. 187-219. MIT Press, 1991.

P. Dutilleux. Mise en axvre de transformations sonores sur un systbme
temps-re'el. Technical report, Rapport de stage de DEA, CNRS-LMA,
June 1988.

S. Disch and U. Zolzer. Modulation and delay line based digital au-
dio effects. In Proc. DAFX-99 Digital Audio Effects Workshop, pp. 5-8,
Trondheim, December 1999.

Bibliography 235

[End971 B. Enders. Lexikon Musikelektronik. Atlantis Schott, 1997.

[Gas871 P.S. Gaskell. A hybrid approach to the variable speed replay of digital
audio. J. Audio Eng. Soc., 35:230-238, April 1987.

[Ges98] Y. Geslin. Sound and music transformation environments: A twenty-year
experiment at the “Groupe de Recherches Musicales”. In Proc. DAFX-98
Digital Audio Efects Workshop, pp. 241-248, Barcelona, November 1998.

[GesOO] Y. Geslin. About the various types of Phonoghnes. GRM, Personal com-
munication, 2000.

[GRH73] T.A. Giordano, H.B. Rothman, and H. Hollien. Helium speech unscram-
blers - a critical review of the state of the art. IEEE n u n s Audio and
Electroacoustics, AU-21(5), October 1973.

[Ha1951 H.P. Haller. Das Experimental Studio der Heinrich-Strobel-Stiflung des
Sudwestfunks Freiburg 1971-1989, Die Erforschung der Elektronischen
Klangumformung ,und ihre Geschichte. Nomos, 1995.

[HMC89] C. Hamon, E. Moulines, and F. Charpentier. A diphone synthesis system

[Lar98]

[Lee721

[Mas981

[MC901

[McN84]

[MEJ86]

[ML95]

[Mol601

based on time-domain prosodic modifications of speech. In Proc. ICASSP,
pp. 238-241, 1989.

J. Laroche. Time and pitch scale modifications of audio signals. In
M. Kahrs and K.-H. Brandenburg (eds), Applications of Digital Signal
Processing to Audio and Acoustics, pp. 279-309. Kluwer, 1998.

F.F. Lee. Time compression and expansion of speech by the sampling
method. J. Audio Eng. Soc., 20(9):738-742, November 1972.

D.C. Massie. Wavetable sampling synthesis. In M. Kahrs and K.-H.
Brandenburg (eds), Applications of Digital Signal Processing to Audio
and Acoustics, pp. 311-341. Kluwer, 1998.

E. Moulines and F. Charpentier. Pitch synchronous waveform processing
techniques for text-to speech synthesis using diphones. Speech Commu-
nication, 9(5/6):453-467, 1990.

G.W. McNally. Variable speed replay of digital audio with constant out-
put sampling rate. In Proc. 76th AES Convention, Preprint 2137, 1984.

J. Makhoul and A. El-Jaroudi. Time-scale modification in medium to low
rate speech coding. In Proc. ICASSP, pp. 1705-1708, 1986.

E. Moulines and .J. Laroche. Non-parametric technique for pitch-scale
and time-scale modification of speech. Speech Communication, 16:175-
205, 1995.

A. Moles. Les musiques expe‘rimentales. Trad. D. Charles. Cercle d’Art
Contemporain, 1960.

236 7 Time-segment Processing

[Pou54] J. Poullin. L’apport des techniques d’enregistrement dans la fabraction
de matikres et formes musicales nouvelles. Applications a la musique
concrbte. L’Onde Electrique, 34(324):282-291, 1954.

[PS571 J. Poullin and D.A. Sinclair. The Application of Recording Techniques
to the Production of New Musical Materials and Forms. Application to
“Musique Concrkte”. National Research Council of Canada, 1957. Tech-
nical Translation TT-646, pp. 1-29.

[Ris98] J.-C. Risset. Example of the musical use of digital audio effects. In
Proc. DAFX-99 Digital Audio Effects Workshop, pp. 254-259, Trondheim,
December 1998.

[Roa96] C. Roads. The Computer Music Tutorial. MIT Press, 1996.

[Roa98] C. Roads. Micro-sound, history and illusion. In Proc. DAFX-98 Digital
Audio Effects Workshop, pp. 260-269, Barcelona, November 1998.

[RW85] S. Roucos and A.M. Wilgus. High quality time-scale modification for
speech. In Proc. ICASSP, pp. 493-496, 1985.

[%h731 P. Schaeffer. La musique concrkte. QSJ No 1287, PUF 1973.

[Spr55] A.M. Springer. Ein akustischer Zeitregler. Gravesaner Blutter, (1):32-27,
July 1955.

[Spr59] J.M. Springer. Akustischer Tempo- und Tonlagenregler. Gravesaner
Blutter, (13):80, 1959.

[Tru88] B. Truax. Real-time granular synthesis with a digital signal processor.
Computer Music Journal, 12(2):14-26, 1988.

[Tru94] B. Truax. Discovering inner complexity: time-shifting and transposi-
tion with a real-time granulation technique. Computer Music Journal,
18(2):28-38, 1994.

[TruOOa] B. Truax. h t t p : //www . s fu . ca/”truax/gran. html. Granular synthesis,
2000.

[TruOOb] B. Truax. h t t p : //www . sf u. ca/-truax/gsample . html. Granulation of
sampled sounds, 2000.

[WG94] M. Warstat and T. Gorne. Studiotechnik - Hintergrund und Praxiswis-
sen. Elektor-Verlag, 1994.

[Whig91 P. White. Creative Recording, Eflects and Processors. Sanctuary Pub-
lishing, 1999.

Chapter 8

Time-frequency Processing

D. Arfib, F. Keiler, U. Zolzer

8.1 Introduction

This chapter describes the use of time-frequency representations of signals in or-
der to produce transformations of sounds. A very interesting (and intuitive) way of
modifying a sound is to make a two-dimensional representation of it, modify this
representation in some or ot,her way and reconstruct a new signal from this repre-
sentation (see Fig. 8.1). Consequently a digital audio effect based on time-frequency
representations requires three steps: an analysis (sound to representation), a trans-
formation (of the representa,tion) and a resynthesis (getting back to a sound).

Short-time
Spectra

n l % n
Time

Figure 8.1 Digital audio effects based on analysis, transformation and synthesis (resyn-
thesis).

The direct scheme of spectral analysis, transformation and resynthesis will be
discussed in section 8.2. We will explore the modification of the magnitude IX(k)l
and phase cp(k) of these representations before resynthesis. The analysis/synthesis

237

238 8 Time-frequency Processing

scheme is termed the phase vocoder (see Fig. 8.2). The input signal x(.) is multiplied
by a sliding window of finite length N , which yields successive windowed signal
segments. These are transformed to the spectral domain by FFTs. In this way
a time-varying spectrum X (n , IC) = IX(n , IC)lejp(n,k) with k = 0,1, . . . , N - 1 is
computed for each windowed segment. The short-time spectra can be modified or
transformed for a digital audio effect. Then each modified spectrum is applied to an
IFFT and windowed in the time domain. The windowed output segments are then
overlapped and added yielding the output signal. It is also possible to complete this
time-frequency processing by spectral processing, which is dealt with in the next
two chapters.

Time-domain - *
7 4

€
me
K - F
2 &

Windowin

g $
(0 ‘E

0
LL

Magn i tude and Phase
+

- T - ~ ” c , u c ! y 4

IFFT +
Overlap-add

Time-domain

Figure 8.2 Time-frequency processing based on the phase vocoder: analysis, transforma-
tion and synthesis.

8.2 Phase Vocoder Basics

The concepts of short-time Fourier analysis and synthesis have been widely de-
scribed in the literature [Pori’6, Cro80, CR831. We will briefly summarize the basics
and define our notation of terms for the application to digital audio effects.

8.2 Phase Vocoder Basics 239

-0.5 I I I I I I I I
-1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

h(4000-m) ' h(9000-m) I

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

STFT X(0,f)

.-

m +

STFT X(4000,f) STFT X(9000,f)

t 2 2

.E 0
m

I
a -2 -2 -2

D
2

0 0

1

0 2000 4000
f in Hz +

0 2000 4000 0 2000 4000
f in Hz + f in Hz +

Figure 8.3 Sliding analysis window and short-time Fourier transform.

The short-time Fourier transform (STFT) of the signal x(.) is given by
02

X (n , k) = c x(m)h(n -m)W?k, k = 0 , 1 , . ' . , N - 1

240 8 Time-frequency Processing

X (n , IC) is a complex number and represents the magnitude (X (n , k) (and phase
p(n, k) of a time-varying spectrum with the frequency bin (index) 0 5 k 5 N - 1
and time index n. Note that the summation index is m in (8.1). At each time
index n the signal .(m) is weighted by a finite length window h(n - m). Thus the
computation of (8.1) can be performed by a finite sum over m with an FFT of length
N . Figure 8.3 shows the input signal .(m) and the sliding window h(n - m) for
three time indices of n. The middle plot shows the finite length windowed segments
.(m) .h(n-m). These segments are transformed by the FFT yielding the short-time
spectra X (n , k) given by (8.1). The lower two rows in Fig. 8.3 show the magnitude
and phase spectra of the corresponding time segments.

8.2.1 Filter Bank Summation Model

The computation of the time-varying spectrum of an input signal can also be inter-
preted as a parallel bank of N bandpass filters, as shown in Fig. 8.4, with impulse
responses and Fourier transforms given by

H k (e'')

Each bandpass signal yk(n) is obtained by filtering the input signal x(.) with the
corresponding bandpass filter hk(n). Since the bandpass filters are complex-valued,
we get complex-valued output signals yk(n), which will be denoted by

yk(n) = X (n , I C) = (~ (n , I C) [. ej+(nlk). (8.6)

These filtering operations are performed by the convolutions
W CO

yk(n) = c z(m)hk(n - m) = c z(m)h(n - m)W,(n-m)k (8.7)

From (8.6) and (8.8) it is important to notice that

X(n, k) = winkx(n, I C) = w & ~ ' I x (~ , k) [e j ~ (~ > ~) (8.9)

@(n, IC) = -n + cp(n,k). (8.10)

Based on equations (8.7) and (8.8) two different implementations are possible, as
shown in Fig. 8.4. The first implementation is the so-called complex baseband im-
plementation according to (8.8). The baseband signals X (n , IC) (short-time Fourier
transform) are computed by modulation of z(n) with WGk and lowpass filtering
for each channel IC. The modulation of X (n , k) by W i n k yields the bandpass signal
X (n , IC). The second implementation is the so-called complex bandpass implementa-
tion, which filters the input signal with hk(n) given by (8.4)) as shown in the lower

27rk
N

8.2 Phase Vocoder Basics 241

0 1 2 8
time index

n
0 n k

Baseband Bandpass

Figure 8.4 Filter bank description of the short-time Fourier transform. Two implementa-
tions of the kth channel are shown in the lower left part. The discrete-time and discrete-
frequency plane is shown in the right part. The marked bandpass signals yk(n) are the
horizontal samples X (n , k) . The different frequency bands Y k corresponding to each band-
pass signal are shown on top of the filter bank. The frequency bands for the baseband
signal X (n , k) and the bandpass signal X (n , k) are shown in the lower right part.

left part of Fig. 8.4. This implementation leads directly to the complex-valued band-
pass signals X(n, IC). If the equivalent baseband signals X (n , IC) are necessary, they
can be computed by multiplication with WGk. The operations for the modulation
by WGk yielding X (n , IC) and back modulation by WNnk (lower left part of Fig. 8.4)
are only shown to point out the equivalence of both implementations.

The output sequence ?/(*a) is the sum of the bandpass signals according to

N - l N - l N- l

y(n) = c yk(n) = 1 X (n , k) = c x(n,IC)WNnk. (8.11)

242 8 Time-frequency Processing

bands shown in the upper part of Fig. 8.4. The property X(n, k) = X*(n, N - k)
together with the channel stacking can be used for the formulation of real-valued
bandpass signals (real-valued kth channel)

X(n, N - k) = X(n, k) + X*(n , C) (8.12)

(8.13) + e - M n > k) 1
. cos (8.14)
. . , N/2 - 1.

highpass channel.

Besides a dc and a highpass channel we have N/2 - 1 cosine signals with fixed
frequencies RI, and time-varying amplitude and phase. This means that we can add
real-valued output signals &(n) to yield the output signal

N / 2

Y(n) = x G k (n) . (8.18)
k=O

This interpretation offers analysis of a signal by a filter bank, modification of the
short-time spectrum X(n, k) on a sample-by-sample basis and synthesis by a sum-
mation of the bandpass signals y k (n) . Due to the fact that the baseband signals are
bandlimited by the lowpass filter h(n), a sampling rate reduction can be performed
in each channel to yield X(sR, k) , where only every Rth sample is taken and S

denotes the new time index. This leads to a short-time transform X(sR, k) with a
hop size of R samples. Before the synthesis upsampling and interpolation filtering
has to be performed [CR83].

8.2.2 Block-by-Block Analysis/Synthesis Model

A detailed description of a phase vocoder implementation using the FFT can be
found in [Por76, Cro80, CR83]. The analysis and synthesis implementations are
precisely described in [CR83, p. 318, Fig. 7.19 and p. 321, Fig. 7.201. A simplified
analysis and synthesis implementation, where the window length is less or equal to
the FFT length, were proposed in [Cro80]. The analysis and synthesis algorithm and
the discrete-time and discrete-frequency plane are shown in Fig. 8.5. The analysis

8.2 Phase Vocoder Basics 243

N

\ x(rn),h(-m) x(m).h(8-m) x(m).h(l6-m)

. . P
U N samples

F FT
U

IFFT
-U- 0 1 2 8 16

time index

A circular shift+ I ,S
windowing 0 1 2

block index /e
A

overlap+add

/f-\ - \ Y(n)l

Figure 8.5 Phase vocoder using the FFT/IFFT for the short-time Fourier transform. The
analysis hop size R, determines the sampling of the two-dimensional time-frequency grid.
Time-frequency processing allows the reconstruction with a synthesis hop size R,.

algorithm [Cro80] is given b y

a,

X (s R , , k) = c z(m)h(sR, - m)WFk (8.19)

m=-m

where the short-time Fourier transform is sampled every R, samples in time and S

denotes the time index of the short-time transform at the decimated sampling rate.
This means that the time index is now n = sR,, where R, denotes the analysis hop

244 8 Time-frequency Processing

size. The analysis window is denoted by h(n). Notice that X (n , k) and X (n , k) in the
FFT implementation can also be found in the filter bank approach. The circular
shift of the windowed segment before the FFT and after the IFFT is derived in
[CR83] and provides a zero-phase analysis and synthesis regarding the center of the
window. Further details will be discussed in the next section. Spectral modifications
in the time-frequency plane can now be done which yields Y(sR,, k) , where R, is
the synthesis hop size. The synthesis algorithm [Cro80] is given by

03

Y(n) = c f(n-sRs)y,(n-sRs) (8.23)
,=--W

where f(n) denotes the synthesis window. Finite length signals y , (n) are derived
from inverse transforms of short-time spectra Y (sR,, k) . These short-time segments
are weighted by the synthesis window f (n) and then added by the overlap-add
procedure given by (8.23) (see Fig. 8.5).

8.3 Phase Vocoder Implementations

This section describes several phase vocoder implementations for digital audio ef-
fects. A useful representation is the time-frequency plane where one displays the
values of the magnitude / X (n , k)l and phase $(n, k) of the X (n , k) signal. If the
sliding Fourier transform is used as an analysis scheme, this graphical representa-
tion is the combination of the spectrogram, which displays the magnitude values
of this representation, and the phasogram which displays the phase. However, pha-
sograms are harder to read when the hop size is not small. Figure 8.6 shows a
spectrogram and a phasogram which correspond to the discrete-time and discrete-
frequency plane achieved by a filter bank (see Fig. 8.4) or a block-by-block FFT
analysis (see Fig. 8.5) described in the previous section. In a horizontal direction
a line represents the output magnitude IX(n , k)l and the phase $(n, k) of the kth
analysis bandpass filter over the time index n. In the vertical direction a line rep-
resents the magnitude IX(n , k)I and phase $(n, k) for a fixed time index n, which
corresponds to a short-time spectrum over frequency bin k at the center of the anal-
ysis window located at time index n. The spectrogram in Fig. 8.6 with frequency
range up to 2 kHz shows five horizontal rays over the time axis indicating the mag-
nitude of the harmonics of the analyzed sound segment. The phasogram shows the
corresponding phases for all five horizontal rays $(n, k) , which rotate according to
the frequencies of the five harmonics. With a hop size of one we get a visible tree
structure. For a larger hop size we get a sampled version, where the tree structure
usually disappears.

The analysis and synthesis part can come from the filter bank summation model
(see basics), in which case the resynthesis part consists in summing sinusoids, whose
amplitudes and frequencies are coming from a parallel bank of filters. The analysis

8.3 Phase Vocoder Implementations 245

0 50 100 150 200 250 300 350 400 450 500
n +

0 50 100 150 200 250 300 350 400 450 500
n +

Figure 8.6 Magnitude IX(n, k)l (upper plot) and phase @(n, k) (lower plot) display of a
sliding Fourier transform with a hop size R, = 1 or a filter bank analysis approach. For the
upper display the grey value (black = 0 and white = maximum amplitude) represents the
magnitude range. In the lower display the phase values are in the range -7r 5 @(TI, k) 5 7r.

246 8 Time-frequency Processing

part can also come from a sliding FFT algorithm, in which case it is possible to
perform the resynthesis with either a summation of sinusoids or an IFFT approach.

8.3.1 Filter Bank Approach

From a musician's point of view the idea behind this technique is to represent a
sound signal as a sum of sinusoids. Each of these sinusoids is modulated in amplitude
and frequency. These sinusoids represent filtered versions of the original signal.
The manipulation of the amplitudes and frequencies of these individual signals will
produce a digital effect including time stretching or pitch shifting.

l

Figure 8.7 Filter bank implementation.

One can use a filter bank, as shown in Fig. 8.7, to split the audio signal into
several filtered versions. The sum of these filtered versions reproduces the original
signal. For a perfect reconstruction the sum of the filter frequency responses should
be unity. In order to produce a digital audio effect, one needs to alter the inter-
mediate signals, that are analytical signals consisting of real and imaginary parts
(double lines in Fig. 8.7). The implementation of each filter can be performed by a
heterodyne filter, as shown in Fig. 8.8.

Analysis

Synthess
Os~~l la lorw~th variable
rnagnttude and phase

I I I I

Figure 8.8 Heterodyne filter implementation.

The implementation of a stage of a heterodyne filter consists of a complex-
valued oscillator with a fixed frequency R k , a multiplier and an FIR filter. The
multiplication shifts the spectrum of the sound, and the FIR filter limits the width

8.3 Phase Vocoder Implementations 247

of the frequency shifted spectrum. This heterodyne filtering can be used to obtain
intermediate analytic signals, which can be put in the form

The difference from classical bandpass filtering is that here the output signal is
located in the baseband. This representation leads to a slowly varying phase cp(n, k)
and the derivation of the phase is a measure of the frequency deviation from the
center frequency f l k . sinusoid x(.) = cos[Rkn + PO] with frequency &. can be
written as x(.) = cos[$(n)]; where $(n) = Rkn + po. The derivation of $(n) gives
the frequency f l k = F. 'The derivation of the phase $(n,IC) at the output of a
bandpass filter is termed the instantaneous frequency given by

Oi(n, k) = Wi(n, k)T = 27r fi(n, k) / f s (8.28)

(8.29)

(8.32)

The instantaneous frequency can be described in a musical way as the frequency
of the filter output signal in the filter bank approach. The phase of the baseband
output signal is p(n, k) and the phase of the bandpass output signal is $(n, k) =
Rkn + p(n, k) (see Fig. 8.8). As soon as we have the instantaneous frequencies, we
can build an oscillator bank and eventually change the amplitudes and frequencies
of this bank to build a digital audio effect. The recalculation of the phase from a
modified instantaneous frequency is done by computing the phase according to

$(n, IC) = $(O, k) + 27r fi(T, k)dT. inT (8.33)

The result of the magnitude and phase processing can be written as Y (n , k) =
lY(n, k) [e j ' f ' y (n l k) , which is t8hen used as the magnitude and phase for the complex-
valued oscillator running with frequency Ok. The output signal is then given by

The resynthesis of the output signal can then be performed by summing all the

248 8 Tame-frequency Processing

individual back shifted signals (oscillator bank) according to

N - l N - l

y(n) = c Y (n , IC) = c Y (n , IC) . e j Q k n (8.36)
k=O k=O

NI 2

= c A(n, k) cos [a k n f (Py(n7 IC)] 7 (8.37)
k=O

where (8.37) was already introduced by (8.18). The modification of the phases and
frequencies for time stretching and pitch shifting needs further explanation and will
be treated in a following subsection.

The following M-file 8.1 shows a filter bank implementation with heterodyne
filters as shown in Fig. 8.8 (see also Fig. 8.4).

M-file 8.1 (VXhetxothing.m)
% VX-het-n0thing.m
clear; clf
l===== this program implements a heterodyne filter bank
%===== then filters a sound through the filter bank
y===== and reconstructs a sound

”/---- user data -----
WLen
nChannel
nl

CDAFx-in, FSI =
L
DAFx- in

- -
- -
- -

- -
- -

256 ;
128; % nb of channels
1024; % block size for calculation

wavread(’la.wav’);
length(DAFx-in);
CDAFx-in; zeros(nl,l)] / max(abs(DAFx-in));

% (must be a multiple of WLen)

y----- window and arrays -----
window = hanningz(WLen);
DAFx-out = zeros(length(DAFx-in), 1) ;
X = zeros (nl , nChanne1) ;
Z = zeros(WLen-l, nchannel);

y----- initialization of the filters -----
t = (0:ni-l));
het = zeros(n1,nChannel);
for k=l:nChannel
wk = 2*pi*i*(k/WLen) ;
het(: ,k) = exp(wk*(t+WLen/2));
het2(: ,k) = exp(-wk*t) ;
end

%colormap(gray) ; imagesc(angle(het1 ’1 ; axis(’xy’) ; pause;

8.3 Phase Vocoder Implementations 249

tic
%4
p = 0;
pend = length(DAFx-in) - nl;
while pcpend
P
grain = DAFx-in(p+i:p+nl) ;
y---

0

y----- f iltering -----
for k=l:nChannel
[X(:,k), z(:,k)] = filter(window, 1, grain.*het(:,k), z(:,k));
end
X-tilde = X.*het2;

% imagesc(angle(X-tilde’)); axis(’xy’); drawnow

res = real (sum(X-tilde , 2)) ;
.
DAFx-out (p+l :p+nl) = res ;
p = p + ni;
end
%d

’/----- d rawing -----

y----- reconstruction -----

toc

y----- 1 istening and saving the output -----
DAFx-out = DAFx-out (nChannel+i :nChannel+L) / max(abs (DAFx-out) ;
soundsc(DAFx-out,FS);
wavwrite(DAFx-out, FS, ’la-het-nothing.wav’);

M-file 8.2 demonstrates the second filter bank implementation with complex-
valued bandpass filters, as shown in Fig. 8.4.

M-file 8.2 (VX-fi1ternothing.m)
% VX-filter-n0thing.m
clear; clf
x===== this program performs a complex-valued filter bank
x===== then filters a sound through the filter bank
X===== and reconstructs a sound

y----- user data -----
WLen = 256;
nChannel = 128; % nb of channels
nl = 1024; block size for calculation
[DAFx-in, FS] = wavread(’1a.wav’) ;
L = length(DAFx-in) ;

250 8 Time-frequency Processing

DAFx-in = [DAFx-in; zeros(n1,l)l / max(abs(DAFx-in));

”/---- window and arrays -----

window = hanningz(WLen);
DAFx-out = zeros(length(DAFx-in) ,l) ;
X-tilde = zeros(n1,nChannel);
Z = zeros(WLen-l ,nChannel) ;

y----- initialisation of the filters -----
t = (-WLen/2:WLen/2-1)’;
ourFilter = zeros(WLen, nchannel);
f o r k=l:nChannel
wk = 2*pi*i* (k/WLen) ;
ourFilter(:,k) = window.*exp(wk*t);
end

%colormap (gray)

X----- listening and saving the output -----
DAFx-out = DAFx-out(nChannel+l:nChannel+L) / max(abs(DAFx-out));
soundsc (DAFx-out , FS) ;
wavwrite(DAFx-out, FS, ’la-filter-nothing.wav’);

8.3 Phase Vocoder Implementations 251

8.3.2 Direct FFT/IFFT Approach

The FFT algorithm also calculates the values of the magnitudes and phases within
a time frame allowing a shorter calculation time. So many analysis-synthesis algo-
rithms use this transform. There are different ways to interpret a sliding Fourier
transform, and consequently to invent a method of resynthesis starting from this
time-frequency representation. The first one is to apply the inverse FFT on each
short-time spectrum and use the overlap-add method to reconstruct the signal. The
second one is to consider a horizontal line of the time-frequency representation (con-
stant frequency versus time) and to reconstruct a filtered version for each line. The
third one is to consider each point of the time-frequency representation and to make
a sum of small grains called gaborets. In each interpretation one must test the abil-
ity of obtaining a perfect reconstruction if one does not modify the representation.
Another important fact is the ability to provide effect implementations that do not
have too many artifacts when one modifies on purpose the values of the sliding
FFT, especially in operations such as time stretching or filtering.

We now describe the direct FFT/IFFT approach. A time-frequency representa-
tion can be seen as a series of overlapping FFTs with or without windowing. As
the FFT is invertible, one can reconstruct a sound by adding the inverse FFT of a
vertical line (constant time versus frequency), as shown in Fig. 8.9.

Figure 8.9 FFT and IFFT: vertical line interpretation. At two time instances two spectra
are used to compute two time segments.

A perfect reconstruction can be achieved, if the sum of the overlapping windows
is unity (see Fig. 8.10). A modification of the FFT values can produce time aliasing,
which can be avoided by either zero-padded windows or using windowing after the
inverse FFT. In this case the product of the two windows has to be unity. An
example is shown in Fig. 8.11. This implementation will be used most frequently in
this chapter.

252 8 Time-frequency Processing

Sum of the square of overlapped Hanning windows

I I 1 I I I l I I l I

0 100 200 300 400 500 600 700 800 900 1000

original grain x(n)
1

0.5

0

-0.5

-1

n +

Figure 8.10 Sum of small windows.

original FFT magnitude transformed FFT magnitude transformed grain y(n)

-20

-40

-60

-80

.Inn

- 0 1

-20
0.5

. -40

0
. -60

-0.5
-80

original FFT phase transformed FFT phase

3 t ; I ’ i 3t ;

2 2

1 1

0 0

-1 -1

-2 -2

-3 }l I ‘ I I 1 -3 t’ ’ I 1

0 1000 2000 3000 0 1000 2000 3000
flHz + f/Hz +

Figure 8.11 Sound windowing, FFT modification and IFFT.

The following M-file 8.3 shows a phase vocoder implementation based on the
direct FFT/IFFT approach, where the routine itself is given two vectors for the
sound, a window and a hop size.

8.3 Phase Vocoder Implementations 253

M-file 8.3 (VX-pvn0thing.m)
% VX-pv-n0thing.m
x===== this program is a simple phase vocoder, with:

x===== WLen is the length of the windows
x===== ni and n2: steps (in samples) for the analysis and synthesis
clear; clf
'/----- user data -----
nl = 512;
n2 = nl;
WLen = 2048;

'/===== wi and w2 windows (analysis and synthesis)

W1 = hanningz(WLen) ;
W2 = wl;
[DAFx-in, FS] = wavread(' la. wav') ;
L = length(DAFx-in);
DAFx-in = [zeros(WLen, 1) ; DAFx-in; . . .

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-in)) ;
'/----- initializations -----
DAFx-out = zeros (length(DAFx-in), l) ;
tic
x w v w w v v w w r r m n n r r r w r n n n r u u w w w w r r w u
pin = 0;
pout = 0;
pend = length(DAFx-in) - WLen;

while pin<pend
grain = DAFx-in(pin+i:pin+WLen).* wi;
'/---
f = fft(fftshift(grain));
r = abs(f);
phi = angle(f) ;
ft = (r.* exp(i*phi));
grain = fftshift(real(ifft(ft))).*w2;
7 ...
DAFx-out(pout+l:pout+WLen) = . . .

pin = pin + ni;
pout = pout + n2;
end
x v w m n r m r v w m n n n n n r r n r w w w u w w r n r r n r w r n r
'/----- 1 istening and saving the output -----

I
-________________-----------------

I
-________________------------------

DAFx-out(pout+i:pout+WLen) + grain;

toc

XDAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx-out (WLen+l : WLen+L) / max (abs (DAFx-out)) ;
soundsc (DAFx-out , FS) ;
wavwrite(DAFx-out, FS, 'la-pv-nothing.wav');

254 8 Time-frequency Processing

The kernel algorithm performs successive FFTs, inverse FFTs and overlap-add of
successive grains. The key point of the implementations is how to go from the FFT
representation, where the time origin is at the beginning of the window to the phase
vocoder representation used in section 8.2, either in its filter bank description or its
block-by-block approach.

The first problem we have to solve is the fact that the time origin for an FFT
is on the left of the window. We would like to have it centered, so that for example
the FFT of a centered impulse would be zero phase. This is done by a circular shift
of the signal, which is a commutation of the first and second part of the buffer. The
discrete-time Fourier transform of 2(n) = x (n - N / 2) is X(ej") = e-j'%X(ej").
With o k = $/c the discrete Fourier transform gives X (k) = e-3 F 2 X (k) , which is
equivalent to X (k) = (- 1) le X (k) . The circular shift in time domain can be achieved
by multiplying the result of the FFT by (-l)k. With this circular shift, the output
of the FFT is equivalent to a filter bank, with zero phase filters. When analyzing
a sine wave, the display of the values of the phase g(n, 1) of the time-frequency
representation will follow the phase of the sinusoid. When analyzing a harmonic
sound, one obtains a tree with successive branches corresponding to every harmonic
(top of Fig. 8.12).

' 2 * k x

100 200 300 400 500 600 700 800 900 1000
n +

100 200 300 400 500 600 700 800 900 1000
n +

Figure 8.12 Different phase representations: (a) +(n, k) and (b) p(n, k) = +(n, k) -
2rmk/N.

8.3 Phase Vocoder Implementations 255

If we want to take an absolute value as the origin of time, we have to switch
to the notation used in section 8.2. We have to multiply the result of the FFT by
W;k where m is the time sample in the middle of the FFT and k is the number
of the bin of the FFT. In this way the display of the phase cp(n,k) (bottom of
Fig. 8.12) corresponds to a frequency which is the difference between the frequency
of the analyzed signal (here a sine wave) delivered by the FFT and the analyzing
frequency (the center of the bin). The phase p(n, k) is calculated as cp(n,k) =
@(n, k) - 27rmk/N (N length of FFT, k number of the bin, m time index).

8.3.3 FFT Analysis/Sum of Sinusoids Approach

Conversely, one can read a time-frequency representation with horizontal lines, as
shown in Fig. 8.13. Each point on a horizontal line can be seen as the convolution
of the original signal with an FIR filter, whose filter coefficients have been given by
(8.4). The filter bank approach is very close to the heterodyne filter implementa-
tion. The difference comes from the fact that for heterodyne filtering the complex
exponential is running with time and the sliding FFT is considering for each point
the same phase initiation of the complex exponential. It means that the heterodyne
filter measures the phase deviation between a cosine and the filtered signal and the
sliding FFT measures the phase with a time origin a t zero.

f A r--- I

I - I

l

Figure 8.13 Filter bank approach: horizontal line interpretation

The reconstruction of a sliding FFT on a horizontal line with a hop size of one
is performed by filtering of this line with the filter corresponding to the frequency
bin (see Fig. 8.13). However, if the analysis hop size is greater than one, we need
to interpolate the magnitude values IX(n, k)l and phase values @(n, k) . Phase in-
terpolation is based on phase unwrapping, which will be explained in section 8.3.5.
Combining phase interpolation with linear interpolation of the magnitudes IX(n , k)l
allows the reconstruction of the sound by the addition of a bank of oscillators as
given in (8.37).

M-file 8.4 illustrates the interpolation and the sum of sinusoids. Starting from
the magnitudes and phases taken from a sliding FFT the synthesis implementation
is performed by a bank of oscillators. It uses linear interpolation of the magnitudes
and phases.

M-file 8.4 (VX-bankn0thing.m)
% VX-bank-n0thing.m
X===== t h i s program performs an FFT analysis and

256 8 Time-frequency Processing

l===== oscillator bank synthesis, with:
l===== WLen is the length of the windows
l===== nl and n2: steps (in samples) for the analysis and synthesis
y===== wl and w2 windows (analysis and synthesis)
clear; clf
y----- user data -----
nl = 200;
n2 = nl;
WLen = 2048;
W1 = hanningz (WLen) ;
W2 = wl;

L = length(DAFx-in) ;
[DAFx-in, FS] = wavread(’la.wav’1;

DAFx-in = [zeros(WLen, l) ; DAFx-in; . . .
y----- some initializations -----
DAFx-out = zeros(length(DAFx-in) ,l) ;
11 = WLen/2;
omega = 2*pi*ni* [O : 11-11 ’/WLen;
phi0 = zeros(l1, l) ;
rO = zeros (11,l) ;
psi = zeros (11,1) ;
grain = zeros(WLen,l);
res = zeros(n2,i) ;

zeros(WLen-mod(L,nl) ,113 / max(abs(DAFx-in));

tic
%l

pout = 0;
pin = 0;

pend = length(DAFx-in) - WLen;

while pincpend
grain = DAFx-in(pin+l:pin+WLen).* wl;
..
fc = fft(fftshift(grain));
f = fc(1:ll);
r = abs(f);
phi = angle(f) ;
delta-phi = omega + princarg(phi-phi0-omega);

% now we have the unwrapped difference of phase
% on each bin for the hop size of n2

delta-r = (r-rO)/nl;
delta-psi = delta-phi/nl;

% and now we have the increment of phase and of magnitude
% to make a linear interpolation and reconstruction

for k=l:n2

8.3 Phase Vocoder Implementations 257

rO = rO + delta-r;
psi = psi + delta-psi;
res(k) = rO’*cos(psi) ;

end
1 this tricky line is making the sum of weighted cosine

X----- f o r next time ------
phi0 = phi;
rO = r;
psi = princarg(psi) ;
7 .

DAF~-out(pout+I:pout+n2) = DAFx-out(pout+l:pout+n2) + res;
pin = pin + nl;
pout = pout + n2;
end
% w v v w v w m n n n r w v w v w w w u w w w u w r n r u
toc

x-- - - - listening and saving the output -----
%DAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx~out(WLen/2+nl+l:WLen/2+ni+L) / max(abs(DAFx-out));
soundsc(DAFx-out,FS);
wavwrite(DAFx-out, FS, ’1a-bank-nothing.wav’);

8.3.4 Gaboret Approach

The idea of the “Gaboret Approach” is the reconstruction of a signal from a time-
frequency representation with the sum of “gaborets” weighted by the values of
the time-frequency representation [AD93]. The shape of a gaboret is a windowed
exponential (see Fig. 8.1411, which can be given by gn,(n) = e-jnkng,(n). The
approach is based on the Gabor transform, which is a short-time Fourier transform
with the smallest time-frequency window, namely a Gaussian function g,(n) =

-- with a > 0. The discrete-time Fourier transform of ga(n) is again a
Gaussian function in the Fourier domain. The Gaboret approach is very similar to
the wavelet transform [CGT89, Chu921: one does not consider time or frequency as
a privileged axis and one point of the time-frequency plane is the scalar product of
the signal with a small gaboret. Further details can be found in [QC93, WR901. The
reconstruction from a time-frequency representation is the sum of gaborets weighted
by the values of this time-frequency plane according to

dzz;;;“. 2o

“ 2

(8.38)

Although this point of view is totally equivalent to windowing plus FFT/IFFT plus
windowing, it allows a good comprehension of what happens in case of modification
of a point in the plane.

258 8 Tame-frequency Processing

t r t

Figure 8.14 Gaboret approach: the upper left part shows real and imaginary values of
a gaboret and the upper right part shows a possible 3D repesentation with axis t , z
and y. The lower part shows a gaboret associated to a specific point of a time-frequency
representation (for every point we can generate a gaboret in the time domain and then
make the sum of all gaborets).

The reconstruction of one single point of a time-frequency representation yields
a gaboret in the time domain, as shown in Fig. 8.15. Then a new time-frequency rep-
resentation of this gaboret is computed. We get a new image, which is the called the
reproducing kernel associated to the transform. This new time-frequency represen-
tation is different from the single point of the original time-frequency representation.

So a time-frequency representation of a real signal has some constraints: each
value of the time-frequency plane must be the convolution of the neighborhood
by the reproducing kernel associated to the transformation. This means that if an
image (time-frequency representation) is not valid and that we force the recon-
struction of a sound by the weighted summation of gaborets, the time-frequency
representation of this transformed sound will be in a different form than the ini-
tial time-frequency representation. There is no way to avoid this and the beautiful
art of making good transforms often relies on the ability to provide “quasi-valid”
representations [AD93].

This reproducing kernel is only a 2-D extension of the well-known problem of
windowing: we find the shape of the FFT of the window around one horizontal ray.
But it brings new aspects. When we have two spectral lines, their time-frequency
representations are blurred and, when summed, appear as beats. Illustrative exam-
ples are shown in Fig. 8.16. The shape of the reproducing kernel depends on the
shape of the window and is the key point for differences in representations between
different windows. The matter of finding spectral lines starting from time-frequency
representations is the subject of Chapter 10. Here we only consider the fact that
any signal can be generated as the sum of small gaborets. Frequency estimations in
bins are obviously biased by the interaction between rays and additional noise.

8.3 Phase Vocoder Implementations 259

-
t
-

t

arbnrary image - - - - signal - - - -D timefrequency
representation

Gaboret
I I 1

50 100 150 200 250
Phasogram

200 I

Figure 8.15 Reproducing kernel: the lower three plots represent the forced gaboret and
the reproducing kernel consisting of spectrogram and phasogram. (Note: phase values only
make sense when the magnitude is not too small.)

The following M-file 8.5 demonstrates the Gaboret analysis and synthesis ap-
proach.

M-file 8.5 (VX-gabnothing . m)
% VX-gab-n0thing.m
%= this program performs the convolution of the signal with gaborets
clear; clf
y-----
WLen = 512;

user data -----

260

Spectrogram

8 Time-frequency Processing

Phasogram

50

50 100 150 200

50 100 150 200

50 100 150 200
n +

50 100 150 200

50 100 150 200

50 100 150 200
f l - +

Figure 8.16 Spectrogram and phasogram examples: (a) upper part: the effect of the
reproducing kernel is to thicken the line and giving a rotating phase at the frequency of
the sinusoid. (b) middle part: for two sinusoids we have two lines with two rotations, if the
window is large. (c) lower part: for two sinusoids with a shorter window the two lines mix
and we can see beatings.

window = hanningz(WLen);
nChannel = WLen/2;
nl = 128;
n2 = nl;
[DAFx-in, FS] = wavread(’la.wav’) ;

DAFx-in = [zeros(WLen, 1) ; DAFx-in; . . .
L = length(DAFx-in) ;

zeros(WLen-mod(L,nI),l)] / max(abs(DAFx-in));

DAFx-out = zeros(length(DAFx_in),l);

t = (-WLen/2:WLen/2-1);
gab = zeros(nChanne1,WLen);
f o r k=l:nChannel
wk = 2*pi*i* (k/WLen) ;

y----- initializations calculation of gaborets -----

8.3 Phase Vocoder Implementations 261

gab(k, :) = window’. *exp(wk*t) ;
end

tic
% w v w w m r v w v m r v w v w m r u w w r n r u w u u w r r u
pin = 0;
pout = 0;
pend = length(DAFx-in) - WLen;

while pincpend
grain = DAFx-in(pin+l:pin+WLen);
y---

vec = gab*grain;

res = real (gab’ *vec) ;
y .

DAFx-out(pout+l:pout+WLen) = DAFx-out(pout+l:pout+WLen) + res;
pin = pin + nl;
pout = pout + n2;
end
% w v w v v w w v v w r r m n r m n r w r r u u w u w w w w u

e-----------

y----- complex vector corresponding to a vertical line

y----- reconstruction from the vector to a grain

toc

y----- 1 istening and saving the output -----
%DAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx-out (WLen+l: WLen+L) / max(abs (DAFx-out)) ;
soundsc(DAFx-out , FS) ;
wavwrite(DAFx-out, FS, ’la-gab-nothing.wav’) ;

8.3.5 Phase Unwrapping and Instantaneous Frequency

For the tasks of phase interpolation and instantaneous frequency calculation for
every frequency bin k we need a phase unwrapping algorithm. Starting from Fig. 8.4
we perform unwrapping of

Ok

by the unwrapping of p (n , k) and adding the phase variation given by f l k n for all k ,
as already shown by (8.10). We also need a special function which puts an arbitrary
radian phase value into the range] - T , 3-1. We will call this function principle
argument [GBAOO], which is defined by the expression y = princarg[27rrn+yx] = y a ,
where -7r < cpx 5 7r and m it; an integer number. The corresponding Matlab function
is shown in Fig. 8.17.

262 8 Time-frequency Processing

y=princarg[x]

f '
function phase=princarg(phasein) p
phase=rnod(phasein+pi,-2*pi)+pi; .- c

/

-5 - /
/

/
/

/

-10'
-1 0 -5 0 5 10

x in rad +

Figure 8.17 Principle argument function (Matlab code and illustrative plot).

0 Measured phase
Target phase

0 Unwrapped phase

Figure 8.18 Basics of phase computations for frequency bin IC.

The phase computations are based on the phase values $(sR,, k) and $ ((S +
l)&, k) , which are the results of the FFTs of two consecutive frames. These phase
values are shown in Fig. 8.18. We now consider the phase values regardless of the
frequency bin k . If a stable sinusoid with frequency f l k exists, we can compute a
target phase $ t ((s + l) R a) from the previous phase value $(sR,) according to

$%((S + I)%) = $(S&) + flkR,. (8.39)

The unwrapped phase

@,((S + 1)Ra) = @ t ((S + 1)Ra) + @ d ((S + 1)RU) (8.40)

is computed by the target phase & ((S + 1)R,) plus a deviation phase $d((s+ l)Ra).
This deviation phase can be computed by the measured phase $((S + l)R,) and the
target phase & ((S + l)&) according to

$d((s + l)&) = princarg[$((s + l)&) - $t ((s + l)R,)] . (8.41)

8.4 Phase Vocoder Effects 263

Now we formulate the unwrapped phase (8.40) with the deviation phase (8.41),
which leads to the expression

+ 1) ~ ~) = $ t ((s + 1)Ra) + princarg[$((s + l)Ra) - $t ((s +
= $(sRa) + RbR, + princarg[$((s + l)&) - $(sRa) - RkRa].

From the previous equation we can derive the unwrapped phase difference

Ac~((s + l)&) = + U ((. + - $(S&)

= &R, + princarg[+((s + l)&) - $(S&) -

(8.42)

between two consecutive frames. From this unwrapped phase difference we can
calculate the instantaneous fi-equency for frequency bin k at time instant (S + l)Ru
by

(8.43)

The Matlab instructions for the computation of the unwrapped phase difference
given by (8.42) for every frequency bin k are given here:

omega = 2*pi*nl*[O:ll-i:1’/WLen;
% 11 = N/2 with N length of the FFT
% nl=R-a
delta-phi= omega+princarg(phi-phi0-omega);

The term phi represents $ ((S + l)&) and phi0 the previous phase value $(sRtL).
In this manner delta-phi represents the unwrapped phase variation Acp((s+ l)R,)
between two successive frames for every frequency bin k.

8.4 Phase Vocoder Effects

The following subsections will describe several modifications of a time-frequency
representation before resynthesis in order to achieve audio effects. Most of them use
the FFT analysis followed by either a summation of sinusoids or an IFFT synthesis,
which is faster or more adaptfed to the effect. But all implementations give equivalent
results and can be used for audio effects.

8.4.1 Time-frequency Filtering

Filtering a sound can be done with recursive (IIR) or nonrecursive (FIR) filters.
However, a musician would like to define or even to draw a frequency response
which represents the gain for each frequency band. An intuitive way is to use a time-
frequency representation and attenuate certain zones, by multiplying the FFT result

264 8 Time-frequency Processing

pq -
FFT l

.

time aliasing

circular convolution fast convolution

Figure 8.19 Circular convolution and fast convolution.

in every frame by a filtering function in the frequency domain. One must be aware
that in that case we are making a circular convolution (during the FFT ~ inverse
FFT process), which leads to time aliasing as shown in Fig. 8.19. The alternative
and exact technique for using time-frequency representations is the design of an FIR
impulse response from the filtering function. The convolution of the signal segment
~ (n) of length N with the impulse response of the FIR filter of length N + 1 leads to
an 2N-point sequence y(n) = X(.) * h(n). This time domain convolution or filtering
can be performed more efficiently in the frequency domain by multiplication of the
corresponding FFTs Y (IC) = X (k) . H (k) . This technique is called fast convolution
(see Fig. 8.19) and is performed by the following steps:

1. Zero-pad the signal segment z(n) and the impulse response h(n) up to length
2N.

2. Take the 2N-point FFT of these two signals.

3. Perform multiplication Y (k) = X(IC) . H (k) with k = 0,1 , . . . , 2N - 1.

4. Take the 2N-point IFFT of Y (k) , which yields y(n) with n = 0,1, . . . , 2 N - 1.

Overlap
+ add

Figure 8.20 FFT filtering.

8.4 Phase Vocoder Effects 265

Now we can work with successive segments of length N of the original signal (which
is equivalent to use a rectangular window), zero-pad each segment up to the length
2 N and perform the fast convolution with the filter impulse response. The results
of each convolution are added in an overlap-add procedure, as shown in Fig. 8.20.
The algorithm can be summarized as

1. Start from an FIR filter of length N + 1, zero pad it to 2 N and take its FFT
+ H (k) .

2. Partition the signal into segments Q(.) of length N and zero-pad each segment
up to length 2 N .

3. For each zero-padded segment si (n) perform the FFT + X i (k) with k =
0 , l , 2 N - 1 .

4. Perform the multiplication y i (k) = X i (k) . H (k) .

5. Take the inverse FFT of these products y i (k) .

6 . Overlap-add the convolution results (see Fig. 8.20).

The following M-file 8.6 demonstrates the FFT filtering algorithm.

M-file 8.6 (U X 1 ilter .m)
% VX-fi1ter.m
%===== this program performs time-frequency filtering
x===== calculation of the fir (here band pass)

clear; clf

y----- user data -----
FirLength = 1280; % length of the fir
WLen = 2*FirLength; % for zero padding
[DAFx-in , FS] = wavread (’ la. wavy) ;

DAFx-in = [DAFx-in; zeros(WLen-mod(L,FirLength) ,l)] . . .
L = length(DAFx-in);

/ max (abs (DAFx-in) ;

y----- initializations -----
X = 1:FirLength;
fr = 1000/FS;
alpha = -0.002;
fir = (exp(alpha*x).*sin(2*pi*fr*x))’; % FIR coefficients
plot (f ir) ;

f ir2 = [fir; zeros(WLen-FirLength,I)];
f corr = fft (f ir2) ;
DAFx-out = zeros (length (DAFx-in)+FirLength, 1) ;

8 Tame-frequency Processing

grain = zeros (WLen, 1) ;

tic
%l
pin = 0;
pout = 0;
pend = length(DAFx-in) - FirLength;

y----- 1 istening and saving the output -----
%DAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx-out / max(abs(DAFx-out));
soundsc(DAFx-out , FS) ;
wavwrite(DAFx-out, FS, 'la-filter.wav');

The design of an N-point FIR filter derived from frequency domain specifications is
a classical problem of signal processing. A simple design algorithm is the frequency
sampling method [Zo197].

8.4.2 Dispersion

When a sound is transmitted over telecommunications lines, some of the frequency
bands are delayed. This spreads a sound in time, with some components of the
signal being delayed. It is usually considered a default in telecommunications but
can be used musically. This dispersion effect is especially significant on transients,
where the sound loses its coherence, but can also blur the steady state parts.

A dispersion effect can be simulated by a filter, especially an FIR filter, whose
frequency response has a frequency-dependent time delay. The only change to the
previous program is to change the calculation of the FIR vector fir. We will now
describe several filter designs for a dispersion effect.

Design 1. As an example, a linear chirp signal is a sine wave with linearly
increasing frequency and has the property of having a time delay proportional to its
frequency. A mathematical definition of a linear chirp signal starting from frequency

8.4 Phase Vocoder Effects 267

zero and going to frequency f1 during time tl is given by

Chirp(t) = sin(at2) with a = T-.

Sampling of this chirp signal yields the coefficients for an FIR filter. Time-frequency
representations of a linear and an exponential chirp signal are shown in Fig. 8.21a.

fl (8.44)
tl

Figure 8.21 Time-frequency representations: (a) linear/exponential chirp signal and (b)
time-frequency warping for the linear/exponential chirp.

Design 2. It is also possible to numerically approximate a chirp by integrating
an arbitrary frequency function of time. In this case the MATLAB function cumsum
can be used to calculate the phase p(n) = S,”’27rf(7-)d~+(p(O) as the integral of tjhe
time-dependent frequency j (t) . A linear chirp with 300 samples can be comput,ed
by the MATLAB instructio:ns:

and an exponential chirp by

n = 300;
x = (l:n>/n;
fO = 50;
fl = 4000;
rap = fl/fO;
freq = (2*pi*f0/44100) * (rap.-x);
fir = (sin(cumsum(freq,)>>’;

Any other frequency function f (t) can be used for the calculation of freq.

268 8 Time-frequency Processing

Design 3. Nevertheless these chirp signals deliver the frequency as a function
of time delay. We would be more likely to define the time delay as a function
of frequency. This is only possible with the previous technique if the function is
monotonous. Thus in a more general case we can use the phase information of an
FFT as an indication of the time delay corresponding to a frequency bin: the phase
of a delayed signal z(n - M) , which has a discrete Fourier transform X (I C) e - j M F
with IC = 0,1 , . . . , N / 2 , is cp(IC) = --M% where M is the delay in samples, IC is the
number of the frequency bin and N is the length of the FFT.

A variable delay for each frequency bin can be achieved by replacing the fixed
value M (the delay of each frequency bin) by a function M(lc), which leads to
X (t) e - j M (k) F . For example, a linearly increasing time delay for each frequency
bin is given by M (k) = M . with IC = 0,1 , . . . , N / 2 - 1. The derivation of the
FIR coefficients can be achieved by performing an IFFT of the positive part of the
spectrum and then taking the real part of the resulting complex-valued coefficients.
With this technique a linear chirp signal centered around the middle of the window
can be computed by the following MATLAB instructions:

M = 300;
WLen = 1024;
mask = [l; 2*ones(WLen/2-1,1); l ; zeros(WLen/2-l,l)l;
fs = M*(O:WLen/2) / WLen; % linear increasing delay
teta = [-2*pi*f S. * (0 : WLen/2) /WLen ; zeros (WLen/2-1,1) 1 ;
f2 = exp(i*teta) ;
fir = fftshift(real(ifft(f2.*mask)));

It should be noted that this technique can produce time aliasing. The length of
the FIR filter will be greater than M . A proper choice of N is needed, for example
N > 2 M .

Design 4. A final technique is to draw an arbitrary curve on a time-frequency
representation, which is an invalid image, and then resynthesize a signal by forcing
a reconstruction, for example, by using a summation of gaborets. Then we can use
this reconstructed signal as the impulse response of the FIR filter. If the curve
displays the dispersion of a filter, we get a dispersive filter.

In conclusion, we can say that dispersion, which is a filtering operation, can
be perceived as a delay operation. This leads to a warping of the time-frequency
representation, where each horizontal line of this representation is delayed according
to the dispersion curve (see Fig. 8.21b).

8.4.3 Time Stretching

Time-frequency scaling is one of the most interesting and difficult tasks that can be
assigned to time-frequency representations: changing the time scale independently of
the “frequency content”. For example, one can change the rhythm of a song without
changing its pitch, or conversely transpose a song without any time change. Time
stretching is not a problem that can be stated outside of the perception: we know,

8.4 Phase Vocoder Effects 269

for example, that a sum of two sinusoids is equivalent to a product of a carrier and a
modulator. Should a time stretching of this signal still be a sum of two sinusoids or
the same carrier with a lower modulation? This leads us to the perception of tremolo
tones or vibrato tones. One generally agrees that tremolos and vibratos under 10
Hz are perceived as such and those over are perceived as a sum of sinusoids.

A first technique has been evaluated in the time domain (see PSOLA in section
7.3.3). Here we will deal with another technique in the time-frequency domain using
the phase vocoder implementations of section 8.3. There are two implementations
for time-frequency scaling by the “traditional” phase vocoder. Historically, the first
one uses a bank of oscillators, whose amplitudes and frequencies vary over time. If
we can manage to model a sound by the sum of sinusoids, time stretching and pitch
shifting can be performed by expanding the amplitude and frequency functions.
The second implementation uses the sliding Fourier transform as the model for
resynthesis: if we can manage to spread the image of a sliding FFT over time
and calculate new phases, then we can reconstruct a new sound with the help of
inverse FFTs. Both of these techniques rely on phase interpolation, which need
an unwrapping algorithm at the analysis stage, or equivalently an instantaneous
frequency calculation, as introduced in section 8.3.5.

The time stretching algorithm mainly consists of providing a synthesis grid which
is different from the analysis grid, and to find a way to reconstruct a signal from
the values on this grid. Though it is possible to use any stretching factor, we will
here only deal with the case where we use an integer both for the analysis hop size
R,, and for the synthesis hop size R,.

As seen in section 8.3, changing the values and their coordinates on a time-
frequency representation is generally not a valid operation, in the sense that the
resulting representation is not the sliding Fourier transform of a real signal. How-
ever it is always possible to force the reconstruction of a sound from an arbitrary
image but the time-frequency representation of the signal issued from this forced
synthesis will be different from what was expected. The goal of a good transforma-
tion algorithm is to find a strategy that preserves the time stretching aspect without
introducing too many artifacts.

The classical way of using a phase vocoder for time stretching is to keep the
magnitude unchanged and to modify the phase in such a way that the instantaneous
frequencies are preserved. Providing that the grid is enlarged from an analysis hop
size R, to a synthesis hop size R,, this means that the new phase values must satisfy
A$(k) = %Acp(k) (see Fig. 8.22). Once the grid is filled with these values one can
reconstruct a signal using either the filter bank approach or the block-by-block IFFT
approach.

Filter Bank Approach (Sum of Sinusoids)

In the FFT analysis/sum of sinusoids synthesis approach, we calculate the instan-
taneous frequency for each bin and integrate the corresponding phase increment in
order to reconstruct a signal as the weighted sum of cosines of the phases. However,

270 8 Time-frequency Processing

. .
n (samples) n (samples)

Figure 8.22 Time stretching principle: the analysis with hop size R, gives the time-
frequency grid shown in the left part, where Acp(k) = +((. + l) R a , k) - +(sR,, k) denotes
the phase difference between the unwrapped phases. The synthesis is performed from
the modified time-frequency grid with hop size R, and the phase difference A$(k) =
G((s + l)& , k) - G (s R s , k) , which is illustrated in the right part.

here the hop size for the resynthesis is different from the analysis. Therefore the
following steps are necessary:

1. Calculate the phase increment per sample by d+(k) = Acp(IC)/Ra.

2. For the output samples of the resynthesis integrate this value according to
4(n + 1, IC) = 4(n, IC) + d$(IC).

3. Sum the intermediate signals which yields y(n) = Cfii A(n, IC) cos(G(n, IC))
(see Fig. 8.23).

A complete MATLAB program for time stretching is given by M-file 8.7

*
n (samples)

s(n) = c A(n,k).cos(@(n.k))

Figure 8.23 Calculation of time-frequency samples. Given the values of A and 4 on
the representation grid, we can perform linear interpolation with a hop size of one in
between two successive values on the grid. The reconstruction is achieved by a summation
of weighted cosines.

8.4 Phase Vocoder Efects 271

M-file 8.7 (VX-tstretch-bank.m)
x VX-tstretch-bank.m
x===== this program performs time stretching
x===== using the oscillator bank approach, with:
x===== wl and w2 windows (analysis and synthesis)
x===== WLen is the length of the windows
x===== nl and n2: steps (in samples) for the analysis and synthesis

clear; clf

y----- user data -----
ni = 256;
n2 = 512;
WLen = 2048;

W2 = wl;
W1 = hanningz(WLen);

[DAFx-in, FS] = wavread(’la.wav’);

DAFx-in = [zeros(WLen, I) ; DAFx-in; . . .
L = length(DAFx-in);

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-in)) ;

y----- initializations -----
tstretch-ratio = n2/nl
DAFx-out = zeros(WLen+ceil(length(DAFx-in)*tstretch_ratio),l);
grain = zeros W e n , 1) ;
11 = WLen/2;
omega = 2*pi*nl* CO: 11-13 ’/WLen;
phi0 = zeros(l1,l) ;
rO = zeros(l1,i) ;
psi = zeros(l1,i) ;
res = zeros(n2,l) ;

tic
x w w m n n r v w w v w w v w w m r w r n r w w u u w r r u
pout = 0;
pin = 0;

pend = length(DAFx-in)-WLen;

while pincpend
grain = DAFx-in(pin+l:pin+WLen).* wi; r====-------------_------------------------- _____-___----_----_--------------------
f c = f f t (f f tshift (grain) 1 ;
f = fc(1:ll);
r = abs(f);
phi = angle(f1;
delta-phi = omega + princarg(phi-phi0-omega);

.

272 8 Time-frequency Processing

delta-r = (r-rO) /n2;
delta-psi = delta-phi/nl;
for k=i:n2
rO = rO + delta-r;
psi = psi + delta-psi;
res(k) = rO’*cos(psi) ;
end

b

phi0 = phi;
rO = r;
psi = princarg(psi);
7 .
% DAFx-out (pout+i :pout+nZ)=DAFx-out (pout+i :pout+n2)+res;
DAFx~out(pout+l:pout+n2) = res;
pin = pin + ni;
pout = pout + n2;
end
% w m n n n n n n r m n n n n r w r n n n n n n r w r n n n r u w u u w u
toc

y----- 1 istening and saving the output -----
XDAFx-in = DAFx-in(WLen+l:WLen+L) ;
DAFx_out=DAFx-out(WLen/2+nl+i:length(DAFx_out))/max(abs(DAFx-out)) ;
soundsc (DAFx-out , FS) ;
wavwrite(DAFx-out, FS, ’la-tstretch-bank.wav’);

This program first extracts a series of sound segments called grains. For each grain
the FFT is computed to yield a magnitude and phase representation every ni sam-
ples (ni is the analysis hop size Ra). It then calculates a sequence of n2 samples
(n2 is the synthesis hop size R,) of the output signal by interpolating the values of
r and calculating the phase psi in such a way that the instantaneous frequency de-
rived from psi is equal to the one derived from phi. The unwrapping of the phase
is then done by calculating (phi-phiO-omega), putting it in the range] - T , T]

and again adding omega. A phase increment per sample d-psi is calculated from
delta-phi/ni. The calculation of the magnitude and phase at the resynthesis is
done in the loop for k=i :n2 where r and psi are incremented by d-r and d-psi.
The program uses the vector facility of MATLAB t o calculate the sum of the co-
sine of the angles weighted by magnitude in one step. This gives a buffer res of n2
output samples which will be inserted into the DAFx-out signal.

Block-by-Block Approach (FFT/IFFT)

Here we follow the FFT/IFFT implementation used in section 8.3, but the hop size
for resynthesis is different from the analysis. So we have to calculate new phase
values in order to preserve the instantaneous frequencies for each bin. This is again
done by calculating an unwrapped phase difference for each frequency bin, which is

8.4 Phase Vocoder Eflects 2 73

proportional to 9. We also have to take care of some implementation details such as
the fact that the period of the window has to be equal to the length of the FFT (this
is not the case for the standard MATLAB functions). The synthesis hop size should
at least allow a minimal overlap of windows, or should be a submultiple of it. The
following M-file 8.8 demonstrates the block-by-block FFT/IFFT implementation.

M-file 8.8 (VX-tstretch-real-pv.m)
% VX-tstretch-real-pv.m
x===== this program performs time stretching

x===== for real ratio, and using
x===== wi and w2 windows (analysis and synthesis)
x===== WLen is the length of the windows
x===== nl and n2: steps (in samples) for the analysis and synthesis

y===== using the FFT-IFFT approach,

clear; clf

y----- user data -----
nl = 200;
n2 = 512;
WLen = 2048;
W1 = hanningz (WLen) ;
W2 = wl;

L = length(DAFx-in);
[DAFx-in,FS] = wavread(’la.wav’);

DAFx-in = [zeros(WLen, l) ; DAFx-in; . . .
zeros(WLen-mod(L,nl),l)l / max(abs(DAFx-in));

y----- lnitializations . -----
tstretch-ratio = n2/nI
DAFx-out = zeros(WLen+ceil(length(DAFx_in)*tstretch-ratio),l);
omega = 2*pi*ni* [O:!dLen-il ’/WLen;
phi0 = zeros (WLen, :l) ;
psi = zeros (WLen, 1) ;

tic
% v v w r r w w v w m n r w v v w m r t n n n r r n n r u w r r r n n r w

pout = 0;
pin = 0;

pend = length(DAFx-in)-WLen;
while pincpend
grain = DAFx-in(pin+l:pin+WLen).* wl;
.
f = fft(fftshift(grain));
r = abs(f);
phi = angle(f) ;

2 74 8 Tame-frequency Processing

delta-phi= omega + princarg(phi-phiO-omega);
phi0 = phi;
psi = princarg(psi+delta-phi*tstretch-ratio);
ft = (r.* exp(i*psi));
grain = fftshift(real(ifft(ft))).*w2;
% plot(grain);drawnow;
y .

DAFx-out(pout+l:pout+WLen) = . . .

pin = pin + nl;
pout = pout + n2;
end

DAFx-out(pout+l:pout+WLen) + grain;

% w w v w v v v v w v w v v w v v v v w w w r r w w u w u
toc

X----- listening and saving the output -----
XDAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx-out(WLen+l:length(DAFx-out))/max(abs(DAFx-out));
soundsc(DAFx-out , FS) ;
wavwrite(DAFx-out, FS, 71a-tstretch-noint-pv.wav7);

This program is much faster than the preceding one. It extracts grains of the input
signal by windowing the original signal DAFx-in, makes a transformation of these
grains and overlap-adds these transformed grains to get a sound DAFx-out. The
transformation consists of performing the FFT of the grain and computing the
magnitude and phase representation r and phi. The unwrapping of the phase is
then done by calculating (phi-phiO-omega), putting it in the range] - 7 r , 7 r] and
again adding omega. The calculation of the phase psi of the transformed grain is
then achieved by adding the phase increment delta-phi multiplied by the stretching
factor ral to the previous unwrapped phase value. As seen before, this is equivalent
to keeping the same instantaneous frequency for the synthesis as it is calculated for
the analysis. The new output grain is then calculated by an inverse FFT, windowed
again and overlap-added to the output signal.

Hints and drawbacks. As we have noticed, phase vocoding can produce arti-
facts. It is important to know them in order to face them.

1. Changing the phases before the IFFT is equivalent to using an all-pass filter
whose Fourier transform contains the phase correction that is being applied.
If we do not use a window for the resynthesis, we can ensure the circular
convolution aspect of this filtering operation. We will have discontinuities at
the edges of the signal buffer. So it is necessary to use a synthesis window.

2. Nevertheless, even with a resynthesis window (also called tapering window)
the circular aspect still remains: the result is the aliased version of an infinite
IFFT. A way to counteract this is to choose a zero-padded window for analysis
and synthesis.

8.4 Phase Vocoder Effects 2 75

3. Shape of the window: one must ensure that a perfect reconstruction is given
with a ratio 2 equal to one (no time stretching). If we use the same window
for analysis and synthesis, the sum of the square of the windows, regularly
spaced at the resynthesis hope size, should be one.

4. For a Hanning window without zero-padding the hop size R, has to be a
divisor of N/4.

5 . Hamming and Blackman windows provide smaller side lobes in the Fourier
transform. However, they have the inconvenience of being non-zero at the
edges so that no tapering is done by using these windows alone. The resyn-
thesis hop size should be a divisor of N/8.

6. Truncated Gaussian windows, which are good candidates, provide a sum that
always has oscillations, but which can be below the level of perception.

An important problem is the difference of phase unwrapping between different
bins, which is not solved by the algorithms we presented: the unwrapping algorithm
of the analysis gives a phase that is equal to the measured phase modulo 27r. So the
unwrapped phase is equal to the measured phase plus a term that is a multiple of
27r. This second term is not the same for every bin. Because of the multiplication
by the time stretching ratio, there is a dispersion of the phases. One cannot even
ensure that two identical successive sounds will be treated in the same way. This is
in fact the main drawback of the phase vocoder and its removal is still a matter of
research [QM98, Fer99, LD99aI.

However, when the time stretching ratio is an integer (e.g. time stretching by
200 percent, 300 percent), the unwrapping is no longer necessary in the algorithm,
because the 27r modulo relation is still preserved when the phase is multiplied by
an integer. The key point here is that we can make a direct multiplication of the
analysis phase to get the phase for synthesis. So in this case it is more obvious and
elegant to use the following algorithm given by M-file 8.9.

M-file 8.9 (VX-tstretch-int-pv.m)

x===== this program performs time stretching using the phase

x===== wl and w2 windows (analysis and synthesis)
x===== lfen is the length of the windows
x===== ni and n2: steps (in samples) for the analysis and synthesis

VX-tstretch-int-pv.m

y===== vocoder approach, with an integer ratio, with:

clear; clf

y----- user data -----
nl = 64;
n2 = 512;
WLen = 2048;
W1 = hanningz(WLen1;

276 8 Time-frequency Processing

W2 = wi;

L = length(DAFx-in) ;
[DAFx-in,FS] = wavread(’la.wav’) ;

DAFx-in = [zeros(WLen, 1) ; DAFx-in; . . .
zeros(WLen-mod(L,nl),l)l / max(abs(DAFx-in));

X----- initializations -----
tstretch-ratio = n2/nl
DAFx-out = zeros(WLen+ceil(length(DAFx-in)*tstretch-ratio) , l) ;
grain = zeros(WLen,l);

tic
%4
pin = 0;
pout = 0;
pend = length(DAFx-in)-WLen;

while pin<pend
grain = DAFx-in(pin+l:pin+WLen) .* wl;

.
f = fft(fftshift(grain1);
r = abs(f);
phi = angle(f) ;
ft = (r.* exp(i*tstretch-ratio*phi));
grain = fftshift(real(ifft(ft))) .*w2;

DAFx-out(pout+l:pout+WLen) = . . .
DAFx-out(pout+l:pout+WLen) + grain;
pin = pin + nl;
pout = pout + n2;

7 .

end
%l
toc

y----- 1 istening and saving the output -----
%DAFx-in = DAFx-in(WLen+l : WLen+L) ;
DAFx-out = DAFx-out(WLen+l:length(DAFx-out))/max(abs(DAFx-out));
soundsc (DAFx-out , FS) ;
wavwrite(DAFx-out, FS, ’1a-stretch-int-pv.wav’) ;

8.4.4 Pitch Shifting

Pitch shifting is different from frequency shifting: a frequency shift is an addition
to every frequency, while pitch shifting is the multiplication of every frequency by a
transposition factor. Pitch shifting can be directly linked to time stretching. Resam-

8.4 Phase Vocoder Effects 277

pling a time-stretched signal with the inverse of the time stretching ratio performs
pitch shifting and going back to the initial duration of the signal (see Fig. 8.24).
There are, however, alternative solutions which allow the direct calculation of a
pitch shifted version of a sound.

lime Stretching
(ratio N*/Nq)

Resampling
(ratio NdN2)

Figure 8.24 Resampling of a time stretching algorithm.

Filter Bank Approach (Sum of Sinusoids)

In the time stretching algorithm using the sum of sinusoids (see section 8.3) we have
an evaluation of instantaneous frequencies. As a matter of fact transposing all t,he
instantaneous frequencies can lead to an efficient pitch shifting algorithm. Therefore
the following steps have to be performed (see Fig. 8.25):

1. Calculate the phase increment per sample by dcp(k) = Acp(k)/Ra.

2. Multiply the phase increment by the transposition factor t ranspo and in-
tegrate the modified phase increment according to 4 (n + 1, k) = 4(n, k) +
t ranspo . Acp(k)/R,.

3. Calculate the sum of sinusoids: when the transposition factor is greater than
one, keep only frequencies under the Nyquist frequency bin N/2. This can be
done by taking only the N/(2*transpo) frequency bins.

Ra - RS=Ra - . .
n (samples) n (samples)

Figure 8.25 Pitch shifting with the filter bank approach: the analysis gives the tixne-
frequency grid with analysis hop size R,. For the synthesis the hop size is set to R, = R,
and the phase difference is calculated according to Atj(k) = transpoAcp(k).

The following M-file 8.10 is similar to the program given by M-file 8.7 with the
exception of a few lines: the definition of the hop size and the resynthesis phase
increment have been changed.

278 8 Time-frequency Processing

M-file 8.10 (VX-pitch-bank.m)
% VX-pitch-bank.m
x===== this program performs pitch shifting
x===== using the oscillator bank approach, with:

%===== WLen: is the length of the windows
x===== nl: step (in samples) for the analysis and synthesis
x===== pit-ratio: pitch shifting ratio

x===== wl and w2: windows (analysis and synthesis)

clear; clf

y----- user data -----
nl = 512;
pit-ratio = 1.0
WLen = 2048;
W1 = hanningz (WLen) ;
W2 = wl;

L = length(DAFx-in) ;
[DAFx-in, FS] = wavread(’ la. wav’) ;

DAFx- in = [zeros(WLen, I); DAFx-in; . . .
zeros(WLen-mod(L,nl) ,111 / max(abs(DAFx-in)) ;

y----- initializations -----
DAFx-out = zeros(length(DAFx-in) ,l> ;
grain = zeros (WLen, 1) ;
11 = WLen/2;
omega = 2*pi*nl* CO : 11-11 ’ /WLen;
phi0 = zeros(l1,i) ;
rO = zeros(l1,i) ;
psi = phi0;
res = zeros (nl ,l) ;

tic
%l

pout = 0;
pin = 0;

pend = length(DAFx-in)-WLen;

while pincpend
grain = DAFx-in(pin+l:pin+WLen).* wl;
.
fc = fft(fftshift(grain));
f = fc(1:ll);
r = abs(f);
phi = angle(f) ;
delta-phi = omega + princarg(phi-phi0-omega);

8.4 Phase Vocoder Effects 279

delta-r = (r-rO)/nl;
delta-psi = pit-ratio*delta-phi/nl;
for k=l:nl
rO = rO+delta-r;
psi = psi+delta-psi;
res (k) = rO'*cos (psi) ;
end
% plot (res) ;pause;
phi0 = phi;
rO = r;
psi = princarg(psi) ;
y ==---

DAFx-out(pout+l:pout+nl) = DAFx-out(pout+l:pout+nl) + res;
pin = pin + nl;
pout = pout + nl;
end

I --_-__-_---__---_-_----------------------

% w w v v w m r w v w w w w w t r w v w w r r w w r r r n r
toc

The program is derived from the time-stretching program using the oscillator bank
approach in a straightforward way: this time the hop size for analysis and synthesis
are the same, and a pitch transpose argument pit must be defined. This argument
will be multiplied by the phase increment delta-phi/nl derived from the analysis
to get the phase increment d-psi in the calculation loop. This means of course that
we consider the pitch transposition as fixed in this program, but easy changes may
be done to make it vary witJh time.

Block-by-Block Approach (FFT/IFFT)

The regular way to deal with pitch shifting using this technique is first to resample
the whole output once computed, but this can alternatively be done by resampling
the result of every IFFT and overlapping with a hop size equal to the analysis one
(see Fig. 8.26). Providing that R, is a divider of N (FFT length), which is quite a
natural way for time stretching (to ensure that the sum of the square of windows is
equal to one), one can resample each IFFT result to a length of N 2 and overlap
with a hop size of R,. Another method of resampling is to use the property of the
inverse FFT: if R, < R,, we can take an IFFT of length Ng by taking only the

' first bins of the initial FFT. If R, > R,, we can zero pad the FFT, before the IFFT
is performed. In each of these cases the result is a resampled grain of length N 2 .

280 8 Tame-frequency Processing

Time Stretching Resampling
(ratio N2/N1) (ratio N1/N2)

0 0
0

0

0

Figure 8.26 Pitch shifting with integrated resampling: for each grain a time stretching
and resampling are performed. An overlap-add procedure delivers the output signal.

The following M-file 8.11 implements pitch shifting with integrated resampling
according to Fig. 8.26. The M-file is similar to the program given by M-file 8.9,
except for the definition of the hop sizes and the calculation for the interpolation.

M-file 8.11 (VX-pitch-pv.m)
% VX-pitch-pv.m
x===== this program performs pitch shifting

x===== wl and w2: windows (analysis and synthesis)
x===== WLen: is the length of the windows

y===== using the FFT/IFFT approach

y===== nl and n2: steps (in samples) for the analysis and synthesis

clear; clf

ni = 500;
n2 = 512;
tstretch-ratio = n2/nl;
WLen = 2048;
W1 = hanningz(WLen);
W2 = wl;

L = length(DAFx-in) ;
[DAFx-in, FS] = wavread(’flute2’);

DAFx-in = [zeros(WLen, 1) ; DAFx-in; . . .
zeros(WLen-mod(L,ni) ,l)] / max(abs(DAFx-in)) ;

y----- f or linear interpolation of a grain of length WLen -----
1x = floor(WLen*ni/n2);
x = 1+(0:1x-I) ’*WLen/lx;
ix = f loor(x) ;
ixl = ix+l;
dx = x-ix;

8.4 Phase Vocoder Effects 281

y----- lnitializations . -----
DAFx-out = zeros (lx+length(DAFx-in) ,l) ;
omega = 2*pi*nl* CO:WLen-Il '/WLen;
phiO = zeros (WLen, 1) ;
psi = zeros (WLen , 1) ;

tic
%l
pin = 0;
pout = 0;
pend = length(DAFx-in)-WLen;

delta-phi = omega + princarg(phi-phi0-omega);
phiO = phi;
psi = princarg(psi+delta-phi*tstretch-ratio);

ft = (r.* exp(i*psi));
grain = fftshift(real(ifft(ft))) .*w2;

y----- interpolation
grain2 = [grain;O] ;
grain3 = grain2(ix).*dxl+grain2(ixl).*dx;
% plot(grain);drawnow;
y .
DAFx-out(pout+l:pout+lx) = DAFx-out(pout+l:pout+lx) + grain3;
pin = pin + nl;
pout = pout + nl;
end
% w w m n n n n r w v v w w v w r r v u u w r r u u u w u u u w u
toc

y----- 1 istening and saving the output -----
XDAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx-out(WLen+l:WLen+L) / max(abs(DAFx-out));
soundsc(DAFx-out , FS) ;
wavwrite(DAFx-out, FS, 'flute2-pitch-pv.wav');

282 8 Time-frequency Processing

This program is adapted from the time-stretching program using the FFT/IFFT
approach. Here the grain is linearly interpolated before the reconstruction. The
length of the interpolated grain is now 1x and will be overlapped and added with a
hop size of n l identical to the analysis hop size. In order to speed up the calculation
of the interpolation, four vectors of length 1x are precalculated outside the main
loop, which give the necessary parameters for the interpolation (i x , i x l , dx and
dxl) . As stated previously, the linear interpolation is not necessarily the best one,
and will surely produce some foldover when the pitch shifting factor is greater than
one. Other interpolation schemes can be inserted instead. Further pitch shifting
techniques can be found in [QM98, Lar98, LD99bI.

8.4.5 Stable/Transient Components Separation

This effect extracts “stable components” from a signal by selecting only points of
the time-frequency representation that are considered as “stable in frequency” and
eliminating all the other grains. Basic ideas can be found in [SL94]. From a musical
point of view, one would think about getting only sine waves, and leave aside all the
transient signals. However, this is not so: even with pure noise, the time-frequency
analysis reveals some zones where we can have stable components. A pulse will also
give an analysis where the instantaneous frequencies are the ones of the analyzing
system and are very stable. Nevertheless this idea of separating a sound into two
complementary sounds is indeed a musically good one. The result can be thought
as an LLetherization” of the sound for the stable one, and a “fractalization” for the
transient one.

The algorithm for components separation is based on instantaneous frequency
computation. The increment of the phase per sample for frequency bin k can be
derived as

We will now sort out those points of a given FFT that give

where df is a preset value. From (8.45) and (8.46) we can derive the condition

From a geometrical point of view we can say that the value (P(sRa, IC) should be in
an angle d f R a around the expected target value (Pt(sRa, IC), as shown in Fig. 8.27.

It is important to note that the instantaneous frequencies may be out of the range
of frequencies of the bin itself. The reconstruction performed by the inverse FFT
takes only bins that follow this condition. In other words, only gaborets that follow
the “frequency stability over time” condition are kept during the reconstruction.
The following M-file 8.12 follows this guideline.

8.4 Phase Vocoder Effects 283

Figure 8.27 Evaluation of stable/unstable grains.

M-file 8.12 (VX-stab1e.m)
% VX-stable .m
l===== this program extracts the stable components of a signal
x===== wi and w2: windows (analysis and synthesis)
l===== WLen: is the length of the windows
ye=---- ---- nl and n2: steps (in samples) for the analysis and synthesis

clear; clf

%----- user data -----
test = 0.4
ni = 256;
n2 = nl;
WLen = 2048;
W1 = hanningz(WLen);
W2 = wl;

L = length(DAFx-in) ;
[DAFx-in, FS] = wavread(’redwhee1 .wav’) ;

DAFx- in = [zeros(WLen, l) ; DAFx-in; . . .
zeros(WLen-mod(L,nl) ,111 / max(abs(DAFx-in));

y----- initializations -----
devcent = 2*pi*ni/WLen;
vtest = test*devcent
DAFx-out = zeros (length(DAFx-in), l) ;
grain = zeros(WLen, 1) ;
theta1 = zeros(WLen, 1) ;
theta2 = zeros (WLen, L) ;

tic
x w m n n n n n n n r r r w r r v w v w u w w w r r w u u w r n n r u
pin = 0 ;

284 8 Time-frequency Processing

pout = 0 ;
pend = length(DAFx-in)-WLen;

y----- 1 istening and saving the output -----
%DAFx-in = DAFx-in(WLen+i:WLen+L);
DAFx-out = DAFx-out(WLen+i:WLen+L) / max(abs(DAFx-out));
soundsc(DAFx-out , FS) ;
wavwrite(DAFx-out, FS, ’redwheel-stable.wav’) ;

So the algorithm for extraction of stable components performs the following steps:

1. Calculate the instantaneous frequency by making the derivative of the phase
along the time axis.

2. Check if this frequency is within its “stable range”.

3. Use the frequency bin or not for the reconstruction.

The value of vtest is particularly important because it determines the level of the
selection between stable and unstable bins.

The algorithm for transient components extraction is the same, except that we
keep only bins where the condition (8.47) is not satisfied. So only two lines have to
be changed according to

test =2 % new value for test

ft = f*(abs(dev)>vtest); % new condition
. . .

8.4 Phase Vocoder Effects 285

In order to enhance the unstable grains the value vtest is usually higher for the
transient extraction.

8.4.6 Mutation between Two Sounds

The idea is to calculate an arbitrary time-frequency representation from two original
sounds and to reconstruct a sound from it. Some of these spectral mutations (see
Fig. 8.28) give a flavor of' cross-synthesis and morphing, a subject that will be
discussed later, but are different from it, because here the effect is only incidental
while in cross-synthesis hybridization of sounds is the primary objective. Further
ideas can be found in [PE96]. There are different ways to calculate a new combined
magnitude and phase diagram from the values of the original ones. As stated in
section 8.3, an arbitrary image is not valid in the sense that it is not the time-
frequency representation of a sound, which means that the result will be musically
biased by the resynthesis scheme that we must use. Usually phases and magnitudes
are calculated in an independent way, so that many combinations are possible. Not
all of them are musically relevant, and the result also depends upon the nature of
the sounds that are combined.

Figure 8.28 Basic principle of spectral mutations.

The following M-file 8.13 performs mutation between two sounds where the
magnitude is coming from one sound and the phase from the other. Then only a
few lines need to be changed to give different variations.

M-file 8.13 (VX3utation.m)
l VX-mutat ion. m
x===== this program performs a mutation between two sounds,
x===== taking the phase of the first one and the modulus
l===== of the second one, and using:
x===== wi and w2 windows (analysis and synthesis)
x===== WLen is the length of the windows
x===== nl and n2: steps (in samples) for the analysis and synthesis

clear; clf

y----- user data -----
ni = 512;

286 8 Time-frequency Processing

n2 = nl;
WLen = 2048;

W2 = wl;
[DAFx_inl,FSl = wavread(’xl.wav’);
DAFx- in2 = wavread(’x2.wav’);

W1 = hanningz (WLen) ;

y----- initializations -----

DAFx-in1 = [zeros(WLen, I); DAFx-inl; . . .

DAFx-in2 = [zeros(WLen, 1) ; DAFx-in2; . . .
DAFx-out = zeros(length(DAFx-in11 , 1) ;

L = min(length(DAFx-inl) , length(DAFx-in2)) ;

zeros(WLen-mod(L,nI) ,l)] / max(abs(DAFx-inl));

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-in2));

tic
%l
pin = 0;
pout = 0 ;
pend = length(DAFx-inl) - WLen;

while pincpend
grainl = DAFx-inl(pin+l:pin+WLen).* wl;
grain2 = DAFx_in2(pin+I:pin+WLen).* wl;

.
fl = f f t (f f tshif t (grainl)) ;
rl = abs(f1);
theta1 = angle(f1) ;

r2 = abs (f2) ;
theta2 = angle(f2) ;

r = rl;
theta = theta2;

grain = f f tshif t (real (if f t (f t))) . *w2;

DAFx-out(pout+l:pout+WLen) = . . .

pin = pin + nl;
pout = pout +. n2;

f2 = fft(fftshift(grain2));

y----- th e next two lines can be changed according to the effect

ft = (r.* exp(i*theta));

y
I

DAFx-out(pout+l:pout+WLen) + grain;

end
%+
toc

%----- listening and saving the output -----

8.4 Phase Vocoder Effects

XDAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx-out(WLen+l:WLen+L) / max(abs(DAFx-out));

wavwrite(DAFx-out, FS, ’rlp2.wav’);
1 soundsc (DAFx-out , FS) ;

Possible operations on the magnitude are:

1. Multiplication of the magnitudes r=rl.*r2 (so it is an addition in the dB
scale). This corresponds to a logical “AND” operation, because one keeps all
zones where energy is located.

2 . Addition of the magnitude: the equivalent of a logical “ O R operation. How-
ever, this is different from mixing, because one only operates on the magnitude
according to r=rl+d!.

3. Masking of one sound by the other is performed by keeping the magnitude of
one sound if the other magnitude is under a fixed or relative threshold.

Operations on phase are really important for combinations of two sounds. Phase
information is very important to ensure the validity (or quasivalidity) of time-
frequency representations, and has an influence on the quality:

1. One can keep the phase from only one sound while changing the magnitude.
This is a strong cue for the pitch of the resulting sound (theta=theta2).

2 . One can add the two phases. In this cme we strongly alter the validity of the
image (the phase turns with a mean double speed). We can also double the
resynthesis hop size 112=2*nl.

3. One can take an arbitrary combination of the two phases but one should
remember that phases are given modulo 27r (except if they have been un-
wrapped).

4. Design of an arbitrary variation of the phases.

As a matter of fact, these mutations are very experimental, and are very near to
the construction of a true arbitrary time-frequency representation, but with some
cues coming from the analysis of different sounds.

8.4.7 Robotization

This technique puts zero phase values on every FFT before reconstruction. The
effect applies a fixed pitch onto a sound. Moreover, as it forces the sound to be
periodic, many erratic and random variations are converted into robotic sounds.
The sliding FFT of pulses where the analysis is taken at the time of these pulses
will give a zero phase value for the phase of the FFT. This is a clear indication that
putting a zero phase before an IFFT resynthesis will give a fixed pitch sound. This
is reminiscent of the PSOLA technique, but here we do not make any assumption
on the frequency of the analyzed sound and no marker has to be found. So zeroing
the phase can be viewed from two points of view:

288 8 Time-frequency Processing

1. The result of an IFFT is a pulse-like sound and summing such grains at regular
intervals gives a fixed pitch.

2. This can also be viewed as an effect of the reproducing kernel on the time-
frequency representation: due to fact that the time-frequency representation
now shows a succession of vertical lines with zero values in between, this will
lead to a comb filter effect during resynthesis.

The following M-file 8.14 demonstrates the robotization effect.

M-file 8.14 (VXrobot .m)
% VX-rob0t.m
%===== this program performs a robotization of a sound, using:

%===== WLen is the length of the windows
X===== wl and w2 windows (analysis and synthesis)

X===== nl and n2: steps (in samples) for the analysis and synthesis

clear; clf

y----- user data -----
nl = 441;
n2 = nl;
WLen = 1024;
W1 = hanningz(WLen);
W2 = wl;
[DAFx-in, FS] = wavread(’redwheel.wav’);
L = length(DAFx-in);
DAFx-in = [zeros(WLen, l) ; DAFx-in; . . .

zeros(WLen-mod(L,nl) ,111 / max(abs(DAFx-in));

y----- initializations -----
DAFx-out = zeros (length(DAFx-in) , l) ;

tic
% w w m n r v v v w v w w v r r v v v w w l n r w u w w r n r r n r

pout = 0 ;
pin = 0;

pend = length(DAFx-in)-WLen;
while pincpend

grain = DAFx-in(pin+l:pin+WLen).* wl;
.

f = f f t (grain) ;
r = abs(f);
grain = fftshift(real(ifft(r))) .*w2;

DAFx-out(pout+l:pout+WLen) = . . .
7 .

DAFx-out(pout+l:pout+WLen) + grain;

8.4 Phase Vocoder Effects 289

pin = pin + nl;
pout = pout + n2;

end
%X
toc

y----- 1 istening and saving the output -----
XDAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx-out (WLen+l : WLen+L) / max(abs (DAFx-out) ;
soundsc (DAFx-out , FS) ;
uavurite(DAFx-out, FS, 'redwheel-robot.wav');

This is one of the shortest programs we can have, however, its effect is very strong.
The only drawback is that the nl value in this program has to be an integer. The
frequency of the robot is Fs/nl, where Fs is the sampling frequency. If the hop
size is not an integer value, it is possible to use an interpolation scheme in order
to dispatch the grain of two samples. This may happen if the hop size is calculated
directly from a fundamental frequency value. An example is shown in Fig. 8.29.

Spectrogram Robotization - Spectrogram

T
Y

Phasogram Robotization - Phasogram

n + n +

Figure 8.29 Example of robotization with a flute signal.

290 8 Time-frequency Processing

8.4.8 Whisperization

If we deliberately impose a random phase on a time-frequency representation, we
can have a different behavior depending on the length of the window: if the window
is quite large (for example, 2048 for a sampling rate of 44100 Hz), the magnitude will
represent the behavior of the partials quite well and changes in phase will produce
an uncertainty over the frequency. But if the window is small (e.g. 64 points), the
spectral envelope will be enhanced and this will lead to a whispering effect. The
M-file 8.15 implements the whisperization effect.

M-file 8.15 (VX-uhisper.m)
% VX-whisper.m
x===== this program makes the whisperization of a sound,
x===== by randomizing the phase, using:
x===== wl and w2 windows (analysis and synthesis)
X===== WLen is the length of the windows
x===== nl and n2: steps (in samples) for the analysis and synthesis
clear; clf
y----- user data -----
WLen = 512;
W1 = hanningz(WLen);
W2 = wl;
nl = WLen/8; % 64;
n2 = nl;
[DAFx-in, SRI = wavread(’redwheel.wav’);

DAFx-in = [zeros(WLen, l) ; DAFx-in; . . .
L = length(DAFx-in);

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-in)) ;

y----- initializations -----
DAFx-out = zeros(length(DAFx-in) , l) ;

8.4 Phase Vocoder Eflects 291

DAFx-out(pout+l:pout+WLen) = . . .

pin = pin + nl;
pout = pout + n2;

DAFx-out(pout+l:pOUt+WLen) + grain;

end
% w v w w v v w m r w w r r v w v w w u w r n r w w u w u
toc

y----- 1 istening and saving the output -----
%DAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx-out(WLen+l:WLen+L) / max(abs(DAFx-out));
soundsc(DAFx-out , SR) ;
wavwrite(DAFx-out, SR, 'whisper2.wav');

It is also possible to make a random variation of the magnitude and keep the
phase. An example is shown in Fig. 8.30. This gives another way to implement
whisperization, which can be achieved by the following MATLAB kernel:

.
f = fft(fftshift(grain));
r = abs(f).*randn(lfen,l);
phi = angle(f) ;
ft = (r.* exp(i*phi));
grain = fftshift(real(ifft(ft))).*w2;

y ___---____--____--___----_-----_-----__----
~ __----__----___---__-----_-----_-----_-----

8.4.9 Denoising

A musician may want to emphasize some specific areas of a spectrum and lower
the noise within a sound. Though this is achieved more perfectly by the use of
a sinusoidal model (see Chapter 10) but another approach is the use of denois-
ing algorithms. The algorithm we describe uses a nonlinear spectral subtraction
technique [Vas96]. Further techniques can be found in [Cap94]. A time-frequency
analysis and resynthesis are performed, with an extraction of the magnitude and
phase information. The phase is kept as it is, while the magnitude is processed in
such a way that it keeps the high-level values while attenuating the lower ones, in
such a way as to attenuate the noise. This can also be seen as a bank of noise gates
on different channels, because on each bin we perform a nonlinear operation. The
denoised magnitude vector Xd(n, k) = f(X(n, k)) of the denoised signal is then the
output of a noise gate with a nonlinear function f(x). A basic example of such a
function is f(z) = x 2 / (x + c) , which is shown in Fig. 8.31. It can also be seen as the
multiplication of the magnitude vector by a correction factor x/(. + c). The result
of such a waveshaping function on the magnitude spectrum keeps the high values
of the magnitude and lowers the small ones. Then the phase of the initial signal is
reintroduced and the sound is reconstructed by overlapping grains with the help of
an IFFT. The following M-file 8.16 follows this guideline.

292

100

80

f
60

x
40

20

Spectrogram

100 200 300 400 500

Phasogram

100 200 300 400 500
n +

8 Time-frequency Processing

Whisperization - Spectrogram
100 -1

100 200 300 400 500

Whisperization - Phasogram

100 200 300 400 500
n +

Figure 8.30 Example of whisperization with a flute signal.

f(x)=?/(x+c) f(x)=x/(x+c)

-1 40 ’ I
-80 -60 -40 -20 0

x i n d B + x i n d B +

Figure 8.31 Nonlinear function for a noise gate.

M-file 8.16 (VX-den0ise.m)

x VX-den0ise.m
x===== this program makes a denoising of a sound, using:
x===== wl and w2 windows (analysis and synthesis)

8.4 Phase Vocoder Effects 293

l===== WLen is the length of the windows
x===== nl and n2: steps (in samples) for the analysis and synthesis
clear; clf
%----- user data -----
nl = 512;
n2 = nl;
WLen = 2048;
W1 = hanningz (WLen) ;
W2 = wl;
[DAFx-in, FS] = wavread(’xl.wav’) ;
y----- initializations
L = length(DAFx-in) ;
DAFx-in = [zeros(WLen, 1) ; DAFx-in; . . .

WLen2 = WLen/2;
coef = 0.01;
f req = (0:1:299)/WLen*44100;
DAFx-out = zeros(length(DAFx-in),l);

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-in));

tic
x w v w m r w w w v v w w v v w m n n n r w r n r w u w u u
pin = 0;
pout = 0;
pend = length(DAFx-in) - WLen;

while pincpend
grain = DAFx-in(pin+l : pin+WLen) . * wl ;

y-==-- ~- ______--__------------------------------
f = f f t (grain) ;
r = abs (f) /WLen2 ;
ft = f .*r./(r+coef);
grain = (real(ifft(ft))) .*w2;

DAFx-out(pout+l:pout+WLen) = . . .

pin = pin + nl;
pout = pout + n2;

y .

DAFx-out (pout+l :pout+WLen) f grain;

end
xwwmrwmrwwwmnnnruwwuwwwln rwrn r
y----- listening and saving the output -----
toc

XDAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx-out (WLen+l : WLen+L) ;
soundsc (DAFx-out , FS) ;
wavwrite(DAFx-out, FS, ’x1-denoise.wav’);

294 8 Tame-frequency Processing

An example is shown in Fig. 8.32. It is of course possible to introduce different noise
gate functions instead of the simple ones we have chosen.

Original spectrum Denoised spectrum
-20, -20,

-30 -30
T T
8 -40 8 -40
c C .- ._
g -50 4 -50
3 3 - ,- .- 5 -60
z

-
-60

-70 -70

-80 -80
0 2000 4000 6000 8000 0 2000 4000 6000 8000

f in Hz 3 f in Hz +

Figure 8.32 The left plot shows the windowed FFT of a flute sound. The right plot
shows the same FFT after noise gating each bin using the r/(r+coef) gating function with
c = 0.01.

Denoising in itself has many variations depending on the application:

1. Denoising from a tape recorder usually starts from the analysis of a noisy
sound coming from a recording of silence. This gives a gaboret for the noise
shape, so that the nonlinear function will be different for each bin, and can
be zero under this threshold.

2. The noise level can be estimated in a varying manner. For example, one can
estimate a noise threshold which can be spectrum dependent. This usually
involves spectral estimation techniques (with the help of LPC or cepstrum),
which will be seen later.

3. One can also try to evaluate a level of noise on successive time instances in
order to decrease pumping effects.

4. In any case, these algorithms involve nonlinear operations and as such can
produce artifacts. One of them is the existence of small grains that remain
outside the silence unlike the previous noise (spurious components). The other
artifact is that noise can sometimes be a useful component of a sound and will
be suppressed as undesirable noise.

8.5 Conclusion

The starting point of this chapter was the computation of a time-frequency rep-
resentation of a sound, to manipulate this representation and reproduce a sound.
At first sight this may appear as an easy task, but we have seen that the basis

Bibliography 295

for this time-frequency processing needs a careful description of the fundamentals,
because the term vocoder can cover different implementations. We also explained
that the arbitrary manipulation of time-frequency representations renders images
in a way that they are no longer time-frequency representations of “real” sounds.
This phenomenon leads to artifacts, which cannot be avoided.

Digital audio effects described in this chapter only perform manipulations of
these time-frequency representations. These effects exclude the extraction of res-
onances, which will be the subject of the next chapter, and high-level processing
such as the extraction of sinusoids and noise. For example, the mentioned bank
of filters does not assume any parametric model of the sound. Nevertheless such
effects are numerous and diverse. Some of them have brought new solutions to well-
known techniques such as filtering. Pitch shifting and time stretching have shown
their central place in the phase vocoder approach, which is another implementation
possibility independent of the time processing approach shown in Chapter 7. Their
was a clear need for a clarification of the phase vocoder approach in this domain.
Though it has been known for years, we have provided a general framework and
simple implementations upon which more complex effects may be built. Some of
them can reduce the phasinelss of the process or perform special high level process-
ing on transients. Other digital audio effects have been described that fit well under
the name “mutations”. They are based on modifying the magnitude and phase of
one or two time-frequency representations. They put a special flavor on sounds,
which musicians characterize as granulation, robotization, homogenization, purifi-
cation, metallization and so on. Once again, the goal of this chapter is to give a
general framework and unveil some of the basic implementations of these alterations
of sound, which can be extended to more complex modifications at will.

This chapter is a good starting point for the computer-human interface and the
digital control of effects, but, this is beyond the scope of this chapter. Nevertheless
it must be said that this part is crucial in the design of a digital audio effect. We
refer here to Chapter 12 to see the prospective view it requires.

As final remark, one can say that no digital audio effect and time-frequency
processing in particular would exist without a sound. Only a good adaptation of
the sound with the effect can give rise to musical creativity. This is the reason why
some of the basic algorithms presented put in the hands of creative musicians and
artists can give better resuhs than much more complex algorithms in the hands of
conventional persons.

Bibliography

[AD931 D. Arfib and N. Delprat. Musical transformations using the modification
of time-frequency images. Computer Music Journal, 17(2):66-72, 1993.

[Cap941 0. Capp6. Elimination of the musical noise phenomenon with the ephraim
and malah noise suppressor. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 2:345-349, 1994.

296 8 Time-frequency Processing

[CGT89] J.M. Combes, A. Grossmann, and Ph. Tchamitchan (eds). Wavelets. Time
Frequency Methods and Phase Space. Springer-Verlag, 2nd edition, 1989.

[Chug21 C.H. Chui. An Introduction to Wavelets. Academic Press, 1992.

[CR83] R.E. Crochiere and L.R. Rabiner. Multirate Digital Signal Processing.
Prentice-Hall, 1983.

[Cro80] R.E. Crochiere. A weighted overlap-add method of short-time fourier
analysis/synthesis. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 281(1):99-102, 1980.

[Fer991 A.J.S. Ferreira. An odd-DFT based approach to time-scale expansion of
audio signals. IEEE Trans. on Speech and Audio Processing, 7(4):441-453,
1999.

[GBAOO] A. De Gotzen, N. Bernadini, and D. Arfib. Traditional (?) implemen-
tations of a phase vocoder: The tricks of the trade. In Proc. DAFX-00
Conference on Digital Audio Efects, pp. 37-43, Verona, December 2000.

[Lar98]

[LD99a]

[LD99b]

[PE961

[Por76]

[QC931

[QMW

[SL94]

J. Laroche. Time and pitch scale modifications of audio signals. In
M. Kahrs and K.-H. Brandenburg (eds), Applications of Digital Signal
Processing to Audio and Acoustics, pp. 279-309. Kluwer, 1998.

J . Laroche and M. Dolson. Improved phase vocoder time-scale modifica-
tion of audio. IEEE Trans. on Speech and Audio Processing, 7(3):323-332,
1999.

J. Laroche and M. Dolson. New phase-vocoder techniques for real-time
pitch shifting, chorusing, harmonizing, and other exotic audio modifica-
tions. J. Audio Eng. Soc., 47(11):928-936, 1999.

L. Polansky and T. Erbe. Spectral mutation in soundhack. Computer
Music Journal, 20(1):92-101, Spring 1996.

M.R. Portnoff. Implementation of the digital phase vocoder using the fast
fourier transform. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 24(3):243-248, June 1976.

S. Quian and D. Chen. Discrete gabor transform. IEEE Transactions on
Signal Processing, 41(7):2429-2438, 1993.

T.F. Quatieri and R.J. McAulay. Audio signal processing based on si-
nusoidal analysis/synthesis. In M. Kahrs and K.-H. Brandenburg (eds),
Applications of Digital Signal Processing to Audio and Acoustics, pp. 343-
416. Kluwer, 1998.

Z. Settel and C. Lippe. Real-time musical applications using the FFT-
based resynthesis. In Proc. International Computer Music Conference,
1994.

Bibliography 297

[Vas961 S.V. Vaseghi. Advanced Signal Processing and Digital Noise Reduction.
Wiley & Teubner, 1996.

[WR90] J. Wexler and S. Raz. Discrete gabor expansions. Signal Processing,
21(3):207-220, 1990.

[Zo197] U. Zolzer. Digital Audio Signal Processing. John Wiley & Sons, Ltd, 1997.

Chapter 9

Source-Filter Processing

D. Arfib, F. Keiler, U. Zolzer

9.1 Introduction

Time-frequency representations give the evolution over time of a spectrum calcu-
lated from temporal frames. The notion of the spectral envelope extracted from
such representations mostly comes from the voice production and recognition sys-
tem: the voice production uses vocal chords as an excitation and the mouth and
nose as resonator system or anti-resonator. Voiced signals (vowels) produce a har-
monic spectrum on which a spectral envelope is superimposed. This fact about voice
strongly influences our way of recognizing other sounds, whether because of the ear
or the brain: we are looking for such a spectral envelope as a cue to the identi-
fication or classification of sounds. This excitation-resonance model is also called
source-filter model in the literature. Thus we can understand why the vocoding ef-
fect, which is the cross-synthesis of a musical instrument with voice, is so attractive
for the ear and so resistant to approximations. We will make use of a source-filter
model for an audio signal and modify this model in order to achieve different digital
audio effects.

However, the signal processing problem of extracting a spectral envelope from a
spectrum is generally badly conditioned. If the sound is purely harmonic we could
say that the spectral envelope is the curve that passes through the points related to
these harmonics. This leaves two open questions: how to retrieve these exact values
of these harmonics, and what kind of interpolation scheme should we use for the
completion of the curve in between these points? But, more generally, if the sound
contains inharmonic partials or a noisy part, this definition no longer holds and the
notion of a spectral envelope is then completely dependent on the definition of what
belongs to the excitation and what belongs to the resonance. In a way it is more a
“envelope recognition” problem than a “signal processing” one.

With this in mind we will state that a spectral envelope is a smoothing of a

299

300 9 Source-Filter Processing

I Transformation I
4

Synthesis

Figure 9.1 Spectral processing based on time-varying spectral envelopes and source sig-
nals. The analysis performs a source and filter separation.

spectrum, which tends to leave aside the spectral lines structure while preserving
the general form of the spectrum. Three techniques with many variants can be used
for the estimation of the spectral envelope:

The channel vocoder uses frequency bands and performs estimations of the
amplitude of the signal inside these bands and thus the spectral envelope.

Linear prediction estimates an all-pole filter that matches the spectral con-
tent of a sound. When the order of this filter is low, only the formants are
taken, hence the spectral envelope.

Cepstrum techniques perform smoothing of the logarithm of the FFT spec-
trum (in decibels) in order to separate this curve into its slow varying part
(the spectral envelope) and its quickly varying part (the source signal).

For each of these techniques, we will describe the fundamental algorithms in
section 9.2 which allow the calculation of the spectral envelope and the source
signal in a frame oriented approach, as shown in Fig. 9.1. Then transformations are
applied to the spectral envelope and/or the source signal and a synthesis procedure
reconstructs the output sound. Some basic transformations are introduced in section
9.3. The separation of a source and a filter is only one of the features we can extract
from a sound, or more precisely from a time-frequency representation. The final
section 9.4 describes the extraction of other very important features such as the
pitch, the centroid, and the harmonic/noise balance, which can be used to modify
control parameters for digital audio effects.

9.2 Source-Filter Separation

Digital audio effects based on source-filter processing extract the spectral envelope
and the source (excitation) signal from an input signal, as shown in Fig. 9.2. The

9.2 Source-Falter Separation 301

input signal is whitened by the filter l / H ~ (z) , which is derived from the spectral
envelope of the input signal. In signal processing terms, the spectral envelope is given
by the magnitude response IHl(f)l or its logarithm log IHl(f)l in dB. This leads to
extraction of the source signal e l (n) which can be further processed, for example,
by time stretching or pitch shifting algorithms. The processed source signal is then
finally filtered by H~(z). This filter is derived from the modified spectral envelope
of the input signal or another source signal.

Source Signal

q y H Spectral Envelope
Chan. VOC.

Cepstrum Estimation

L Spectral Envelope
Transformation

Figure 9.2 Spectrum estimation (Channel vocoder, Linear Predictive Coding or Cep-
strum) and source signal extraction for individual processing.

9.2.1 Channel Vocoder

If we filter a sound with a bank of bandpass filters and calculate the RMS value
for each bandpass signal, we can obtain an estimation of the spectral envelope (see
Fig. 9.3). The parameters of the filters for each channel will of course affect the
precision of the measurement, as well as the delay between the sound input and
the spectral calculation. The RMS calculation parameters are also a compromise
between a good definition and an acceptable delay and trail effect. The spectral
estimation is valid around the center frequency of the filters. Thus the more channels
there are, the more frequency points of the spectral envelope are estimated. The
filter bank can be defined on a linear scale, in which case every filter of the filter bank
can be equivalent in terms of bandwidth. It can also be defined on a logarithmic
scale. In this case, this approach is more like an “equalizer system” and the filters,
if given in the time domain, are scaled versions of a mother filter.

The channel vocoder algorithm shown in Fig. 9.3 works in the time domain.
There is, however, a possible derivation where it is possible to calculate the spectral
envelope from the FFT spectrum, thus directly from the time-frequency represcn-
tations. A channel can be represented in the frequency domain, and the energy of
an effective channel filter can be seen as the sum of the elementary energies of each
bin weighted by this channel filter envelope. The amplitude coming out of this filter
is then the square root of these energies.

In the case of filters with equally-spaced channel stacking (see Fig. 9.3b), it is
even possible to use a short-cut for the calculation of this spectral envelope: the spec-
tral envelope is the square root of the filtered version of the squared amplitudes. This

302 9 Source-Falter Processing

(b) Octave-spaced channel stacking /J-q ---- /,F\
f

---. . Equally-spaced channel stacking

f

Figure 9.3 (a) Channel vocoder and (b) frequency stacking.

computation can be performed by a circular convolution Y (k) = J I X (k) l 2 * w (k)
in the frequency domain, where w (k) may be a Hanning window function. The cir-
cular convolution is accomplished by another FFT/IFFT filtering algorithm. The
result is a spectral envelope] which is a smoothing of the FFT values. An example
is shown in Fig. 9.4.

Short-time spectrum and spectral envelope

-20

m
-40

x v
L -60

-80

-1 00
l 1 I I I I 1 l I
0 1000 2000 3000 4000 5000 6000 7000 8000

WHz --f

Figure 9.4 Spectral envelope computation with a channel vocoder.

The following M-file 9.1 defines channels in the frequency domain and calculates
the energy in dB inside successive channels of that envelope.

M-file 9.1 (specenvcv.m)
WLen=2048; w=hanningz(WLen);

9.2 Source-Filter Separation 303

buf=y(offset:offset+WLen-l).*w;
f=f f t (buf) / (WLen/2) ;
freq=(O:l:WLen-I)/WLen*44100;
f log=2O*loglO (0 . OOOOl+abs (f)) ;
% Frequency window
nob=input(’number of bins must be even = ’) ;
wl=hanningz(nob);wl=wl./sum(wl);
f -channel= [zeros ((WLen-nob) /2,1) ; wl ;zeros ((WLen-nob) /2,1)1 ;
% FFT of frequency window
fft-channel=fft(fftshift(f-channel));
f2=f.*conj(f); % Squared FFT values
% Circ. Convolution by FFT-Multiplication-IFFT
energy=real (if f t (f f t (f 2) . *f f t-channel)) ;
f log-rms=lO*loglO(abs (energy)) ;
%IO indicates a combination with sqrt operation
subplot(2,l,l);plot(freq,flog,freq,flog-ms);
ylabel(’X(f)/dB’);
xlabel(’f/Hz \rightarrow’);axis([O 8000 -110 01);
title(’Short-time spectrum and spectral envelope’);

The program starts with the calculation of the FFT of a windowed frame, where
W is a Hanning window in this case. The vector y contains the sound and a buffer
buf contains a windowed segment. In the second part of this program f channel
represents the envelope of the channel with a FFT representation. Here it is a Han-
ning window of width nob, which is the number of frequency bins. The calculation
of the weighted sum of the energies inside a channel is performed by a convolu-
tion calculation of the energy pattern and the channel envelope. Here, we use a
circular convolution with an FFT-IFFT algorithm to easily retrieve the result for
all channels. In a way it can be seen as a smoothing of the energy pattern. The
only parameter is the envelope of the channel filter, hence the value of nob in this
program. The fact that it is given in bins and that it should be even is only for t,he
simplification of the code. The bandwidth is given by nob.% (N is the length of
the FFT).

9.2.2 Linear Predictive Coding (LPC)

One way to estimate the spectral envelope of a sound is directly based on a simple
sound production model. In this model, the sound is produced by passing an exci-
tation source (source signal) through a synthesis filter, as shown in Fig. 9.5. The
filter models the resonances and has therefore only poles. Thus, this all-pole filter
represents the spectral envelope of the sound. This model works well for speech,
where the synthesis filter models the human vocal tract, while the excitation source
consists of pulses plus noise [Mak75]. For voiced sounds the periodicity of the pulses
determines the pitch of the sound while for unvoiced sounds the excitation is noise-
like.

304 9 Source-Filter Processing

Excitation source Synthesis filter Sound - (spectral envelope
model)

Figure 9.5 Sound production model: the synthesis filter represents the spectral envelope.

The retrieval of the spectral envelope from a given sound at a given time is
based on the estimation of the all-pole synthesis filter mentioned previously. This
approach is widely used for speech coding and is called linear predictive coding
(LPC) [Mak75, MG761.

Analysis/Synthesis Structure

In LPC the current input sample z(n) is approximated by a linear combination of
past samples of the input signal. The prediction of z(n) is computed using an FIR
filter by

k = l

where p is the prediction order and ak are the prediction coefficients. The difference
between the original input signal z(n) and its prediction i (n) is evaluated by

The difference signal e(.) is called residual or prediction error and its calculation
is depicted in Fig. 9.6 where the transversal (direct) FIR filter structure is used.

Figure 9.6 Transversal FIR filter structure for the prediction error calculation.

With the z-transform of the prediction filter

P

k = l

Equation (9.2) can be written in the z-domain as

E(.) = X(.) - X (.) = X(z)[l - P(.)]. (9.4)

9.2 Source-Filter Separation. 305

Figure 9.7 LPC structure with feed forward prediction. (a) Analysis, (b) Synthesis.

Figure 9.7(a) illustrates the last equation. The illustrated structure is called feed
forward prediction where the prediction is calculated in the forward direction from
the input signal.

Defining the prediction error filter or inverse filter
P

A(z) = 1 - P (z) = 1 - C a k ~ - ~ , (9.5)
k = l

the prediction error is obtained as

E (z) = X (z) A (z) . (9.6)

The sound signal is recovered by using the excitation signal E(n) as input to the
all-pole filter

1 1
H (z) = - - -

A(z) 1 - P(,)' (9.7)

This yields the output signal

Y (z) = B (Z) . H (z) (9.8)

where H (z) can be realized with the FIR filter P(,) in a feedback loop as shown
in Fig. 9.7(b). If the residual e (n) , which is calculated in the analysis stage, is fed
directly into the synthesis filter, the input signal x(.) will be ideally recovered.

The IIR filter H (z) is termed synthesis filter or LPC filter and represents the
spectral model ~ except for a gain factor - of the input signal ~ (n) . As mentioned
previously, this filter models the time-varying vocal tract in the case of speech
signals.

With optimal filter coefficients, the residual energy is minimized. This can be
exploited for efficient coding of the input signal where the quantized residual E(n) =
&{e(.)} is used as excitation to the LPC filter.

Figure 9.8 shows an example where for a short block of a speech signal an LPC
filter of order p = 50 is computed. In the left plot the time signal is shown while
the right plot shows both the spectra of the input signal and of the LPC filter
H (z) . In this example the autocorrelation method is used to calculate the LPC
coefficients. The MATLAB code for this example is given by M-file 9.2 (the used
function calc-lpc will be explained later).

306

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

9 Source-Falter Processing

time signal of original x(n) magnitude spectra IX(f)l and IH(f)l in dB

0

-20

-40

-60

-80

-1 00

200 400 600
n +

800 1000 0 2 4
f/kHz +

6 8

Figure 9.8 LPC example for the female utterance “la” with prediction order p = 50,
original signal and LPC filter.

M-file 9.2 (f igure9-08 .m)
fname=’la.wav’;
n0=5000; %start index
N=1024; %block length
Nfft=1024; % FFT length
p=50 ; %prediction order
ni=nO+N-i; %end index

[xin , Fs] =wavread (f name, [no nil) ;
x=xin(:,l)’; % row vecor of left channel
win=hamming(N) ’ ; % window for input block

a=calc-lpc(x.*win,p); % calculate LPC coeffs
% a=Ci, -a-i, -a-2,. . . , -a-pl
Omega=(O:Nfft-1)/Nfft*Fs/iOOO; % frequencies in kHz
offset=20*logi0(2/Nfft); % offset of spectrum in dB
A=20*logiO(abs(fft(a,Nfft)));
H=-A+offset;
X=20*log10(abs(fft(x.*win,Nfft)));
X=X+offset;

Calculation of the Filter Coefficients

To find an all-pole filter which models a considered sound well, different approaches
may be taken. Some common methods compute the filter coefficients from a block
of the input signal x(n). These methods are namely the autocorrelation method
[Mak75, Orf901, the covariance method [Mak75, MG76], and the Burg algorithm
[Mak77, Orf901. Since both the autocorrelation method and the Burg algorithm
compute the lattice coefficients, they are guaranteed to produce stable synthesis

9.2 Source-Filter Separation 307

filters while the covariance method may yield unstable filters.
Now we briefly describe the autocorrelation method which minimizes the energy

of the prediction error e(n). With the prediction error e(n) defined in (9.2), the
prediction error energy is'

Ep = E { e 2 (n) } .

Setting the partial derivatives of Ep with respect to the filter coefficients ai (i =
1 , . . . , p) to zero leads to

(9.10)

= -2E {e(n)x(n - i) } (9.11)

P c akE {x(. - k)z(n - i) } = E {$(.)X(. - i)} . (9.13)
k = l

Equation (9.13) is a formulation of the so-called normal equations [Mak75]. The
autocorrelation sequence for a block of length N is defined by

N-l

r z z (i) = c u(n)u(n - i) (9.14)
n=i

where u(n) = x(.) . w (n) is a windowed version of the considered block x(n),
n = 0, . . . , N - 1. Normally a Hamming window is used [O'SOO]. The expectation
values in (9.13) can be replaced by their approximations using the autocorrelation
sequence, which gives the normal equations'

(9.15)

The filter coefficients ak (k: = 1, . . . , p) which model the spectral envelope of the
used segment of z (n) are obtained by solving the normal equations. An efficient
solution of the normal equations is performed by the Levinson-Durbin recursion
[Mak75].

As explained in [Mak75], minimizing the residual energy is equivalent to finding
a best spectral fit in the frequency domain, if the gain factor is ignored. Thus the
input signal x(.) is modeled by the filter

(9.16)

'With the expectation value E {.}.
'The multiplication of the expectation values by the block length N does not have any effect

on the normal equations.

308 9 Source-Falter Processing

where G denotes the gain factor. With this modified synthesis filter the original
signal is modeled using a white noise excitation with unit variance. For the auto-
correlation method the gain factor is defined by [Mak75]

P

G2 = ~ z z (0) - C ~ ~ z z (k) (9.17)
k = l

with the autocorrelation sequence given in (9.14). Hence the gain factor depends
on the energy of the prediction error. If IH,(ej"))2 models the power spectrum
IX(ejn))2, the prediction error power spectrum is a flat spectrum with lE(ejn)12 =
G2. The inverse filter A (z) to calculate the prediction error is therefore also called
the "whitening filter" [Mak75]. The MATLAB code of the function calc-lpc for
the calculation of the prediction coefficients and the gain factor using the autocor-
relation method is given by M-file 9.3.

M-file 9.3 (calc-1pc.m)
function [a,gl=calc-lpc(x,p)
% calculate LPC coeffs via autocorrelation method
% x: input signal, p: prediction order

R=xcorr (x ,p) ; % autocorrelation sequence R(k) with k=-p,..,p
R(I:p)=Cl; % delete entries for k=-p,..,-1
if norm(R)"=O

% a=Ci, -a-i, -a-2,. . . , -a-pl
else

a=levinson(R,p); % Levinson-Durbin recursion

a=C1, zeros(i,p)l;
end
R=R(:)'; a=a(:)'; % row vectors
g=sqrt(sum(a.*R)); % gain factor

Notice that normally the MATLAB function 1pc can be used, but with MATLAB
release 12 (version 6) this function has been changed.

Figure 9.9 shows the prediction error and the estimated spectral envelope for the
input signal shown in Figure 9.8. It can clearly be noticed that the prediction error
has strong peaks occurring with the period of the fundamental frequency of the input
signal. We can make use of this property of the prediction error signal for computing
the fundamental frequency. The fundfrequency and its pitch period can
deliver pitch marks for PSOLA time stretching or pitch shifting algorithms or other
applications. The corresponding MATLAB code is given by M-file 9.4.

M-file 9.4 (figure9-O9.m)
fname='la.wav';
n0=5000; %start index
N=1024; %block length
Nfft=1024; % FFT length

9.2 Source-Filter Separation 309

x 1 o - ~ time signal of pred. error e(n) magnitude spectra IX(f)l and \G. H(f)l in dB
I I ’ I I l

-20
10

-40

5
-60

0 -80

-5 -1 00
l I . I I , .

0 200 400 600 800 1000 0 2 4 6 8
n + f/kHz +

Figure 9.9 LPC example for the female utterance “la” with prediction order p = 50,
prediction error and spectral envelope.

p=50 ; %prediction order
nl=nO+N-l; %end index
pre=p; %filter order= no. of samples required before nO

[a,g]=calc-lpc(x.*win,p); % calculate LPC coeffs and gain
% a=[i , -a-i, -a-2, . . . , -a-pl
g_db=20*logIO(g) % gain in dB

ein=filter(a,l,xin); % pred. error
e=ein((l:N)+pre); % without pre-samples
Gp=lO*loglO(sum(x.~2)/sum(e.~2)) % prediction gain

Omega=(O:Nfft-l)/Nfft*Fs/lOOO; % frequencies in kHz
off set=20*log10 (2/Nf f t) ; % offset of spectrum in dB
A=2O*loglO(abs(fft(a,Nfft)));
H-g=-A+offset+g-db; % spectral envelope
X=2O*logiO(abs(fft(x.*win,Nfft)));
X=X+offset;

Thus for the computation of the prediction error over the complete block length
additional samples of the input signal are required. The calculated prediction error
signal e (n) is equal to the source or excitation which has to be used as input to
the synthesis filter H (z) to recover the original signal z(n). For this example the

310

prediction gain, defined as

9 Source-Filter Processing

N-l c X"4
c e 2 (n)

G - n=O
p - N-l 7

n=O

has the value 38 dB, and the gain factor is G = -23 dB.

(9.18)

Figure 9.10 shows spectra of LPC filters at different filter orders for the sa.me
signal block as in Fig. 9.8. The bottom line shows the spectrum of the signal segment
where only frequencies below 8 kHz are depicted. The other spectra in this plot show
the results using the autocorrelation method with different prediction orders. For
clarity reasons these spectra are plotted with different offsets. It is obvious that for
an increasing prediction order the spectral model gets better although the prediction
gain only increases from 36.6 dB (p = 10) to 38.9 dB (p = 120).

spectra of original and LPC filters

50

0

-50

-1 00
0 2 4 6 8

50

0

-50

-1 00
0 2 4 6 8

f/kHz -+

Figure 9.10 LPC filter spectra for different prediction orders for the female utterance
llla" .

In summary, the LPC method delivers a source-filter model and allows the de-
termination of pitch marks or the fundamental frequency of the input signal.

9.2.3 Cepstrum

The cepstrum (backward spelling of "spec") method allows the estimation of a
spectral envelope starting from the FFT values X (k) of a windowed frame ~ (n) .
Zero padding and Hanning, Hamming or Gaussian windows can be used depending
on the number of points used for the spectral envelope estimation. An introduction
to the basics of cepstrum based signal processing can be found in [OS75]. The
cepstrum is calculated from the discrete Fourier transform

N-l

X (k) = c x(n)W? = I X (k) l e ~ ~ = (? IC = 0, l , . . . , N - 1 (9.19)
n=O

9.2 Source-Falter Separation 311

by taking the logarithm

X (k) = logX(k) = log I X (k) (+ jp,(k) (9.20)

and performing an IFFT of X (k) , which yields the complex cepstrum

(9.21)

The real cepstrum is derived from the real part of (9.20) given by

and performing an IFFT of X R (~) , which leads to the real cepstrum

- N-l

(9.23)
k=O

Since X, (lc) is an even function, the inverse discrete Fourier transform of X,(k)
gives an even function c(n), which is related to the complex cepstrum 2(n) by

Real Cepstrum Spectral Envelope

Figure 9.11 Spectxal envelope computation by cepstrum analysis.

Figure 9.11 illustrates the computational steps for the computation of the spec-
tral envelope from the real cepstrum. The real cepstrum c(n) is the IFFT of the
logarithm of the magnitude of FFT of the windowed sequence x (n) . The lowpass
window for weighting the cepstrum c(n) is derived in [OS751 and is given by

1 n = 0,Nl

0 N l < n < N - l .
wLp(n) = { 2 1 < n < N 1 (9.24)

with NI 5 N/2.

The FFT of the windowed cepstrum cLp(n) yields the spectral envelope

C L P (~) = FFT [c L P (~)] , (9.25)

which is a smoothed version of the spectrum X (k) in dB. An illustrative example
is shown in Fig. 9.12. Notice that the first part of the cepstrum C(.) (0 < n 5
150) is weighted by the "lowpass window" yielding cLp(n). The IFFT of cLp(n)

312 9 Source-Falter Processing

Windowed signal x(n) Spectrum X(f) in dB

-1 ‘ I I I
0 500 1000 1500 2000 0 2000 4000 6000 8000

n + NHz +
Real cepstrum c(n) Windowed cepstrum cLp(n) Spectrum X(f) and spectral envelope CLp(f) in dB

0
2 2

-20

1 1
-40

0 0
-60

-1 -1 -80

-2 -2 -1 00
/I 1 1 1

0 200 400 0 200 400 0 2000 4000 6000 8000
n + n + f/Hz +

Figure 9.12 Windowed signal segment, spectrum (FFT length N = 2048), cepstrum,
windowed cepstrum (N I = 150) and spectral envelope.

results in the spectral envelope C(f) in dB, as shown in the lower right plot. The
“highpass part” of the cepstrum C(.) (150 < n 5 1024) represents the source signal,
where the first peak at n = 160 represents the pitch period To (in samples) of the
fundamental frequency fo = 44100 Hz/160 = 275,625 Hz. Notice also, although
the third harmonic is higher than the fundamental frequency, as can be seen in the
spectrum of the segment, the cepstrum method allows the estimation of the pitch
period of the fundamental frequency by searching for the time index of the first
highly significant peak value in the cepstrum c(n) after the “lowpass” part can be
considered to have vanished. The following M-file 9.5 demonstrates briefly the way
a spectral envelope can be calculated via the real cepstrum.

M-file 9.5 (s p e c e n v c e p s .m)
% NI: cut quefrency
WLen=2048; w=hanningz (WLen) ;
buf=y(offset:offset+WLen-l).*w;
f =f f t (buf) / (WLen/2) ;
flog=20*log10(0.0000l+abs(f));
subplot(2,l,l);plot(flog(l:WLen/2));

9.2 Source-Filter Separation 313

In this program cep represents the cepstrum (hence the IFFT of the log magnitude
of the FFT). The vector cep-cut is the version of the cepstrum with all values over
the cut index set to zero. Here, we use a programming short-cut: we also remove
the negative time values (hence the second part of the FFT) and use only the real
part of the inverse FFT. The time indices n of the cepstrum c(.) are also denoted
as "quefrencies" . The vector f log-cut is a smoothed version of flog and represents
the spectral envelope derived by the cepstrum method. The only input value for the
spectral envelope computation is the cut variable. This variable cut is homogeneous
to a time in samples, and should be less than the period of the analyzed sound.

Source-filter Separation

The cepstrum method allows the separation of a signal y(n) = x(.) * h(n) , which
is based on a source and filter model, into its source signal x(.) and its impulse
response h(n). The discrete-time Fourier transform Y (e j ") = X(&") .H(&) is the
product of two spectra: one representing the filter frequency response H(ej") and
the other one the source spectrum X (e j ") . Decomposing the complex values in terms
of the magnitude and phase representation, one can make the strong assumption
that the filter frequency response will be real valued and the phase will be assigned
to the source signal.

The key point here is to use the mathematical property of the logarithm log(a.
b) = log(a) + log(b). The real cepstrum method will perform a spectral envelope
estimation based on the magnitude according to

I Y (~ ~ ! ') I = I X (~ ~ ") I . IH(ej")l
log l y (P) l = log IX(ej")l+ log IH(ej")J.

In musical terms separating log IX(ej")l from log IH(ej")l is to keep the slow vari-
ation of log)Y(ej")J as a filter and the rapid ones as a source. In terms of signal
processing we would like to separate the low frequencies of the signal log IY(ej")l
from its high frequencies (see Fig. 9.13).

The separation of source and filter can be achieved by weighting the cepstrum
c(n) = c,(n) + ch(n) with two window functions, namely the "lowpass window"
w ~ p (n) and the complementary "highpass window" w ~ p (n) . This weighting yields
c,(n) = c(n) . w ~ p (n) and ch(n) = c(n) . w ~ p (n) . The low time values (low "que-
frencies") for lowpass filtering log IY(ej")l give log IH(ej")l (spectral envelope in
dB) and the high time values (higher "quefrencies") for highpass filtering yield
log IX(ej")l (source estimation). The calculation of exp(1og IH(ej")l) gives the mag-
nitude response IH(ej")l. From this magnitude transfer function we can compute a

314 9 Source-Falter Processing

Figure 9.13 Separating source and filter.

zero-phase filter impulse response according to

h(n) = IFFT [IH(lc)I]. (9.26)

The cepstrum method has a very good by-product. The combination of the highpass
filtered version of the cepstrum and the initial phases from the FFT gives a spectrum
that can be considered as the source spectrum in a source-filter model. This helps in
designing audio effects based on such a source-filter model. The source signal x(.)
can be derived from the calculation of exp(C,(k)) = JX(k)J and the initial phase
taken from Y (k) = l Y (l c) I e j ~ ~ (~) by performing the IFFT of IX(k)lej‘Py(k) according
to

x(n) = IFFT [~ (k) e j ‘ ~ y (k)] . (9.27)

For finding a good threshold between low and high quefrencies, one can make use
of the fact that quefrencies are time variables, and whenever the sound is periodic,
the cepstrum shows a periodicity corresponding to the pitch. Hence this value is
the upper quefrency or upper time limit for the spectral envelope. A low value
will smoothen the spectral envelope, while a higher value will include some of the
harmonic or partial peaks in the spectral envelope.

Hints and Drawbacks

0 “Lowpass filtering” is performed by windowing (zeroing values over a “cut
quefrency”). This operation corresponds to filtering in the frequency domain
with a sln(f) behavior. An alternative version is to use a smooth transition
instead ofan abrupt cut in the cepstrum domain.

0 The cepstrum method will give a spectral estimation that smoothes the in-
stantaneous spectrum. However, log values can go to -cm for a zero value in
the FFT. Though this rarely happens with sounds coming from the real world,
where the noise level prevents such values, a good prevention is the limitation
of the log value. In our implementation the addition of a small value 0.00001
to the FFT values limits the lower log limit to -100 dB.

9.3 Source-Falter Transformations 315

0 In order to enhance the computation of the spectral envelope, it is possible to
use an iterative algorithm which calculates only the positive difference between
the instantaneous spectrum and the estimated spectral envelope in each step.

Though the r e d cepstrum is widely used, it is also possible to use the complex
cepstrum to perform an estimation of the spectral envelope. In this case the
spectral envelope will be defined by a complex FFT.

In conclusion, the cepstrum method allows both the separation of the audio
signal into a source signal and a filter and, as a by-product, the estimation of t,he
fundamental frequency, which was already published in [No1641 and later reported
in [Sch99].

9.3 Source-Filter Transformations

9.3.1 Vocoding or Cross-synthesis

The term vocoder has different meanings. One is %oice-coding” and refers directly
to speech synthesis. Another meaning for this term is the phase vocoder, which refers
to the short-time Fourier transform as discussed in 8.2. The last meaning is the one
of the musical instrument named the Vocoder and this is what this paragraph is
about: vocoding or cross-synthesis.

This effect takes two sound inputs and generates a third one which is a com-
bination of the two input sounds. The general idea is to combine two sounds by
“spectrally shaping” the first sound by the second one and preserving the pitch of
the first sound. A variant and improvement are the removal of the spectral envelope
of the initial sound (also called whitening) before filtering with the spectral envelope
of the second one. This implies the ability to extract a spectral envelope evolving
with time and to apply it to a signal.

Although spectral estimation is well represented by its amplitude versus fre-
quency representation, most often it is the filter representation that can be a help
in the application of this spectral envelope: the channel vocoder uses the weighted
sum of filtered bandpass signals, the LPC calculates an IIR filter, and even the
cepstrum method can be seen as a circular convolution with an FIR filter. As this
vocoding effect is very important and can give different results depending on the
technique used, we will introduce these three techniques applied to the vocoding
effect.

Channel Vocoder

This technique uses two banks of filters provided by the channel vocoder (see
Fig. 9.14), as well as the RMS (root mean square) values associated to these chan-
nels. For each channel the bandpass signal is divided by the RMS value of this

316 9 Source-Filter Processing

channel, and then multiplied by the RMS value of the other sound. The mathemat-
ical operation is given by

(9.28)

where X R M S ~ ~ (n) and X R M S ~ ~ (n) represent the RMS values in channel i for the two
sounds. One should be careful with the division. Of course divisions by zero should
be avoided, but there should also be a threshold for avoiding the amplification of
noise. This works well when sound 2 has a strong spectral envelope, for example, a
voice. The division by X R M S ~ ~ (n) can be omitted or replaced by just modifying the
amplitude of each band. Sound 1 can also be a synthetic sound (pulse, sawtooth,
square).

S o u n d 2 BP 1
X R M S I ~ (~)

a- BP2

4- B P 3

Figure 9.14 Basic principle of spectral mutations.

The following M-file 9.6 demonstrates a cross-synthesis between two sounds
based on the channel vocoder implemented by IIR filters.

M-file 9.6 (CVCrossSynthesis.m)
%----- USER DATA -----
[yI,FS] = wavread(’guitar’) ; % reading the two sound files
Y2 = wavread(’xvega’);
1Y = min(length(yi), length(y2)) ;% length of the signals
res = zeros(ly, 1) ; % result signal
fen = C0.005 0.00631 ; % boundings of frequency band
r = 0.99;

epsi = 0.00001;
X----- performing the vocoding o r cross synthesis effect -----
for k=1:21

[b, a] = chebyl(2, 3, fen) ; % chebyshev-type l filter

1P = [l, -2*r, +r*rl % filter used

9.3 Source-Falter Transformations 317

zl = filter(b, a, yl); % filtering the two signals
22 = filter(b, a, y2);
rms2 = norm(f ilter (1, lp, 22. *22) ,2) ;% RMS value of sound 2

% rmsl = epsi + norm(filter(1, lp, zl.*zl), 2);% with whitening
rmsl = l.; % without whitening
res = res + zl.*rms2/rmsl; % add result to the output buffer
fen = fen*1.26; % width of the bandpass filter:

% 1/3 of an octave = 2^(1/3)”1.26
end
soundsc(res,FS)

This program performs bandpass filtering inside a loop. Precisely, Chebychev type
1 filters are used, which are IIR filters with a ripple of 3 dB in the passband. The
bandwidth is chosen as one-third of an octave, hence the 0.005 to 0.0063 window
relative to half of the sampling rate in Matlab’s definition. Then sound 1 and sound
2 are filtered, and the RMS value of the filtered sound 2 is extracted: 22 is squared,
filtered by a two pole filter on the x axis, and its square root is taken. This RIVE2
value serves as a magnitude amplifier for the zl signal, which is the filtered version
of sound 1. This operation is repeated every one-third of an octave by multiplying
the frequency window, which is used for the definition of the filter, by 1.26 (3rd
root of 2). A whitening proc:ess can be introduced by replacing line rmsl = 1. ; with
rmsl = epsi + norm(filter(1, Ip, zl. *zl), 2) ;. A small value epsi (0.01) is
added to RMSl to avoid division by zero. If epsi is greater, the whitening process
is attenuated. Thus this value can be used as a control for the whitening.

Linear Prediction

Cross-synthesis between two sounds can also be performed using the LPC method
[Moo79, KAZOO]. One filter removes the spectral envelope of the first sound and
the spectral envelope of the second sound is used to filter the excitation signal of
the first sound, as shown in Fig. 9.15.

The following M-file 9.7 performs cross-synthesis based on the LPC method. The
prediction coefficients of sound 1 are used for an FIR filter to whiten the original
sound. The prediction coefficients of sound 2 are used in the feedback path of a
synthesis filter, which performs filtering of the excitation signal of sound 1 with the
spectral envelope derived from sound 2.

M-file 9.7 (LPCCrossSynthesis.m)
X===== LPCCrossSynhesis.m =====
clear; clf;

X----- USER DATA -----
[DAFx-inl,FS] = wavread(’didge-court.wav’); X sound l: spectral env.
DAFx-in2 = wavread()song.wav’); % sound 2: excitation
long = 400; block length for calculation of coefficients
hopsize = 160; hop size (is 160)

318 9 Source-Filter Processing

Figure 9.15 Cross-synthesis with LPC.

order = 20 % order of the LPC
orderl = 6 order for the excitation

y----- initializations -----
1Y = min(length(DAFx-inl) , length(DAFx-in2)) ;
DAFx-in1 = [zeros(order, l) ; DAFx-inl; . . .

zeros(order-mod(ly,hopsize),l)] / max(abs(DAFx-inl));
DAFx-in2 = [zeros(order, 1); DAFx-in2; . . .

zeros(order-mod(ly,hopsize),l)] / max(abs(DAFx-in2));
DAFx-out = zeros (ly ,l) ; % result sound
exc = zeros(ly, 1) ; % excitation sound

N-frames = floor((1y-order-long)/hopsize); % number of frames
W = hanningz (long) ; % window

y----- c ross-synthesis -----
tic
for j=l:N-frames

k = order + hopsize*
[A, g] = lpc(DAFx-in2 (k+l
[Al, gl] = lpc(DAFx-inl(k+l

gain(j) = g;
ae = - A(2 : order+l) ;
for n=l:hopsize

(j-1); % offset of the buffer
:k+long).*w, order);
:k+long).*w, orderl);

%
% LPC coeff. of excitation

excitationl = (Al/gl) * DAFx-inl(k+n:-l:k+n-orderl);
exc (k+n) = excitationl;
DAFx-out(k+n) = ae*DAFx-out(k+n-1:-l:k+n-order)+g*excitationl;

end
end

9.3 Source-Filter Transformations 319

toc
y----- output -----
DAFx-out = DAFx-out(order+i:length(DAFx-out)) / max(abs(DAFx-out));
soundsc(DAFx-out , FS)
wavwrite(DAFx-out, FS, 'CrossLPC')

Cepstrum

Signal processing based on cepstrum analysis is also called homomorphic signal
processing [OS75, PM96]. We have seen that we can derive the spectral envelope
(in dB) with the cepstrum technique. Reshaping a sound is achieved by whitening
(filtering) a sound with the inverse spectral envelope 1/IH1(f) l and then filtering
with the spectral envelope (Hz(f)(of the second sound (see Fig. 9.16). The series
connection of both filters leads to a transfer function H ~ (f) / H l (f) . By taking the
logarithm according to logIHz(f)l/lHl(f)l = log I H 2 (f) l - log(Hl(f)l , the filtering
operation is based on the difference of the two spectral envelopes. The first spec-
tral envelope performs the whitening by inverse filtering and the second spectral
envelope introduces the formants. The inverse filtering of the input sound 1 and
subsequent filtering with spectral envelope of sound 2 can be performed in one step
by the fast convolution technique.

l W: Filter

Figure 9.16 Basic principle of homomorphic cross-synthesis. The spectral envelopes of
both sounds are derived by the cepstrum method.

Here we present the core of a program given by M-file 9.8 that uses the spectral
envelope of a sound (number 2) to be superimposed on a sound (number 1). Though
musically very effective, this first program does not do any whitening of sound 1.

M-file 9.8 (CepstrumCrossSynthesis.m)
% CepstrumCrossSynthesis.m
clear all; close all
x-- - - - USER DATA -----

320 9 Source-Filter Processing

CDAFx-inl, FS] = wavreadodidge-court.wav’); sound 1: excitation
DAFx-in2 = wavread(’la.wav’); % sound 2: spectral envelope
WLen = 1024; % window size
nl = 256; % hop size
order1 = 30; % cut quefrency for sound 1
order2 = 30; % cut quefrency for sound 2

y----- initializations -----
W1 = hanningz(WLen); % analysis window
W2 = wl; % synthesis window
WLen2 = WLen/2
grainl = zeros(WLen,l);
grain2 = zeros(WLen,l) ;
pin = 0; % start index

pend = L - WLen; % end index
DAFx-in1 = [zeros(WLen, l) ; DAFx-inl; . . .

DAFx-in2 = [zeros(WLen, 1) ; DAFx-in2; . . .

DAFx-out = zeros(L,l);

L = min(length(DAFx-inl) ,length(DAFx_in2)) ;

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-inl));

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-in2));

y----- cross-synthesis -----
while pincpend

grainl = DAFx-inl(pin+i:pin+WLen).* wl;
grain2 = DAFx_in2(pin+i:pin+WLen) .* wi;

.
f i = f f t (grainl) ;

f = fft(grain2)/WLen2;
flog = log(O.OOOOI+abs(f));
CeP = ifft(f1og); % cepstrum of sound 2
cep-coupe = [cep(i)/2; cep(2:orderl); zeros(WLen-orderl,l)];
flog-coupe = 2*real(fft(cep_coupe));
f2 = exp (f log-coupe) ; % spectral env. of sound 2

grain = (real(ifft(fI.*f2))).*~2;% resynthesis grain

DAFx-out(pin+i:pin+WLen) = DAFx-out(pin+i:pin+WLen)+grain;
pin = pin + nl;

y ...
D -----------

end

%----- listening and saving the output -----
%DAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx-out(WLen+l:length(DAFx-out))/max(abs(DAFx-out));

9.3 Source-Falter Transformations 321

soundsc (DAFx-out ,W) ;
wavwrite(DAFx-out,FS,’CrossCepstrum”

In this program nl repesents a hop size, and grainl and grain2 windowed buffers
of soundl and sound2. f 1 is the FFT of grainl and f2 is the spectral envelope
derived from the FFT of grain2 Although this algorithm performs a circular con-
volution, which theoretically introduces time aliasing, the resulting sound does not
have artifacts.

Whitening soundl before processing it with the spectral envelope of sound2
can be done in a combined step: we calculate the spectral envelope of soundl and
subtract it (in dB) from the spectral envelope of sound2. The following code lines
given by M-file 9.9 perform a whitening of soundl and a cross-synthesis with sound2.

M-file 9.9 (CepstrumWhiteningCS .m)
.

fl = fft(graini)/WLen2;
flog = log(O.OOOOl+abs (f l)) ;

CeP = fft(fl0g); % cepstrum of sound I
cep-coupe = [cep(l)/2; cep(2:orderl); zeros(WLen-order1,l)l ;
flog-coupe1 = 2*real(ifft(cep_coupe)); spectral env. of sound 2

f2 = fft(grain2)/WLen2;
flog = log(0.0000l+abs(f2));
CeP = ifft(f1og); % cepstrum of sound 2
cep-coupe = [cep(l)/2; cep(2:order2); zeros(WLen-order2,1)] ;
flog-coupe2 = 2*real(fft(cep_coupe)); % spectral env. of sound 2

In this program flogcoupel and f logcoupe2 represent (in dB) the spectral en-
velopes derived from grainl and grain2 for a predefined cut quefrency. Recall that
this value is given in samples. It should normally be below the pitch period of the
sound, and the lower it is, the more smoothed the spectral envelope will be.

9.3.2 Formant Changing

This effect produces a “Donald Duck” voice without any alteration of the funda-
mental frequency. It can be used for performing an alteration of a sound whenever
there is a formant structure. However, it can also be used in conjunction with pitch
shifted sounds for recovering a natural formant structure (see section 9.3.4).

The musical goal is to remove the spectral envelope from one sound and to im-
pose another one, which is a warped version of the first one, as shown in Fig. 9.17,

322 9 Source-Falter Processing

f f

Whitened signal

Hz@)

Removal of spectral envelope Applying scaled spectral envelope

Figure 9.17 Formant changing by frequency scaling the spectral envelope and time-
domain processing.

where the signal processing is also illustrated. This means that we have to use a
spectral correction that is a ratio of the two spectral envelopes. In this way the
formants, if there are any, are changed according to this warping function. For ex-
ample, a transposition of the spectral envelope by a factor of two will give a “Donald
Duck” effect without time stretching. This effect can also be seen as a particular
case of cross-synthesis, where the modifier comes from an interpolated version of
the original sound. Though transposition of the spectral envelope is classical, other
warping functions can be used.

From a signal processing point of view the spectral correction for formant chang-
ing can be seen in the frequency domain as H2(f)/H1 (f) . First divide by the spec-
tral envelope Hl(f) of the input sound and then multiply by the frequency scaled
spectral envelope H2(f). In the cepstrum domain the operation Hz(f)/Hl(f) leads
to the subtraction C,(f) - Cl(f), where C (f) = logIH(f)l. When using filters for
time-domain processing, the transfer function is Hz(f)/Hl(f) (see Fig. 9.17). We
will shortly describe three different methods for the estimation of the two spectral
envelopes.

Interpolation of the Input Signal

The spectral envelopes Cl (f) and Cz(f), or filters H1 (f) and H2(f) can be obtained
by different techniques. If C2(f) is a frequency scaled version of C1 (f) , one can
calculate the spectral envelope C2(f) from the analysis of a transposed version
of the initial signal, as shown in Fig. 9.18. The transposed version is obtained
by time-domain interpolation of the input signal. The channel vocoder, LPC and
the cepstrum method allow the estimation of either the spectral envelope or the
corresponding filter. One must take care to keep synchronicity between the two
signals. This can be achieved by changing the hop size according to this ratio. The
algorithm works as follows:

Whitening: filter the input signal with frequency response 1 or subtract
H1 (f 1

9.3 Source-Filter Bansformations 323

the input spectral envelope C,(f) = log JH1 (f) l from the log of input magni-
tude spectrum.

0 The filter H I (f) or the spectral envelope C1 (f) is estimated from the input
signal.

0 Formant changing: apply the filter with frequency response Hz(f) to the
whitened signal or add the spectral envelope Cz(f) = log IHz(f)l to the
whitened log of the input magnitude spectrum.

0 The filter Hz(f) or the spectral envelope Cz(f) is estimated from the inter-
polated input signal.

H$)

Cham Voc.

Cepstrum
LPC - - - I

Tlmedomain
Interpolation

Chan. VOC.
Lpc __....--__. I

Cepstrum

Figure 9.18 Formant changing by time-domain processing.

Formant changing based on the cepstrum analysis is shown in Fig. 9.19. The spectral
correction is calculated from the difference of the log values of the FFTs, of both the
input signal and the interpolated input signal. This log difference is transformed to
the cepstrum domain, lowpass weighted and transformed back by the exponential
to the frequency domain. Then, the filtering of the input signal with the spectral
correction filter Hz(z)/HI(z) is performed in the frequency domain. This fast con-
volution is achieved by multiplication of the corresponding Fourier transforms of
the input signal and the spectral correction filter. The result is transformed back
to the time domain by an IFFT yielding the output signal. An illustrative example
is shown in Fig. 9.20. The M-file 9.10 demonstrates this technique.

e w

wLp(n) Spectral Envelope

Figure 9.19 Formant changing by frequency-domain processing: cepstrum analysis, spec-
tral correction filter computation and fast convolution.

324 9 Source-Filter Processing

(a) original spectrum
0

-50

-1 00
0 2000 4000 6000 8000 10000 12000

(b) spectrum of time-scaled signal
-20

-40

-60

-80

-1 00
0 2000 4000 6000 8000 10000 12000

(c) formant changed spectrum
-20, I I I I I l

-40

-60

-80

-1 00
0 2000 4000 6000 8000 10000 12000

f in Hz +

Figure 9.20 Example of formant changing: the upper plot shows the input spectrum and
the middle plot the spectrum of the interpolated signal. The lower plot shows the result of
the formant changing operation, where the spectral envelope of the interpolated spectrum
can be noticed.

M-file 9.10 (UXfmove-cepstrum.m)
% UX-fmove-cepstrum.m
c l e a r ; c l f ;

X----- USER DATA -----
[DAFx-in, FS] = wavread(’la.wav’) ; % sound f i l e
warping-coef = 2.0 ;
n l = 512; % ana lys i s hop s i z e
n2 = n l ; s y n t h e s i s hop size
WLen = 2048; % window length
W 1 = hanningz(WLen); % ana lys i s window
W2 = wl; % syhnthes is window
order = 50; % cut quefrency

”/---- i n i t i a l i z a t i o n s -----
WLen2 = WLen/2;

9.3 Source-Filter Transformations 325

L = length(DAFx-in) ;
DAFx-in = [zeros(WLen, l) ; DAFx-in; . . .
DAFx-out = zeros (L, 1) ;

lmax = max W e n , t (WLen))

zeros(WLen-mod(L,nl) ,111 / max(abs(DAFx-in));

t = I + floor((O:WLen-l)*warping-coef 1 ; % warping

grain1 = DAFx-in(pin+t).* wl; % linear interpolation of grain

flogs1 = 20*10g10(0.00001 + abs(fl));% loglXl(k) I
flog = log(O.OOOOl+abs(fl)) - log(O.OOOOl+abs(f));
cep = ifft(f1og); % cepstrum
cep-coupe = [cep(l)/2; cep(2:order) ; zeros(WLen-order,l)] ;

f l = fft(graini)/WLen2; % spectrum of interp. grain

corr = exp(2*real(fft(cep_coupe)));% spectral envelope
grain = (real (iff t (f . *corr))) . *w2;

fout = fft(grain);
f logs2 = 20*log10 (0 . OOOOl+abs (f out)) ;

X----- figures for real-time spectral envelope up to FS/2 -----
subplot (3, l , l) ; plot ((l : WLen2/2) *44100/WLen, f logs (l : WLen2/2)) ;
title(’a) original spectrum’); drawnow;
subplot(3,1,2);plot((l:WLen2/2)*44lOO/WLen,flogsl(l:WLen2/2));
title(’b) spectrum of time-scaled signal’);
subplot (3,1,3) ;plot ((1 : WLen2/2) *44100/WLen,f logs2 (l : WLen2/2)) ;
title(c) formant changed spectrum’) ;
xlabel(’f in Hz \rightarrow’);
drawnow

yo =-- ..
DAFx_out(pout+l:pout+WLen)=DAFx-out(pout+l:pout+WLen)+grain;
pin = pin + nl;
pout = pout + n2;

326 9 Source-Falter Processing

end
% v v w v w v v w v w w m n n r v v v w u w u w w w r n n r u
toc

”/---- 1 istening and saving the output -----
XDAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx-out(WLen+l:WLen+L) / max(abs(DAFx-out));
XDAFx-out = DAFx-out / max(abs(DAFx-out));
soundsc (DAFx-out , FS) ;
wavwrite(DAFx-out, FS, ’1a-rnove.wav’);

Interpolation or Scaling of the Spectral Envelope

The direct warping is also possible, for example, by using the interpolation of the
spectral envelope derived from a cepstrum technique: Cz(f) = C1 (k . f) or Cz(f/k) =
C1 (f). There are, however, numerical limits: the cepstrum method uses an FFT and
frequencies should be below half of the sampling frequency. Thus, if the transposition
factor is greater than one, we will get only a part of the initial envelope. If the
transposition factor is less than one, we will have to zero-pad the rest of the spectral
envelope to go up to half of the sampling frequency. The block diagram for the
algorithm using the cepstrum analysis method is shown in Fig. 9.21. The following
M-file 9.11 demonstrates this method.

x(n) 1 H2(z) I Y@)
0- T

C1 input spectral envelope
CZ scaled input spectral envelope

Figure 9.21 Formant changing by scaling the spectral envelope.

M-file 9.11 (UX-fomove-cepstrum.m)
% UX-fomove-cepstrum.m
clear; clf ;

%v---- USER DATA -----
[DAFx-in, FS] = wavread(’la.wav’); % sound file
warping-coef = 2.;
nl = 512; % analysis hop size
n2 = nl; % synthesis hop size
WLen = 2048; % window length

9.3 Source-Falter Transformations 327

W1 = hanningz(WLen); % analysis window
W2 = wl; % syhnthesis window
order = 50; % cut quefrency

y----- initializations -----
WLen2 = WLen / 2;
L = length(DAFx-in) ;
DAFx-in = [zeros(WLen, 1) ; DAFx-in; . . .

DAFx-out = zeros (L, 1) ;
zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-in));

x0 = floor(min((i+(O:WLen2)/warping-~oef), I+WLen2));

X = [x0 , x0 (WLen2 : -1 : 2) 3 ; % symmetric extension
% apply the warping

tic
%P
pin = 0;
pout = 0;
pend = L - WLen;

-order, I) 1 ;

DAFx-out (pout+l :pout+WLen) = DAFx-out (pout+l :pout+WLen) + grain;
pin = pin + nl;
pout = pout + n2;

end
% w w m n n n n n n n r v w w m r w w u w w w w r r u w r n r
toc

y----- 1 istening and saving the output -----
IDAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx-out(WLen+l:WLen+L) / max(abs(DAFx-out));
soundsc(DAFx-out , FS) ;
wavwrite(DAFx-out, FS, '1a-rnove.wav');

328 9 Source-Falter Processing

Direct Warping of Filters

A direct warping of the spectral envelope filter H l (z) to Hz(z) is also possible.
The warping of a filter transfer function can be performed by the allpass function
*-l + z --cy

the warped transfer function H z (z) . Further details on warping can be found in
Chapter 11 and in [Str80, LS81, HKS+00].

-1

1-CYt-1. Substituting 2-l in the transfer function H l (z) by - yields

Figure 9.22 A possible implementation of spectral interpolation between two sounds.

9.3.3 Spectral Interpolation

Spectral interpolation means that instead of mixing two sounds, we mix their ex-
citation signals independently of their spectral envelopes, as shown in Fig. 9.22. If
we have the decomposition of sound grains in the frequency domain according to
E (f) . H (f) , where E(f) represents the Fourier transform of the excitation and H (f)
is the spectral envelope (H (f) = exp[C(f)]), we can perform spectral interpolation
between two sounds by mixing according to

y(f) = [e l & (f) + ez&(f)] . [~ H l (f) + czffz(f)l. (9.29)

The excitation grains and the spectral envelopes are added. This transformed rep-
resentation is then used for the resynthesis operation. We introduce cross-terms by
this method, which musically means that the excitation source of one sound also
influences the spectral envelope of the second and conversely. For regular mixing
of two sounds the result would be k lEl (f) . Hl(f) + k z & (f) . Hz(!). The M-file
9.12 performs time-varying spectral interpolation between two sounds. We go from
a first sound to another one by independently mixing the sources and resonances of
these two sounds.

M-file 9.12 (UX-spectral-interp.m)
% UX-spectral-interp .m

9.3 Source-Filter Transformations 329

% k (spectral mix)
% =O ->x1 =1->x2 in between spectral interpolation
% in this example k is calculated at every step

so we move from sound l to sound 2;

clear; clf

x-- - - - USER DATA -----
[DAFx-inl,FS] = wavread(’c1aire-oubli-voix.WAV’); x sound l
DAFx- in2 = wavread(’c1aire-oubli-flute.WAV’); % sound 2
nl = 512; % analysis hop size
n2 = nl; % synthesis hop size
WLen = 2048; % window length
W1 = hanningz(WLen); % analysis window
W2 = wl; % synthesis window
cut = 50 % cut quefrency

y----- lnitializations . -----
L = min(length(DAFx-inl) length(DAFx-in2)) ;
DAFx-in1 = [zeros(WLen, I); DAFx-inl; . . .

DAFx-in2 = [zeros(WLen, I) ; DAFx-in2; . . .

DAFx-out = zeros (length(DAFx-inl) ,l) ;

zeros(WLen-mod(L,nl) ,l)] / max(abs(DAFx-inl));

zeros(WLen-mod(L,nl) ,113 / max(abs(DAFx-in2));

tic
% w v v w w m n n n r v w w v v w w v u w r n n r w u w w u
pin = 0;
pout = 0;
pend = L - WLen;
while pincpend

x-- - - - here is the k factor varies between 0 and l
k = pin/pend; spectral mix
kP = l-k;

grain1 = DAFx-inl(pin+i :pin+WLen). * wl;
grain2 = DAFx_in2(pin+I:pin+WLen).* wi;

fl = fft(fftshift(grain1));
flog = log(O.O0001+abs(fl));
cep = fft(f1og) ;
cep-cut = [cep(1)/2; cep(2:cut) ; zeros(WLen-cut,l)l;
flog-cut1 = 2*real(ifft(cep_cut));
spec1 = exp(flog-cut1) ; spectral shape of sound 1

y------------------------------=============
0

330 9 Source-Filter Processing

f2 = fft(fftshift(grain2));
flog = log(O.O00Oi+abs(f2));
cep = fft(f1og);
cep-cut = [cep(I)/2; cep(2:cut); zeros(WLen-cut,~)l;
flog-cut2 = 2*real (iff t (cep-cut)) ;
spec2 = exp(f log-cut2) ; % spectral shape of sound 2

y----- h ere we interpolate the spectral envelopes in dB
spec = exp(kp*flog~cutl+k*flog~cut2);

y----- 1 istening and saving the output -----
%DAFx-in = DAFx-inl(WLen+l:WLen+L);
DAFx-out = DAFx-out(WLen+i:WLen+L) / max(abs(DAFx-out));
soundsc (DAFx-out , FS) ;
wavwrite(DAFx-out, FS, ’spec-interp.wav’);

Spectral interpolation is the first step towards morphing, a term borrowed from
the visual domain but with a much more ambiguous meaning in the audio domain.
Time synchronization between the two sounds has to be taken into account. The
matter of pitch interpolation should be different from the mixing of excitation signals
as it is presented here. Morphing usually relies on high level attributes and spectral
interpolation and follows more complicated schemes, such as shown in Fig. 9.22.
Advanced methods will be discussed in Chapter 10.

9.3.4 Pitch Shifting with Formant Preservation

In Chapter 7, we saw some pitch shifting algorithms which transpose the entire
spectrum, and consequently the spectral envelope. This typically alters the voice
giving a “Donald Duck” or “barrel” feeling. For pitch shifting a sound without
changing its articulation, i.e. its formant structure, one has to keep the spectral
envelope of the original sound.

Inverse Formant Move plus Pitch Shifting

A possible way to remove the artifacts is to perform a formant move in the inverse
direction of the pitch shifting. This process can be inserted into a FFT/IFFT based

9.3 Source-Falter Transformations

Stretching
Time

331

Figure 9.23 Pitch shifting with formant preservation: the pitch shifting is performed in
the frequency domain.

pitch shifting algorithm before the reconstruction, as shown in Fig. 9.23. For this
purpose we have to calculate a correction function for this formant move.

The following algorithm (see M-file 9.13) is based on the pitch shifting algorithm
described in Chapter 8 (see section 8.4.4). The only modification is a formant move
calculation before the reconstruction of every individual grain which will be over-
lapped and added. For the formant move calculation, a crude interpolation of the
analysis grain is performed, in order to recover two spectral envelopes: the one of the
original grain and the one of its pitch-transposed version. From these two spectral
envelopes the correction factor is computed (see previous section) and applied to
the magnitude spectrum of the input signal before the reconstruction of the output
grain (see Fig. 9.23).

M-file 9.13 (UX-pitch-pvmove .m)
% UX-pitch-pv-move.rn
clear; clf

X----- USER DATA -----
CDAFx-in, FS] = wavread(’1a.wav’); X sound file
nl = 512; % analysis hop size

n2 256; % synthesis hop size

WLen = 2048; % window length

% try nl=400 (pitch down) or 150 (pitch up)

% keep it a divisor of WLen (256 is good)

W1 = hanningz(WLen); % analysis window
W2 = wl; synthesis window
order = 50; % cut quefrency

y----- initializations -----
ral = n2/nl;
WLen2 = WLen/2 ;
% f o r linear interpolation of a grain of length WLen

332 9 Source-Filter Processing

lx = floor (WLen*nl/n2) ;
X = 1 + (O:lx-i)'*WLen/lx;
ix = floor (x) ;
ix l = ix + l;
dx = x - ix;
dx 1 = 1 - dx;
warping-coef = ni/n2

lmax = max (WLen, t (WLen) 1

DAFx-in = [zeros(WLen, 1) ; DAFx-in; . . .

DAFx-out = zeros (lx+length(DAFx-in) ,l) ;
omega = 2*pi*nI* [O:WLen-il '/wLen;
phiO = zeros(WLen,l);
psi = zeros(WLen, 1) ;

t = I + floor ((0 : Wen-I) *warping-coef) ;

L = length(DAFx-in);

zeros(WLen-mod(L,ni) ,l)] / max(abs(DAFx-in)) ;

tic
% w w v v w w r r w m n r w v w w w w u w u w u w w u
pin = 0;
pout = 0;
pend = L - lmax;

delta-phi = omega + princarg(phi-phi0-omega); % phase unwrapping
phiO = phi ;
psi = princarg(psi+delta-phi*ral);

X----- formant move -----
grainl = DAFx-in(pin+t) . * wl;

flog = log(0.00001+abs(fl))-log(O.OOOOl+abs(f));
cep = ifft(f1og);
cep-cut = [cep(l)/2; cep(2:order); zeros(WLen-order,l)] ;
corr = exp(2*real(fft(cep_cut)));

fl = f f t (grainl) /WLen2;

ft = (r.* corr.* exp(i*psi));
grain = fftshift(real(ifft(ft))).*w2;

%----- interpolation -----

9.3 Source-Filter Transformations 333

grain2 = [grain; 01 ;
grain3 = grain2(ix).*dxl+grain2(ixl).*dx;
% plot (grain) ; drawnow;

DAFx-out(pout+l:pout+lx) = DAFx-out(pout+l:pout+lx) + grain3;
pin = p i n + nl;
pout = pout + nl;

.

end

toc

y----- 1 istening and saving the output -----
DAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx-out(WLen+l:WLen+L) / max(abs(DAFx-out));
soundsc(DAFx-out, FS) ;
wavwrite(DAFx-out, FS, 'xl-pitch-pv-move.wav');

An illustrative example of pitch shifting with formant preservation is shown in
Fig. 9.24. The spectral envelope is preserved and the pitch is increased by a factor
of two.

0
(a) original spectrum

l l l l l l l l l

-50

-1 00
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(b) pitch shifting with formant presetvation

f in Hz --f

Figure 9.24 Example of pitch shifting with formant preservation.

Resampling plus Formant Move

It is also possible to combine an interpolation scheme with a formant move inside an
analysis-synthesis loop. The block diagram in Fig. 9.25 demonstrates this approach.
The input segments are interpolated from length NI to length N Z . This interpolation

334 9 Source-Filter Processing

f
Time-domain
Interpolation

IoglFFTl

1 - I -

Figure 9.25 Pitch shifting with formant preservation: the pitch shifting is performed in
the time domain.

or resampling also changes the time duration and thus performs pitch shifting in
the time domain. The resampled segment is then applied to an FFT/IFFT-based
analysis/synthesis system, where the correction function for the formant move is
computed by the cepstrum method. This correction function is based on the input
spectrum and the spectrum of the interpolated signal and is computed with the
help of the cepstrum technique. Then the correction function is applied to the
interpolated input spectrum by the fast convolution technique. The following M-
file 9.14 performs interpolation of successive grains with a ratio given by the two
numbers R, = nl and R, = n2 and performs a formant move to recover the original
spectral envelope.

M-file 9.14 (UX-interpm0ve.m)
% UX-interp-move.m
clear; clf

%----- USER DATA -----
CDAFx-in, FSI = wavread(la.wav7) ; % sound file
nl = 400; % analysis hop size

n2 = 256; % synthesis hop size

WLen = 2048; % window length

% try nl=400 (pitch down) or 150 (pitch up)

% keep it a divisor of WLen (256 is good)

W1 = hanningz(WLen) ; % analysis window
W2 = wl; % synthesis window
order = 50; % cut quefrency

y----- initializations -----
r a1 = n2/nl
WLen2 = WLen/2;

lx = floor (~~en*nl/n2) ;
X = I + (~:WLen-l)'*lx/WLen;

for linear interpolation of a grain of length WLen

9.3 Source-Filter Transformations 335

ix
ixl
dx
dx 1
warping-coef
lmax
L
DAFx-in
DAFx-out

= floor (x) ;
= ix + 1;
= x - ix;

= nl/n2;
= max (WLen, 1x1
= length (DAFx-in) ;
= [zeros (WLen, l) ; DAFx-in1 / max(abs (DAFx-in)) ;
= zeros(ceil(ral*length(DAFx-in)),l);

= l - dx;

tic
% w m n n n n r r r m n n n r v v w r n n n n r r r w u w r n r w w u u u u
pin = 0;
pout = 0;
pend = L - lmax;

while pincpend
. a-

y----- interpolated grain

fl = f f t (grainl) /WLen2;
%----- reference grain for formant matching

f2 = fft(grain2)/WLen2;
%----- correcting factor for spectral envelope

grainl = (DAFx-in(pin+ix).*dxl + DAFx-in(pin+ixl).*dx).* wl;

grain2 = DAFx-in(pin+l:pin+WLen).* wl;

flog = log(0.0000l+abs(f2))-log(O.OOOOl+abs(fl));
cep = ifft(f1og) ;
cep-cut = [cep(l)/2; cep(2:order); zeros(WLen-order,l)];
corr = exp(2*real(fft(cep_cut)));
%----- so now make the formant move
grain = fftshift(real(ifft(fl.*corr))).*w2;
% plot(grain);drawnow;

DAFx-out(pout+l:pout+WLen) = DAFx-out(pout+l:pout+WLen) + grain;
pin = pin + nl;
pout = pout + n2;

r--- ..

end
% v w v v w v v u w w m n n r w u w v w w l n n n n r u w w u
toc

y----- 1' lstening and saving the output -----
DAFx-in = DAFx-in(WLen+l:WLen+L);
DAFx-out = DAFx-out(WLen+l:length(DAFx-out)) / rnax(abs(DAFx-out));
soundsc (DAFx-out , FS) ;
wavwrite (DAFx-out , FS, 'xl-interp-move. wav') ;

336 9 Source-Filter Processing

Resampling of the Excitation Signal

Instead of moving the formants, an alternative technique is to calculate an excitation
signal by removing the spectral envelope, to process the excitation signal by a pitch
shifting algorithm and to filter the pitch shifted excitation signal with the original
spectral envelope. LPC algorithms can be used for this approach. Figure 9.26 shows
a block diagram of pitch shifting with formant preservation using the LPC method.
First, a predictor is computed and the predictor is used for the inverse filtering
of the input signal, which yields the excitation signal. Then the excitation signal
is applied to a pitch shifting algorithm and the output signal is filtered with the
synthesis filter H l (z) . The processing steps can be performed completely in the
time domain. The pitch shifting is achieved by first time stretching and subsequent
resampling.

.-.

I t- t

Figure 9.26 Pitch shifting with formant preservation with the LPC method.

9.4 Feature Extraction

A musical sound has some perceptive features that can be extracted from a time-
frequency representation. As an example, pitch is a function of time that is very
important for musicians, but richness of timbre, inharmonicity, balance between
odd and even harmonics and noise level are other examples of such time-varying
parameters. These parameters are global in the sense that they are observations
of the sound without any analytical separation of these components, which will
be discussed in Chapter 10. They are related to perceptive cues and are based on
hearing and psychoacoustics. These global parameters can be extracted from time-
frequency or source-filter representations using classical tools of signal processing,
where psychoacoustic fundamentals also have to be taken into account.

The use of these parameters for digital audio effects is twofold: one can use them
inside the effect algorithm itself, or one can use these features as control variables for
other effects. The latter technique will be described in Chapter 12. Pitch tracking
as a source of control is a well-known application. Examples of audio effects using
feature extraction inside the algorithm are the correction of tuning, which uses pitch
extraction (autotune), or even the compression of a sound, which uses amplitude
extraction.

9.4 Feature Extraction 337

9.4.1 Pitch Extraction

The main task of pitch extraction is to estimate a fundamental frequency fo, which
in musical terms is the pitch of a sound segment, and follow the fundamental fre-
quency over the time. We can use this pitch information to control effects like time
stretching and pitch shifting based on the PSOLA method, which is described in
Chapter 5 but it plays also a major role in sound modeling with spectral models,
which is treated extensively in Chapter 10. Moreover, the fundamental frequency
can be used as a control parameter for a variety of audio effects based either on
time domain or on frequency domain processing.

There is no definitive technique for pitch extraction and tracking, and only the
bases of existing algorithms will be described here. We will consider pitch extraction
both in the frequency domain and in the time domain. Most often an algorithm first
looks for candidates of a pitch, then selects one and tries to improve the precision
of the choice. After the calculation of pitch candidates a post-processing, for exam-
ple, pitch tracking has to be applied. During post-processing the estimation of the
fundamental frequency from the pitch candidates can be improved by taking the
frequency relationships between the detected candidates into account, which should
ideally be multiples of the fundamental frequency.

FFT-based Approach

In this subsection we describe the calculation of pitch candidates from the FFT of
a signal segment where the phase information is used. This approach is similar to
the technique used in the phase vocoder, see section 8.3. The main structure of the
algorithm is depicted in Fig. 9.27, where a segment of length N is extracted every
R samples and then applied to FFTs.

Frequency pitch candidates

Figure 9.27 FFT-based pitch estimation structure with phase evaluation.

Considering the calculation of an N-point FFT, the frequency resolution of the
FFT is

(9.30)

338 9 Source-Filter Processing

with the sampling frequency f s = l/Ts. From the input signal z(n) we use a block

z 1 (n) = z (n o + n) , n = O , . . . , N - I (9.31)

of N samples. After applying an appropriate window, the FFT yields X,(k) with
k = 0, . . . , N - 1. At the FFT index ko a local maximum of the FFT magnitude
1x1 (IC) I is detected. From this FFT maximum, the initial estimate of the fundamen-
tal frequency is

-
f o k o . A f = ko-. f s

N
(9.32)

The corresponding normalized frequency is

(9.33)

To improve the frequency resolution, the phase information can be used, since for
a harmonic signal zh(n) = cos(R0n + (PO) = cos(4(n)) the fundamental frequency
can be computed by the derivative

(9.34)

The derivative can be approximated by computing the phases of two FFTs separated
by a hop size of R samples leading to

A 4 h0 = -,
R

(9.35)

where A 4 is the phase difference between the two FFTs evaluated at the FFT index
ko. The second FFT of the signal segment

2 2 (n) = z (n o + R + n) , n = O , . . . , N - l (9.36)

leads to X,(k). For the two FFTs, the phases at frequency $0 are given by

(P1 = L(Xl(IC0))
(P2 = L{X2(ko)} .

(9.37)
(9.38)

Both phases (PI and ‘p2 are obtained in the range [-T, 7r] . We now calculate an
“unwrapped” cp2 value corresponding to the value of an instantaneous phase, see
also section 8.3.5 and Fig. 8.17. Assuming that the signal contains a harmonic
component with a frequency fo = ko . A f , the expected target phase after a hop
size of R samples is

(9.39)

The phase error between the unwrapped value cp2 and the target phase can be
computed by

p a e r r = princarg(cp2 - (~ 2) . (9.40)

9.4 Feature Extraction 339

The function “princarg” computes the principal phase argument in the range [-n, n].
It is assumed that the unwrapped phase differs from the target phase by a maximum
of n. The unwrapped phase is obtained by

%!U = %?t + (P2eTT. (9.41)

The final estimate of the fundamental frequency is then obtained by

fo = f s = - .
1 - 1 ‘p2 U - ‘p1

2n R . f s (9.42)

Normally we assume that the first pitch estimation $0 differs from the fundamen-
tal frequency by a maximum of A f 12. Thus the maximum amount for the absolute
value of the phase error 9 Z e r r is

(9.43)

We should accept phase errors with slightly higher values to have some tolerance in
the pitch estimation.

One simple example of an ideal sine wave at a fundamental frequency of 420 Hz
at fs = 44.1 kHz analyzed with the FFT length N = 1024 using a Hanning window
and a hop size R = 1 leads to the following results: ko = 10, $0 = k o k = 430.66 Hz,

= -0.2474, qZt/n = -0.2278, ‘p2/n = -0.2283, fa = 419.9996 Hz. Thus the
original sine frequency is almost ideally recovered by the described algorithm.

Figure 9.28 shows an example of the described algorithm applied to a short
signal of the female utterance “la” analyzed at an FFT length N = 1024. The
top plot shows the FFT magnitude, the middle plot the estimated pitch, and the
bottom plot the phase error p2eTT for frequencies up to 1500 Hz. For this example
the frequency evaluation is performed for all FFT bins and not only for those with
detected magnitude maxima. The circles show the positions of detected maxima in
the FFT magnitude. The dashed lines in the bottom plot show the used threshold for
the phase error. In this example the first maximum is detected at FFT index ko = 6,
the corresponding bin frequency is 258.40 Hz, and the corrected pitch frequency is
274.99 Hz. Please notice that in this case the magnitude of the third harmonic (at
appr. 820 Hz) has a greater value than the magnitude of the fundamental frequency.

M-file 9.15 presents a Matlab implementation to calculate the pitch candidates
from a block of the input signal.

M-file 9.15 (find-pitch-fft .m)
function [FFTidx, Fp-est, Fp-corr]= . . .
find-pitch-fft(x, win, Nfft, Fs, R, fmin, fmax, thres)

0 -____ /,----- find pitch candidates =====
% x: input signal of length Nfft+R
% win: window for the FFT

340 9 Source-Filter Processing

-1001 l I
0 500 1000 1500

WHz + :: .g 1000

- 2 500

0

.- -
0 500 1000 1500
X IO-^ f/Hz +

-5 - -

I

0 500 1000 1500
WHz +

Figure 9.28 Example of pitch estimation of speech signal “la”

% Nfft: FFT length
% Fs: sampling frequency
% R: FFT hop size
% fmin, fmax: minumum/ maximum pitch freqs to be detected
% thres: %omit maxima more than thres dB below the main peak

FFTidx = [l ; % FFT indices
Fp-est = [l ; % FFT bin frequencies
Fp-corr = c1 ; % corrected frequencies
dt = R/Fs; % time diff between FFTs
df = Fs/Nfft; % freq resolution
kp-min = round(fmin/df) ;
kp-max = round(fmax/df) ;
xi = x(1:Nfft); % 1st block
x2 = x((l:Nfft)+R) ; % 2nd block with hop size R
[XI, Phil] = fftdb(xl.*win,Nfft);
CX2, Phi21 = fftdb(x2.*win,Nfft);

Phil = Phil(1:kp-max+l);
XI = X 1 (l : kp-max+l) ;

x2 = X2 (l : kp-max+i) ;

9.4 Feature Extraction 341

Phi2 = Phi2(I:kp_max+l);
idx = f ind-loc-max(X1) ;
Max = max (X1 (idx) 1 ;
ii = find(Xl(idx)-Max>-thres);

y----- omit maxima more than thres dB below the main peak -----
idx = idx(ii);
Nidx = length(idx); % number of detected maxima
maxerr = R/Nfft; % max phase diff error/pi

maxerr = maxerr*i.2; % some tolerance
for ii=l:Nidx

% (pitch max. 0.5 bins wrong)

k = idx(ii) - l ; % FFT bin with maximum
phi l = Phil (k+l) ; % phase of xi in [-pi,pil
phi2-t = phil + 2*pi/Nfft*k*R; expected target phase

phi2 = Phi2(k+l) ; % phase of x2 in [-pi,pi]
phi2-err = princarg(phi2-phi2-t);
phi2-unwrap = phi2_t+phi2_err;
dphi = phi2-unwrap - phil; % phase diff
if (k>kp-min) & (abs(phi2_err)/pi<rnaxerr)

Fp-corr = [Fp-corr; dphi/(2*pi*dt)l ;
FFTidx = [FFTidx; kl ;
Fp-est = CFp-est ; k*dfl ;

% after hop size R

end
end

In addition to the algorithm described, the magnitude values of the detected
FFT maxima are checked. In the given code those maxima are omitted whose FFT
magnitudes are more than thres dB below the global maximum. Typical values
for the parameter thres lie in the range from 30 to 50. The function princarg is
given in Figure 8.17. The following function f ftdb (see M-file 9.16) returns the FFT
magnitude in a dB scale and the phase.

M-file 9.16 (fftdb.m)
function [H, phi] = fftdb(x, Nfft)

if narginc2

end
Nfft = length(x);

F = fft(x,Nfft) ;
F = F(l:Nfft/2+1); % f=O,..,Fs/2

F = abs(F)/Nfft*2; % normalize to FFT length
y----- return -100 db for F==O to avoid "log of zero" warnings -----

phi = angle(F) ; 1 phase in [-pi,pil

342 9 Source-Filter Processing

H = -lOO*ones (size (F)) ;
idx = f ind(F”=O) ;
H(idx) = 20*loglO(F(idx)); % non-zero values in dB

The following function f indlocmax (see M-file 9.17) searches for local maxima
using the derivative.

M-file 9.17 (find-1ocmax.m)
function [idx, idx01 = find-loc-max(x)

% === find local maxima in vector x
% idx : positions of local max.
% idx0: positions of local max. with 2 identical values
% if only 1 return value: positions of all maxima

N = length(x);
dx = diff (x) ; % derivation

% to find sign changes from + to -
dxl = dx(2:N-l);
dx2 = dx(i:N-2);
prod = dxl.*dx2;
idxl = find(prodc0); % sign change in dxi
idx2 = find(dxl(idxi)<O); % only change from + t o -
idx = idxl(idx2)+i; positions of single maxima
y----- zeros in dx? => maxima with 2 identical values -----
idx3 = find(dx==O);
idx4 = find(x(idx3)>0); % only maxima
idxO = idx3 (idx4) ;
X----- positions of double maxima, same values at idx3(idx4)+i -----
if nargout==l % output 1 vector

% with positions of all maxima
idx = sort([idx,idxO]); % (for double max. only 1st position)

end

Now we present an example where the algorithm is applied to a signal segment of
Suzanne Vega’s “Tom’s Diner”. Figure 9.29 shows time-frequency representations
of the analysis results. The top plot shows the spectrogram of the signal. The
middle plot shows the FFT bin frequencies of detected pitch candidates while the
bottom plot shows the corrected frequency values. In the bottom plot the text of
the sung words is also shown. In all plots frequencies up to 800 Hz are shown.
For the spectrogram an FFT length of 4096 points is used. The pitch estimation
algorithm is performed with an FFT length of 1024 points. This example shows
that the melody of the sound can be recognized in the bottom plot of Figure 9.29.
The applied algorithm improves the frequency resolution of the FFT shown in the
middle plot. To choose the correct pitch among the detected candidates some post-
processing is required. Other methods to improve the frequency resolution of the
FFT are described in [Can98, DMOO, MarOO, Mar98, AKZ991 and in Chapter 10.

9.4 Feature Extraction 343

spectrogram (Hanning window)

sit- ting in the mor- ning , at sthe .. di- ner . : on t h q cor- ne . .
0 I I I I I 1

0.5 1 1.5 2 2.5 3 3.5 4 4.5
timels +

Figure 9.29 Time/frequency planes for pitch estimation example of an excerpt from
Suzanne Vega’s “Tom’s Diner”. Top: spectrogram, middle: FFT bin frequencies of pitch
candidates, bottom: corrected frequency values of pitch candidates.

M-file 9.18 demonstrates a pitch tracking algorithm in a block-based implemen-
tation.

M-file 9.18 (Pitch-Tracker-FFTJ4ain.m)
1 Pitch-Tracker-FFT-Main.m
fname=’Torns-diner’;

344 9 Source-Filter Processing

n0=2000; %start index
nl=210000;

Nfft=1024;
R=l ; % FFT hop size for pitch estimation
K=200; % hop size for time resolution of pitch estimation
thres=50; % threshold for FFT maxima
% checked pitch range in Hz:
f min=50 ;
f max=800 ;
p-fac-thres=1.05; % threshold for voiced detection

win=hanning(Nfft)';% window for FFT
Nx=nl-nO+l+R; % signal length
blocks=f loor (Nx/K) ;

nl=nO+Nx; % new end index
[X,Fs]=wavread(fname, [nO,nl]>;

% deviation of pitch from mean value

Nx=(blocks-l)*K+Nfft+R;

X=X(: ,l)';

pitches=zeros(l ,blocks) ;
for b=l:blocks

x=X((b-l)*K+l+(I:Nfft+R));
[FFTidx, FO-est , FO-corrl = . . .

if -isempty(FO-corr)

else

find-pitch-fft(x,win,Nfft,Fs,R,fmin,fmax,thres);

pitches(b)=FO-corr(1); % take candidate with lowest pitch

pitches(b)=O;
end

end
LLLL post-processing:
L=9 ; % odd number of blocks for mean calculation
O O P O

D=(L-1)/2; % delay
h=ones(l,L)./L; % impulse response for mean calculation
% mirror beginning and end for "non-causal" filtering:
p=[pitches(D+1:-l:2),pitches,pitches(blocks-l:-l:blocks-D)];
y=conv(p,h); length: blocks+2D+2D
pm=y((l:blocks)+2*D); % cut result

Fac=zeros(l,blocks);
idx=find(pm"=O); % don't divide by zero
Fac(idx)=pitches(idx) ./pm(idx);
ii=f ind (Facc 1 & Fac"=O) ;
Fac(ii)=l./Fac(ii); % all non-zero elements are now > 1
voiced/unvoiced detection:

9.4 Feature Extraction 345

voiced=Fac"=O & Fac<p-fac-thres;

T=40 ; % time in ms for segment lengths
M=round(T/lOOO*Fs/K); % min. number of consecutive blocks
[V,p2]=segmentation(voiced, M, pitches) ;
p2=v. *p2 ; % set pitches to zero for unvoiced

figure(1) ,cif,
time=(O:blocks-i)*K+l; % start sample of blocks
time=time/Fs; % time in seconds
t=(O:length(X)-l)/Fs; % time in sec for original
subplot (211)
plot(t,X),title('original x (n) ')
axis(C0 max([t,time]) -I.l*max(abs(X)) l.l*max(abs(X))])
subplot (212)
idx=f ind (p2"=0) ;
plot-split(idx,time, p2:) ,title('pitch in Hz');
xlabel('time/s \rightarrow') ;
axis([O max([t,time]) .9*min(p2(idx)) l.l*max(p2(idx))l)

In the above implementation the post-processing is performed by choosing the low-
est pitch candidate in each block. Then the mean pitch of surrounding blocks is
computed and compared to the detected pitch. If the deviation from the mean
value is higher than a given threshold, this block is considered as "unvoiced".
Finally a segmentation is performed to get a minimum number of consecutive blocks
that are voiced/unvoiced (to avoid very short segments). M-file 9.19 presents an im-
plementation for the segmentation.

M-file 9.19 (segmentation.m)
function [V,pitches2]=segmentation(voiced, M, pitches)
% voiced: original voiced/unvoiced detection
% M: min. number of consecutive blocks with same voiced flag
% pitches: original pitches

pitches2: changed pitches
% v: changed voiced flag

blocks=length(voiced); % get number of blocks
pitches2=pitches;
V=voiced;
Nv=length(V) ;

1 Q 0 ~ 0 0 0 ~ 0 Q 0 LLdLLLLLLLL stepl: eliminate too short voiced segments:
V(NV+~)="V(NV); % change at end to get length of last segment
dv=[O, diff (V)] ; % derivative
idx=find(dv"=O); % changes in voiced
di=[idx(l)-1,diff (idx)] ; % segment lengths

346 9 Source-Falter Processing

vO=V(l) ; % status of 1st segment
kO=l ;
ii=l; counter for segments, idx(ii)-l is end of segment
if vO==O
kO=idx(I) ; % start of voiced
ii=ii+l; 1 first change voiced to unvoiced

end
while 'ii<=length(idx) ;
L=di (ii) ;
kl=idx(ii)-l; % end of voiced segment
if L<M

V(kO:kl)=zeros(l,kl-kO+l);
end
if ii<length(idx)

end
ii=ii+2;

kO=idx(ii+l); % start of next voiced segment

end

1 Q O Q Q Q Q O O Q Q LLLLLLLLLLL step2: eliminate too short unvoiced segments:
V(Nv+l)=-V(Nv); % one more change at end
dv=[O, diff (V)] ;
idx=find(dv"=O); % changes in voiced
di=[idx(l)-1,diff (idx)] ; % segment lengths
if length(idx)>l % changes in V
vO=V(l) ; % status of 1st segment
kO=l ;
ii=l; % counter for segments, idx(ii)-l is end of segment
if vO==O
kO=idx(2); start of unvoiced
ii=ii+2; % first change unvoiced to voiced

end
while ii<=length(idx);
L=di (ii) ;
kl=idx(ii)-l; end of unvoiced segment
if L<M

if klcblocks % NOT last unvoiced segment
V(kO:kl)=ones(l,kl-kO+l);
% linear pitch interpolation:
pO=pitches(kO-l) ;
pl=pitches(kl+l) ;
N=kl-kO+l;
pitches2(kO:kl)=(l:N)*(pl-pO)/(N+l)+pO;

end
end
if ii<length(idx)

9.4 Feature Extraction 347

kO=idx(ii+l); start of next unvoiced segment
end
ii=ii+2;

end
end

V=V(I:Nv); % cut last element

The plot-split function is given by M-file 9.20.

M-file 9.20 (p lot -spl i t .m)
function plot-split(idx, t, x)
% idx: vector with positions of vector x to be plotted
X x is segmented into parts
di=dif f (idx) ;
L=length(di) ;

nO= l ;
pos-di=f ind(di>l) ;
ii=l; % counter for pos-di

hold off
while ii<=length(pos-di) %nO<=length(x)
nl=pos-di(ii) ;
plot(t(idx(n0:nl)) ,x(idx(nO:nl)))
hold on
nO=nl+l;
ii=ii+l;

end

ni=length(idx);
plot(t(idx(n0:ni)) ,x(idx(nO:nl)))
hold off

The result of the pitch tracking algorithm is illustrated in Fig. 9.30. The bottom
plot shows the pitch over time calculated using the block-based FFT approach.

Any FFT-based pitch estimator can be improved by detecting the harmonic
structure of the sound. If the harmonics of the fundamental frequency are de-
tected, the greatest common divisor of these harmonic frequencies can be used
in the estimation of the fundamental frequency [O’SOO, p. 2201. M.R. Schroeder
mentions for speech processing in [SchSS, p. 651, “the pitch problem was finally
laid to rest with the invention of cepstrum pitch detectors” [No164]. The cepstrum
technique allows the estimation of the pitch period directly from the cepstrum se-
quence c(.). Schroeder also suggested a “harmonic product spectrum” [Sch68] to
improve the fundamental frequency estimation, which sometimes outperforms the
cepstrum method [Sch99, p. 651. A further improvement of the pitch estimates can

348 9 Source-Filter Processing

original x(n)
0.3 k I l I I l I I I I

-0.3 1 I I I I I I 1 I I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

pitch in Hz
I I I l I I l I l I

I I I I I I 1 I I I 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
tirnels +

Figure 9.30 Pitch over time from the FFT with phase vocoder approach for a signal
segment of Suzanne Vega’s “Tom’s Diner”.

be achieved by applying a peak continuation algorithm to the detected pitches of
adjacent frames, which is described in section 10.3.1.

General Remarks on Time-Domain Pitch Extraction

In the time domain the task of pitch extraction leads us to find the correspond-
ing pi tch per iod . The pitch period is the time duration of one period. With the
fundamental frequency f o (to be detected) the pitch period is given by

To = f o ’

1
(9.44)

For a discrete-time signal sampled at f , = & we have to find the p i t ch lag M which
is the number of samples in one period. The pitch period is TO = M . T, which leads
t o

(9.45)

9.4 Feature Extraction 349

Since only integer-valued pitch lags can be detected, we have a certain frequency
resolution in detecting the fundamental frequency dependent on fo and fs . Now we
are assuming the case of &f = A4 + 0.5 where M is the detected integer pitch lag.
The detected fundamental frequency is s o = instead of the exact pitch fo = h.
The frequency error factor is in this case

fo M 0.5 fo
f o M M fs

a(f0) := T - 1 + - = 1 + 0.5-. (9.46)

With the halftone factor a h , t = 'fi and setting a(fo) = agt, the frequency error in
halftones is

(9.47)

Figure 9.31 shows the frequency error both as factor a(f0) and as percentage of
halftones for pitches in the range from 50 to 5000 Hz at the sampling frequency f,$ =
44.1 kHz. The maximum frequency error is approximately 6 percent or one halftone
for pitches up to 5000 Hz. For a fundamental frequency of 1000 Hz the frequency
error is only 20 percent of a halftone which is reasonably accurate precision.

(a) pitch error factor a(f)

1.06 -7 100 1-
(b) pitch error x in % of halftones

1
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

l /Hz + fp/Hz +

Figure 9.31 Resolution of time-domain pitch detection at f3 = 44.1 kHz, (a) frequency
error factor, (b) pitch error in percentage of a halftone.

Normally the pitch estimation in the time domain is performed in three steps
[O'SOO, p. 2181:

1. Segmentation of the input signal into overlapping blocks and pre-processing of
each block, for example lowpass filtering (see segmentation shown in Fig. 9.27).

2. Basic pitch estimation algorithm applied to the pre-processed block.

3. Post-processing for an error correction of the pitch estimates and smoothing
of pitch trajectories.

350 9 Source-Filter Processing

Autocorrelation and LPC

The autocorrelation sequence can also be used to detect the pitch period of a signal
segment. First, we present different definitions of autocorrelation sequences:

0 Using one block

n=m

0 using one windowed block

N-l

(9.48)

(9.49)
n=m

with u(n) = ~ (n) . w(n) (window function W(.))

0 and using the exact signal, thus using samples preceding the considered block

N-l

Fzz(m) = c z(n)z(n - m). (9.50)
n=O

Notice, that in the definitions given by (9.48)-(9.50) no normalization to the block
length N is applied.

Figure 9.32 shows the three different autocorrelation sequences for an excerpt
of the speech signal “la”. Here the same input signal is used as in Fig. 9.28. In
this example the pitch lag corresponding to the fundamental frequency is M = 160
samples, thus at the third maximum of the autocorrelation. Normally we expect
the first maximum in the autocorrelation at the pitch lag. But sometimes, as in this
example, the first maximum in the autocorrelation function is not at this position.
In general, the autocorrelation has maxima at the pitch lag M and at its multiples
since, for a periodic signal, the same correlation occurs if comparing the signal with
the same signal delayed by multiples of the pitch period. Since, in the example of
Figures 9.28 and 9.32, the third harmonic is more dominant than the fundamental
frequency, the first maximum in the autocorrelation is located at M/3. Conversely
there can be a higher peak in the autocorrelation after the true pitch period.

Often the prediction error of an LPC analysis contains peaks spaced by the pitch
period, see Fig. 9.9. Thus it might be promising to try to estimate the pitch period
from the prediction error instead of using the original signal. The SIFT algorithm
[Mar72], which has been developed for voice, is based on removing the spectral
envelope by inverse filtering in a linear prediction scheme. But in some cases it is
not possible to estimate the pitch period from the prediction error, because the linear
prediction has removed all pitch redundancies from the signal. Figure 9.33 compares
two excerpts of a speech signal where the input block (top) and the autocorrelations
of both the input signal (middle) and the prediction error (bottom) are shown. An
LPC analysis of order p = 8 using the autocorrelation method has been applied.

9.4 Feature Extraction 351

(a) input signal (b) exact autocorrelation

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4
0 200 400 600 800 1000

n +

(c) autocorrelation of block

0 200 400 600 800
m-1

(d) autocorrelation of windowed block

30

20

10

0

-10

-20
0 200 400 600 800

m +

I I

. -
0 200 400 600 800

m +

Figure 9.32 Comparison between different autocorrelation computations for speech signal
“la”. (a) input block z(n), (b) exact autocorrelation Tzz(m), (c) standard autocorrelation
rzz (m) using block, (d) standard autocorrelation rzz(m) using windowed block.

For the example presented in subplots (a)-(c) the pitch period can be well de-
tected in the autocorrelation of the prediction error (same excerpt as in Figures
9.28 and 9.32). For the other excerpt presented in subplots (d)-(f) it is not possible
to detect the pitch in the autocorrelation of the prediction error while the autocor-
relation of the input signal has a local maximum at the correct pitch period. Notice
that in the plots of the autocorrelation sequences only time lag ranges from 29 to
882 are shown. This corresponds to pitch frequencies from 1500 down to 50 Hz at
sampling frequency 44.1 kHz.

Another time-domain method for the extraction of the fundamental frequency is
based on ‘‘center clipping” the input signal and subsequent autocorrelation analy-
sis [Son68]. First, the input signal is bandlimited by a lowpass filter. If the filter
output signal exceeds a certain threshold f c the operation xclip(n) = x(.) F c is
performed, otherwise zclip(n) = 0 [RS78, Son681. The result of this pre-processing
is illustrated in Fig. 9.34. The autocorrelation sequence T,, (m) of the center clipped
signal xciip(n) shows a strong positive peak at the time lag of the pitch period.

Long-Term Prediction (LTP)

A further method of estimating the fundamental frequency is based on long-term
prediction. A common approach to remove pitch period redundancies from a signal

352 9 Source-Filter Processing

0.2
0.05

C O c
X x 0

-0.05

- -
-0.2

-0.4
0 200 400 600 800 1000

(b)
0 200 400 600 800 1000

(e)
2

1 20
h

E
&3 0

EO
-2

-1

-20 -2

0 200 400 600 800
x (c)

0 200 400 600 800
x (f)

0 200 400 600 800 0 200 400 600 800

Figure 9.33 Autocorrelation sequences for input signal and prediction error for two ex-
cerpts of the speech signal “la”. Input signals (a, d), autocorrelation of input (b, e), auto-
correlation of prediction error (c, f) .

is to use a short FIR prediction filter after a delay line of M samples, where M is
the pitch lag [KA90]. Thus the long-term prediction error or residual is given by

P

d (n) = .(n) - c bkz(n - M - IC), (9.51)
k=O

where the order q + l is normally in the range of {l, 2,3} [KA90]. Considering the
case of a one-tap filter, the residual simplifies to

d (n) = .(n) - bo . .(n - M) (9.52)

which is shown in Fig. 9.35.

For minimizing the energy of d (n) over one block of length N we set the deriva-
tive with respect to bo to zero. This leads to the optimal filter coefficient

(9.53)

9.4 Feature Extraction 353

signal

0 100 200 300 400 500 600 700 800 900 1000
center clipped signal

-0.2- I I I I I I I 4
0 100 200 300 400 500 600 700 800 900 1000

autocorrelation (normalized)
I I I I I I I I I

-1 -
I I I , I I I I I

0 100 200 300 400 500 600 700 800 900 1000
m +

Figure 9.34 Center clipping and subsequent autocorrelation analysis: input signal, low-
pass filtered and center clipped signal (notice the time delay) and autocorrelation.

Figure 9.35 Long-term prediction with a one-tap filter.

with f z z (m) as defined in (9.50) and

N-l

rzzo(m) = C x2(n - m) (9.54)
n=O

which is the energy of a block delayed by m samples. Setting this solution into
(9.52) leads to the error energy

N-l

E d = c x2(n) - rzz,nown(M) (9.55)
n=O

354

dependent on M with

9 Source-Falter Processing

(9.56)

Figure 9.36 shows an example where the input signal shown in Figure 9.33(a) is
used. The top plot shows the exact autocorrelation ?,+(m), the middle plot shows
the normalized autocorrelation r,,,,,,,(m), and the bottom plot shows the LTP
coefficient b o (m) dependent on the lag m.

I I I I I I I I 1 l
0 100 200 300 400 500 600 700 800

1
I I I l I I I I I I
0 100 200 300 400 500 600 700 800

m +

Figure 9.36 Autocorrelation, normalized autocorrelation and LTP coefficient dependent
on lag m for excerpt from the speech signal “la”. The circles show the pitch lag candidates,
the dashed lines the accepted bo values.

In ~,,,,,,,(m) the lag m = M has to be found where ~,,,,,,,(m) is maximized
to minimize the residual energy. Considering one block of length N , the numerator
of (9.56) is the squared autocorrelation while the denominator is the energy of the
block delayed by M samples. The function ~,,,,,,,(m) therefore represents a kind
of normalized autocorrelation sequence with only positive values. If used for the
detection of the pitch period, rzz,norm(m) does not need to have a global maximum
a t m = M , but it is expected to have a local maximum at that position.

To find candidates of the pitch lag M , first local maxima in ~,,,,,,,(m) are
searched. In a second step, from these maxima only those ones are considered where

9.4 Feature Extraction 355

the autocorrelation f Z Z (m) is positive valued. The function ~ , , , ~ ~ ~ ~ (m) also has
maxima at positions where fz,(m) has minima. In a third step the b o (m) values
are considered. The value of the coefficient bo is close to one for voiced sounds and
close to zero for noise-like sounds [JN84, p. 3151. Thus the value of bo can serve as
a quality check for the estimate of the computed pitch lag.

In the example in Figure 9.36, bo values in the range 0.8,. . .1.2 are accepted.
This range is shown by the dashed lines in the bottom plot. The circles represent
the positions of pitch lag candidates. Thus, at these positions rZz,norm(m) has a
local maximum, f z z (m) is positive valued, and b o (m) lies in the described range.
In this example, the first pitch lag candidate corresponds to the pitch of the sound
segment.

The described algorithm for the computation of pitch lag candidates from a
signal block is implemented by the following M-file 9.21.

M-file 9.21 (find-pitch-1tp.m)
function [M,Fp]=find~pitch~ltp(xp,lmin,lmax,Nblock,Fs,bO~thres)

% XP : input block including lmax pre-samples
% for correct autocorrelation
% lmin : min. checked pitch lag
% lmax : max. checked pitch lag
% Nblock : block length without pre-samples
% Fs : sampling freq.
% bo-thres: max bO deviation from 1

lags = 1min:lmax; 1 tested lag range
Nlag = length(1ags); % no. of lags
[rxx-norm, rxx, rxxO] = xcorr-norm(xp, lmin, lmax, Nblock);

y----- calc. autocorr sequences -----
BO = rxx./rxxO; % LTP coeffs for all lags
idx = find-loc-max(rrx-norm);
i = f ind(rxx (idx) >O) ; % only max. where r-xx>O
idx = idx(i); % indices of maxima candidates
i = find(abs(BO(idx)-l)<bO-thres);

y----- only max. where LTP coeff is close t o l -----
idx = idx(i) ; indices of maxima candidates

y----- vectors for all pitch candidates: -----
M = lags (idx) ;
M = M(:); pitch lags
Fp = Fs./M;
Fp = FP(:); % pitch freqs

The function find-locmax is given in section 9.4.1. The function xcorrnorm

356 9 Source-Filter Processing

to compute the autocorrelation sequences is given by M-file 9.22.

M-file 9.22 (xcorrnorm.rn)
function [rxx-norm, rxx, rxxO] = xcorr-norm(xp, lmin, lmax, Nblock)
y===== calc. normalized autocorrelation=====

X = xp((l:Nblock)+lmax); % input block without pre-samples
lags = 1min:lmax; % tested lag range
Nlag = length(1ags) ; % no. of lags
rxx = zeros(1,Nlag); autocorr. sequence
rxxO = zeros(1,Nlag); % energy of delayed blocks
rxx-norm = zeros(1,Nlag); % normalized autocorr. sequence
for l=l:Nlag

ii = lags (1) ; tested lag
rxxO(1) = sum(xp((l:Nblock)+lmax-lags(1)) . -2) ;

rxx(1) = sum(x.*xp((l:Nblock)+lmax-lags(1)));
%----- energy of delayed block

end
rxx_norm=rxx.-2./rxxO; % normalized autocorr. sequence

The performance of the function xcorrnorm is quite slow in Matlab. The com-
putation speed can be improved if using a C-MEX function. Thus the function is
implemented in C and a “MEX” file is created with the C compiler (on Windows
systems the MEX file is a dll). In this example the computation speed is improved by
a factor of approximately 50, if using the MEX file instead of the Matlab function.

The described LTP algorithm may also be applied to the prediction error of a
linear prediction approach. Figure 9.37 compares LTP applied to original signals
and their prediction errors. In this example the same signal segments are used as in
Fig. 9.33. The circles denote the detected global maxima in the normalized autocor-
relation. For the first signal shown in plots (a)-(c) the computed LTP coefficients
are boz = 1.055 for the input signal and bo, = 0.663 for the prediction error. The
LTP coefficients for the second signal are bo, = 0.704 and boe = 0.141, respectively.
As in Figure 9.33, the pitch estimation from the prediction error works well for the
first signal while this approach fails for the second signal. For the second signal the
value of the LTP coefficient indicates that the prediction error is noise-like.

Figure 9.38 shows the detected pitch lag candidates and the corresponding fre-
quencies over time for a signal segment of Suzanne Vega’s “Tom’s Diner”. It is the
same example as presented in Fig. 9.29 where also a spectogram of this sound signal
is given. The top plot of Fig. 9.38 shows the detected pitch lag candidates computed
by the LTP algorithm applied to the input signal. The parameter bo-thres is set to
0.3, thus bo values in the range 0.7,. . . ,1.3 are accepted. The corresponding pitch
frequencies in the bottom plot are computed by f, = f s / M (see (9.45)).

In the top plot of Figure 9.38 the lowest detected pitch lag normally corres-
ponds to the pitch of the signal frame. The algorithm detects other candidates at
multiples of this pitch lag. In some parts of this signal (for example, between 3

9.4 Feature Extraction

0.2

C O

-0.2

-0.4

-
X

0 200 400 600 800 1000
ib)

30
E
v

$0
x

LX1 0

0 200 400 600 800
x 10‘~ (C)

F3

S
m

“ 1

0 200 400 600 800

357

0.1

0.05 -
-0.05

0 200 400 600 800 1000
(e)

0 200 400 600 800
X
r

t

L
0 200 400 600 800

Figure 9.37 Normalized autocorrelation sequences for input signal and prediction error
for two excerpts of the speech signal “la”. Input signals (a, d), normalized autocorrelation
of input (b, e), normalized autocorrelation of prediction error (c, f) .

and 4 seconds) the third harmonic of the real pitch is more dominant than the
fundamental frequency. In these parts the lowest detected pitch lag is not the one
to be chosen. In this time-domain approach the precision of the detected pitch
lags can be improved if the greatest common divisor of the pitch lag candidates is
used. The algorithm computes only integer-valued pitch lag candidates. LTP with
a higher precision (noninteger pitch lag M) is presented in [LVKL96, KA901. As in
the FFT-based approach a post-processing should be applied to choose one of the
detected candidates for each frame. For a more reliable pitch estimation both time
and frequency domain approaches may be combined.

The following M-file 9.23 presents an implementation of a pitch tracker based
on the LTP approach.

M-file 9.23 (Pitch-TrackerLTP.m)
fname=’Toms_diner’;
n0=2000; start index
nl=210000;
K=200; % hop s ize f o r time re so lu t ion of p i t ch e s t ima t ion
N=1024; % block l eng th

358 9 Source-Falter Processing

Figure 9.38 Pitch lag candidates and corresponding frequencies.

% checked pitch range in Hz:
f min=50 ;
f max=800 ;
bO_thres=.2; % threshold for LTP coeff
p-fac-thres=1.05; % threshold for voiced detection

% deviation of pitch from mean value

[xin, Fs] =wavread(f name, [no no]) ; %get Fs
% lag range in samples:
lmin=floor(Fs/fmax);
lmax=ceil(Fs/fmin) ;
pre=lmax; % number of pre-samples
if nO-pre<l
nO=pre+l ;

end
Nx=ni-nO+l; signal length
blocks=floor(Nx/K);

[X, Fs] =wavread(f name, [no-pre nO+Nx]) ;
Nx=(blocks-l)*K+N;

9.4 Feature Extraction 359

pitches=zeros (1 , blocks) ;
for b=l:blocks
x=X((b-l)*K+(l:N+pre));
[M, FO]=find-pitch-ltp(x, lmin, lmax, N, Fs, bo-thres);
if -isempty(M)

else
pitches(b)=Fs/M(i); % take candidate with lowest pitch

pitches(b)=O;
end

end

0 0 0 . LALL post-processing:
L=9 ; % number of blocks for mean calculation
if mod(L,2)==0 % L is even

end
D=(L-1)/2; % delay
h=ones(l,L)./L; % impulse response f o r mean calculation
% mirror start and end for “non-causal“ filtering:
p=[pitches(D+I:-l:2), pitches, pitches(blocks-i:-l:bl~~ks-D)];
y=conv (p , h) ; % length: blocks+2D+2D
pm=y ((1 : blocks)+2*D) ; cut result

L=L+l ;

Fac=zeros(l,blocks);
idx=find(pm-=O); % don’t. divide by zero
Fac(idx)=pitches(idx)./pm(idx);
ii=f ind(Fac<i & Fac“=O) ;
Fac(ii)=l./Fac(ii); % all non-zero element are now > 1
% voiced/unvoiced detection:
voiced=Fac-=0 & Fac<p-fac-thres;

T=40 ; % time in ms for segment lengths
M=round(T/iOOO*Fs/K); min. number of blocks in a row
[V,p2]=segmentation(voicedY M, pitches);
p2=V.*p2; % set pitches to zero for unvoiced

figure(1) ,clf;
time=(O:blocks-i)*K+i; % start sample of blocks
t ime=time/Fs ; time in seconds
t=(O:length(X)-l)/Fs; time in sec for Original
subplot (211)
plot(t, X) ,title(’original x(n> ’1 ;
axis([O max([t,time]) -l.l*max(abs(X)) i.l*max(abs(X))I)

360 9 Source-FiEter Processing

subplot (212)
idx=f ind(p2“=0) ;
plot-split(idx,time, pa),title(’pitch in Hz’);
xlabel(’time/s \rightarrow’);
axis(CO max([t,timel) .9*min(p2(idx)) l.l*max(p2(idx))])

The result of the presented pitch tracking algorithm is illustrated in Fig. 9.39.
The bottom plot shows the pitch over time calculated using the LTP method. In
comparison to the FFT-based approach in Fig. 9.30, the FFT approach performs
better in the regions where unvoiced parts occur. The described approach performs
well for singing voice examples. The selection of the post-processing strategy de-
pends on the specific sound or signal.

original x(n)

0.3 1 I I l I I l I I I

-0.3 I I l I I I I I 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

pitch in Hz
I I I I l I l I I

300

280

260

-

- 180

- 200

- 220

- 240

-

JI
1,

i
160L l I I I I I I I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
timek +

Figure 9.39 Pitch over time using the long-term prediction method for a signal segment
of Suzanne Vega’s “Tom’s Diner”.

36 1 9.4 Feature Extraction

9.4.2 Other Features

Amplitude Envelope

One very important feature that can be used for adaptive effects is the amplitude
envelope of a sound evolving with time. Even the modulation of a sound by the
envelope of another sound is an effect by itself. But more generally the amplitude
envelope can be used to control many variables of an effect. Applications of ampli-
tude detection can be found in dynamics processing (see Chapter 5) but can also
be integrated into many effects as an external control parameter.

Except for the fact that we want to write a signal as x (n) = amp(n),sig(n), there
is no unique definition of an amplitude envelope of a sound. The ear is devised in
such a way that slow variations of amplitude (under 10 Hz) are considered as a time
envelope while more rapid variations would be heard as a sound. This distinction
between an envelope and a signal is known in electroacoustic music as the difference
between a “shape” and a “matter”, two terms well developed by P. Schaeffer in his
Trait6 des objets musicaux [Sch66].

The RMS (root mean square) algorithm has been largely used in Chapter 5
as an amplitude detector based on filtering the squared input samples and taking
the square root of the filter output. The RMS value is a good indication of the
temporal variation of the energy of a sound, as shown in Fig. 9.40. This filtering

1

0.5

C

-0.5

-1

Signal RMS
I ,

0.5 1 1.5 2 2.5
0”
0 0.5 1 1.5 2 2.5

v s --$ v s *

Figure 9.40 Signal and amplitude envelope (RMS value) of the signal

can also be performed by a FIR filter, and in this case can be inserted into an
FFT/IFFT-based analysis-synthesis scheme for a digital audio effect. The FFT
window can be considered a lowpass FIR filter, and one of the reasons for the
crucial choice of window size for a short-time Fourier transform is found in the
separation between shape and matter: if the window is too short, the envelope will
follow rapid oscillations which should not be included. If the window is too large,
the envelope will not take into account tremolos which should be included. The
following M-file 9.24 calculates the amplitude envelope of a signal according to an
RMS algorithm.

362 9 Source-Filter Processing

M-file 9.24 (UXlms.m)
% UX-rms.m
clear; clf

[DAFx-in, FS] = wavread(’xl.wav’);
hop = 256; % hop size between two FFTs
WLen = 1024; % length of the windows
W = hanningz (WLen) ;
y----- some initializations -----
WLen2 = WLen/2;
normW = norm(w ,2) ;

X----- USER DATA -----

Pft = 1;
If = floor((length(DAFx-in) - WLen)/hop);
f eature-rms = zeros (If, l) ;
tic
e ~==____-----____---_____________________---- -____----___-----___----------------_----
pin = 0;
pend = length(DAFx-in) - WLen;

while pincpend
grain = DAFx-in(pin+l:pin+WLen).* W;
feature-rms(pft) = norm(grain,2) / normw;
pft = pft + 1;
pin = pin + hop;

end

toe
subplot(2,2,1); plot(DAFx-in); axis([l pend -1 11)
subplot (2,2,2) ; plot (f eature-rms) ; axis ([l If -1 11)

There is another definition of the amplitude envelope of a signal: It could ideally
be considered the magnitude of the analytical signal x+(n) = x(.) + j?(n), where
the real part is the input signal z (n) and the imaginary part is the Hilbert transform
of the real part (see section 4.2.3). However, this definition does not fit with the
perception: this envelope is supposed to vary slowly with time and not include
frequency information. So the magnitude of the analytical signal which, except for
a sinusoidal signal, keeps oscillations following the fundamental frequency, does not
fit the definition of an amplitude detector.

Center of Gravity of a Spectrum (Spectral Centroid)

An important feature of a sound is the evolution of the “richness of harmonics”
over time. It has been clearly pointed out at the beginning of computer music that
sounds synthesized with a fixed waveform give only static sounds, and that the
sound’s harmonic content must evolve with time to give a lively sound impression.
So algorithmic methods of synthesis have used this variation: additive synthesis

9.4 Feature Extraction 363

uses the balance between harmonics or partials, waveshaping or FM synthesis use
an index which changes the richness by the strength of the components.

centroid = 931 .l5 centroid = 1312.8

c

-80

- 0

-20

m -40
P c
x -60
U

-80

-1 00 - I y
0 1000 2000 3000 4000 0 1000 2000 3000 4000

-1 00

WHz + WHz --f

Figure 9.41 Center of gravity of a spectrum as a good indicator of the richness of a
harmonic sound.

A good indication of the instantaneous richness of a sound can be measured by
the center of gravity of its spectrum, as depicted in Fig. 9.41. A sound with a fixed
pitch but with stronger harmonics has a higher center of gravity. It should be noted
here that this center of gravity is linked to the pitch of the sound, and that this
should be taken into account during the use of this feature. Thus, a good indicator
of the instantaneous richness of a sound can be the ratio of the center of gravity
divided by the pitch.

A straightforward method of calculating this centroid can be achieved inside an
FFT/IFFT-based analysis-synthesis scheme. The spectral centroid is at the center
of the spectral energy distribution and can be calculated by

(9.57)

The centroid is defined by t,he ratio of the sum of the magnitudes multiplied by
the corresponding frequencies divided by the sum of the magnitudes and it is also
possible to use the square IX(k)12 = X (k) X * (I c) of the magnitudes.

Another method working in the time domain makes use of the property of the
derivative of a sinusoid which gives & A h sin(Rkn) = A k R k . cos(Rkn) with RI, =
27rk. If we can express the input signal by a sum of sinusoids according to

N / 2 - 1

:C(.) = c A~,sin(Rkn),
k=O

the derivative of the input signal leads to

(9.58)

(9.59)

364 9 Source-Filter Processing

The spectral centroid can then be computed according to (9.57) by the ratio of
the RMS value of the derivative of the input signal divided by the RMS value of
the input signal itself. The derivative of the discrete-time input signal z (n) can be
approximated by Ax(.) = ~ (n) - x(n - 1). The described time-domain method
is quite effective because it does not need any FFT and is suitable for real-time
applications. The following M-file 9.25 illustrates these possibilities.

M-file 9.25 (UX-centr0id.m)
% UX-centr0id.m

% feature-centroid1 and 2 are centroids
% calculate by two different methods
clear; clf

[DAFx-in, FS] = wavread(’xi. wav’) ;
hop = 256; hop size between two FFTs
WLen = 1024; % length of the windows
W = hanningz (WLen) ;
y----- some initializations -----
WLen2 = WLen/2;
tx = (1 :WLen2+1) ’ ;
normW = norm(w,2) ;
coef = (WLen/(2*pi));

%----- USER DATA -----

Pf t = 1;
If = floor((length(DAFx-in) - WLen)/hop);
feature-rms = zeros(1f ,l) ;
feature-centroid = zeros(lf,l);
feature-centroid2 = zeros(lf,l);
tic
y---
I

--________------_---
pin = 0;
pend = length(DAFx-in) - WLen;

while pincpend
grain = DAFx-in(pin+i:pin+WLen).* W;
f eature-rms (pf t) = norm(grain,2) / normw;
f = fft(grain)/WLen2;
fx = abs(f (tx)) ;
feature-centroid(pft) = sum(fx.*(tx-l)) / sum(fx);
f x2 = fx.*fx;
feature_centroid2(pft) = sum(fx2.*(tx-l)) / sum(fx2);
grain2 = diff(DAFx-in(pin+l:pin+WLen+l)).* W;
feature-deriv(pft) = coef * norm(grain2,2) / norm(grain,2);

p in = pin + hop;
Pf t = pft + l;

end

9.4 Feature Extraction 365

% .
toc
subplot (4,1,1) ; plot (f eature-rms) ; xlabel (’RMS ’)
subplot (4, l ,2) ; plot (f eature-centroid) ; xlabel (’ centroid 1)
subplot(4,1,3); plot(feature-centroid2); xlabel(’centroid 2 ’)
subplot(4,1,4) ; plot(feature-deriv) ; xlabel(’centroid 3’)

For each method the center of gravity is calculated in frequency bins. Figure 9.42
illustrates the results for each method. It can be seen at the end of a flute sound
that the centroid parameter is very important: the variations of the centroid are
quite independent of the RMS values of the signal. The centroid takes some time
to oscillate and then is maintained until the end of the sound.

171
(a) signal

-1
0 1 2 3

t/s -+

(c) centroid 2 by FFT

50 7
(b) centroid 1 by FFT

l o t
”
0 0.5 1 1.5 2 2.5

us +

(d) centroid 3 by time domain method

I

“ 0 0.5 1 1.5 2 2.5
t/s +

-
0 0.5 1 1.5 2 2.5

vs +

Figure 9.42 Spectral centroid computation in frequency and time domain. Plots (b)-(d)
show the centroids in bins, where the corresponding tone pitch is given by j k = &js (with
FFT length N and sampling frequency fs).

A digital effect which rel.ies on this feature is the mimicking of a natural sound
by a synthetic one. As an example, we can use a waveshaping synthesis method.
This method calculates a synthetic sound by distorting a sine wave with the help
of a waveshaping function (also called nonlinear transfer function) and multiplying
the result by an amplitude variation (see Fig. 9.43). The waveshaping function is

366 9 Source-Filter Processing

- amplitude
Feature extraction: Sine wave Waveshaping

- pitch
- center of gravity

Figure 9.43 Mimicking with waveshaping.

usually a polynomial, because this function can be calculated with the aim of having
a fixed output spectrum [ArflS, Bru791. So apart from the pitch of the sine wave,
this method relies on the evolution of two parameters: the amplitude of the sine
wave, which is called the “index” because the sine wave is used as an input to
the waveshaping function, and an amplitude factor, which is used as an amplitude
envelope. If we extract the centroid and the RMS evolution from a natural sound, as
well as the pitch, we can compute an index proportional to the ratio of the centroid
towards the pitch (this proportional factor, apart from a necessary normalization,
drives the general brigthness of the sound) and an amplitude factor proportional
to the extracted RMS feature. Thus we obtain a synthetic sound that retains some
characteristics of the initial sound and is given by

s (t) = amp . f [index. cos(2.irfTt)] (9.60)

f T = pitch, index = coef . ____ centroid
pitch

,amp = rms.

The mimicking is improved when the waveshaping function is calculated for the
spectrum at one point of the initial sound. Two other further improvements can be
added: an amplitude normalization factor due to the fact that the index should only
change the centroid and not the amplitude, and a correcting factor for the index
due to the fact that the index and centroid of the synthetic sound have no reason
to be in a linear relationship. But even the simple process we have described gives
a variety of allotropic sounds which all resemble the original in some way, but are
purely harmonic and do not contain any noisy components.

Autocorrelation Features

We can extract important features from the autocorrelation sequence of a win-
dowed signal: an estimation of the harmonic/non-harmonic content of a signal, the
odd/even harmonics ratio in the case of harmonic sounds and a voiced/unvoiced
part in a speech signal. Several algorithms which determine whether a speech frame
is voiced or unvoiced are known from speech research [Hes83]. Voiced/unvoiced de-
tection is used either for speech recognition or for synthesis. For digital audio effects,
such a feature is useful as a control parameter for an adaptive audio effect. The first
peak value of the normalized autocorrelation sequence rxx(m) for m > 0 is a good
indicator of the unvoiced or voiced part of a signal, as shown in Fig. 9.44. When
sounds are harmonic, the first autocorrelation peak (m > 0) on the abscissa corres-
ponds to the pitch period of this sound. The value of this peak will be maximum

9.4 Feature Extraction 367

1

0.5

$ 0

-0.5

-1

signal

0 200 400 600 800 1000
n +

signal

0 200 400 600 800 1000
n-+

'l1
autocorrelation (normalized)

0.5 t I

I

-0.5 -1 I A
0 200 400 600 800 1000

m +

autocorrelation (normalized)

1 l \

0 200 400 600 800 1000
m-+

Figure 9.44 Unvoiced (upper part) and voiced (lower part) signals and the corresponding
autocorrelation sequence r z z (m) .

if the sound is harmonic and minimum if the sound is noisy. If a window is used,
which gives a better estimate for pitch extraction, this peak value will not go to
one but will be weighted by the autocorrelation of the two windows. This first peak
value will be denoted pv and is a good indication of voiced/noisy parts in a spoken
or sung voice. In the case of harmonic sounds, it can be noted that the oddfeven
harmonics ratio can also be retrieved from the value at half of the time lag of the
first peak.

An alternative computation of the autocorrelation sequence can be performed
in the frequency domain [OS75]. Normally, the autocorrelation is computed from
the power spectrum I X (l c) I 2 of the input signal by rz.(m) = IFFT [lX(k)12]. Here,
we perform the IFFT of the magnitude (X (k) ((square root of the power spectrum),
which is computed from the FFT of a windowed signal. This last method is illus-
trated by the following M-file 9.26 that leads to a curve following the voicedfunvoiced
feature, as shown in Fig. 9.45.

M-file 9.26 (UX-v0iced.m)

X UX-v0iced.m

368 9 Source-Falter Processing

% feature-voice is a measure of the maximum of the second peak
% of the acf
clear ; clf

[DAFx-in, FS] = wavread(’x1.wav’);
hop = 256; % hop size between two FFTs
WLen = 1024; % length of the windows
W = hanningz (WLen) ;
y----- some initializations -----

tx = (1 : WLen2+1) ’ ;

X----- USER DATA -----

WLen2 = WLen/2;

normW = norm(w,2);
coef = (WLen/ (2*pi)) ;
Pf t = 1;
If = floor((length(DAFx-in) - WLen)/hop);
f eature-voiced = zeros (If, l) ;
tic
.
pin = 0;
pend = length(DAFx-in) - WLen;

while pincpend
grain = DAFx-in(pin+l:pin+WLen).* W;
f = f f t (grain) /WLen2;
f2 = real(ifft(abs(f1));
f2 = f2/f2(1) ;
[v,il] = min(f2(1:WLen2)>0.);
f2(1:i1) = zeros(i1,l);
[v, imax] = max (f 2 (1 : WLen2)) ;
feature-voiced(pft) = v;
Pft = pft + 1;
pin = pin + hop ;

end
y .

toc
subplot (2,1, l)
plot (f eature-voiced)

A particular way to use this feature is the construction of an adaptive time
stretching effect, where the stretching ratio a depends on this feature according to
a mapping function a = 8P” (see Fig. 9.46). The time stretching ratio will vary from
1 to 8, depending on the evolution of pv over time. A threshold detector can help
to force this ratio to one in the case of silence. This leads to great improvements
over regular time stretching algorithms.

9.4 Feature Extraction 369

signal
I l I I I

-0.3 ’ I I l I I I I
0 1 2 3 4 5 6 7 8 9 10

us +

voiced/unvoiced feature
0.7 I I I I 1 I I l I I

”
0 1 2 3 4 5 6 7 8 9 10

us +

Figure 9.45 Vocal signal and the “voiced/unvoiced” feature pw(n).

VoiceISilence
detection

Figure 9.46 Adaptive time stretching based on autocorrelation feature.

Statistical Features

As an example, Dubnov [DT96] has obtained the classification of instrumental tim-
bres on a 2-D map by using skew and kurtosis. These features can help in defining
a texturization of a sound. The texture of a sound is very difficult to evaluate:
why a trumpet does not sound like a string does not rely only on a spectral rich-
ness. The way the individual components are synchronized or not is an important
key for defining a texture. Many other features can be extracted from a sound
[HB98, RDS+99, DHOO], just to mention a few from a very active field of research.

370 9 Source-Filter Processing

9.5 Conclusion
The central topic of this chapter is the division of the audio signal into its source sig-
nal and a time-varying filter derived from the spectral envelope of the signal. These
two features are individually processed before synthesis of an output signal. The
source-filter model of an audio signal, originally a basic technique for speech pro-
cessing, allows the implementation of several digital audio effects based on these two
global features of an audio signal and opens up new vistas for experimentation and
further research. These global features can either be extracted by time-frequency
techniques (FFT/IFFT) and the cepstrum method or time-domain techniques based
on linear prediction (LPC). Both techniques deliver a source-filter model of the au-
dio input signal. Beyond it, they allow the extraction of further global features such
as pitch or fundamental frequency, which can be estimated by the cepstrum method
or autocorrelation techniques applied to the input directly or the extracted source
signal. Further global features such as amplitude envelope, spectral centroid, and
autocorrelation features (voiced/unvoiced detection) have been introduced, which
can be estimated by simple time-domain or by advanced time-frequency techniques.
The main objective here is the introduction and estimation of these parameters for
the control of various other digital audio effects, which are presented throughout
this book. A further alternative to the source-filter processing presented in this
chapter, is the separation of the audio signal into individual components such as
sinusoids and noise, which is discussed in Chapter 10.

Bibliography
[AKZ99]

[Arf79]

[Bru79]

[Can981

[DHOO]

[DMOO]

R. Althoff, F. Keiler, and U. Zolzer. Extracting Sinusoids from Harmonic
Signals. In Proc. DAFX-99 Digital Audio Effects Workshop, pp. 97-100,
Trondheim, December 1999.

D. Arfib. Digital synthesis of complex spectra by means of multiplica-
tion of nonlinear distorted sine waves. J. Audio Eng. Soc., 27:757-768,
October 1979.

M. Le Brun. Digital waveshaping synthesis. J. Audio Eng. Soc., 27:250-
265, April 1979.

P. Cano. F’undamental frequency estimation in the SMS analysis. In
Proc. DAFX-98 Digital Audio Effects Workshop, pp. 99-102, Barcelona,
November 1998.

M. Desainte-Catherine and P. Hanna. Statistical approach for sounds
modeling. In Proc. DAFX-00 Conference on Digital Audio Effects, pp.
91-96, Verona, December 2000.

M. Desainte-Catherine and S. Marchand. High-precision Fourier analysis
of sounds using signal derivatives. J . Audio Eng. Soc., 48(7/8):654-667,
July/August 2000.

Bibliography 371

[DT96] S. Dubnov and N. Tishby. Testing for gaussianity and non-linearity
in the sustained portion of musical sounds. In Proc. of the Journe'es
Informatique Musicale, 1996.

[HB98] P. Herrera and J . Bonada. Vibrato extraction and parameterization in
the spectral modeling synthesis framework. In Proc. DAFX-98 Digital
Audio Effects Workshop, pp. 107-110, Barcelona, November 1998.

[Hes83] W. Hess. Pitch L)etermination of Speech Signals. Springer-Verlag, 1983.

[HKSfOO] A. Harma, M. Karjalainen, L. Savioja, V. Valimaki, U.K. Laine, and
J. Huopaniemi. Frequency-warped signal processing for audio applica-
tions. J. Audio Eng. Soc., 48(11):1011-1031, 2000.

[JN84] N.S. Jayant and P. Noll. Digital Coding of Waveforms. Prentice-Hall,
1984.

[KA90] P. Kroon and B.S. Atal. Pitch predictors with high temporal resolution.
In Proceedings o j the ICASSP, pp. 661-664, Albuquerque, 1990.

[KAZOO] F. Keiler, D. Arfib, and U. Zolzer. Efficient linear prediction for digital
audio effects. In Proc. DAFX-00 Conference on Digital Audio Effects,
pp. 19-24, Verona, December 2000.

[LS81] P. Lansky and K. Steiglitz. Synthesis of timbral families by warped linear
prediction. Computer Music Journal, 5(3):45-47, 1981.

[LVKL96] T.I. Laakso, V. Vallimalki, M. Karjalainen, and U.K. Laine. Splitting
the unit delay. IEEE Signal Processing Magazine, 13:30-60, 1996.

[Mak75] J. Makhoul. Linear prediction: A tutorial review. Proceedings of the
IEEE, 63(4):561--580, 1975.

[Mak77] J . Makhoul. Stable and efficient lattice methods for linear predic-
tion. IEEE Trans. on Acoustics, Speech, and Signal Processing, ASSP-
25(5):423-428, October 1977.

[Mar721 J.D. Markel. The SIFT algorithm for fundamental frequency estimation.
IEEE Trans. on Audio and Electroacoustics, 20(5):367-377, 1972.

[Mar981 S. Marchand. Improving spectral analysis precision with enhanced phase
vocoder using signal derivatives. In Proc. DAFX-98 Digital Audio Effects
Workshop, pp. 114-118, Barcelona, November 1998.

[MarOO] S. Marchand. Sound Models for Computer Music. PhD thesis, University
of Bordeaux, October 2000.

[MG76] J.D. Markel and A.H. Gray. Linear Prediction of Speech. Springer-
Verlag, 1976.

[Moo791 J . A. Moorer. The use of linear prediction of speech in computer music
applications. J . Audio Eng. Soc., 27(3):134-140, March 1979.

372 9 Source-Filter Processing

[No1641 A.M. Noll. Short-time spectrum and “cepstrum” techniques for vocal-
pitch detection. J. Acoust. Soc. Am., 36(2):296-302, 1964.

[Orf90] S.J. Orfanidis. Optimum Signal Processing, A n Introduction. McGraw-
Hill, 2nd edition, 1990.

[OS751 A.V. Oppenheim and R.W. Schafer. Digital Signal Processing. Prentice-
Hall, 1975.

[O’SOO] D. O’Shaugnessy. Speech Communication. Addison-Wesley, 2nd edition,
2000.

[PM961 J.G. Proakis and D.G. Manolakis. Digital Signal Processing. Prentice-
Hall, 1996.

[RDS+99] S. Rossignol, P. Depalle, J . Soumagne, X. Rodet, and J.-L. Colette. Vi-

[RS78]

[%h661

[Sch68]

[Sch99]

[Son681

[Str80]

brato: detection, estimation, extraction, modification. In Proc. DAFX-
99 Digital Audio Eflects Workshop, pp. 175-179, Trondheim, December
1999.

L.R. Rabiner and R.W. Schafer. Digital Processing of Speech Signals.
Prentice-Hall, 1978.

P. Schaeffer. Truite‘ des objets musicaux. Seuil, 1966.

M.R. Schroeder. Period histogram and product spectrum: New meth-
ods for fundamental-frequency measurement. J. Acoust. Soc. Am.,
43(4):829-834, 1968.

M.R. Schroeder. Computer Speech. Springer-Verlag, 1999.

M.M. Sondhi. New methods of pitch extraction. IEEE Trans. on Audio
and Electroacoustics, 16(2):262-266, 1968.

H.W. Strube. Linear prediction on a warped frequency scale. J . Acoust.
Soc. Am., 68(4):1071-1076, October 1980.

Chapter 10

Spectral Processing

X. Amatriain, J . Bonada, A. Loscos, X. Serra

10.1 Introduction

In the context of this book, we are looking for representations of sound signals and
signal processing systems thak can provide ways to design sound transformations in a
variety of music applications and contexts. It should have been clear throughout the
book that several points of view have to be considered, including a mathematical,
thus objective perspective, and a cognitive, thus mainly subjective, standpoint. Both
points of view are necessary to fully understand the concept of sound effects and to
be able to use the described techniques in practical situations.

The mathematical and signal processing points of view are straightforward to
present, although not necessarily easy, since the language of the equations and of
flow diagrams is suitable for them. However, the top-down implications are much
harder to express due to the huge number of variables involved and to the inherent
perceptual subjectivity of the music making process. This is clearly one of the main
challenges of the book and the main reason for its existence.

The use of a spectral representation of a sound yields a perspective that is
sometimes closer to the one used in a sound engineering approach. By understanding
the basic concepts of frequency domain analysis, we are able to acquire the tools
to use a large number of effects processors and to understand many types of sound
transformation systems. Moreover, as the frequency domain analysis is a somewhat
similar process to the one performed by the human hearing system, it yields fairly
intuitive intermediate representations.

The basic idea of spectral processing is that we can analyze a sound to obtain
alternative frequency domain representations, which can then be transformed and
inverted to produce new sounds (see Fig. 10.1). Most of the approaches start by de-
veloping an analysis/synthesis system from which the input sound is reconstructed

373

374 l 0 Spectral Processing

without any perceptual loss of sound quality. The techniques described in Chapters
8 and 9 are clear examples of this approach. Then the main issue is what the inter-
mediate representation is and what parameters are available to apply the desired
transformations.

Original
Sound Transformations .Transformed

Sound

I
l

Original
Spectrum

I
l

Transformed
Spectrum

Figure 10.1 Block diagram of a simple spectral processing framework.

Perceptual or musical concepts such as timbre or pitch are clearly related to the
spectral characteristics' of a sound. Even some very common processes for sound
effects are better explained using a frequency domain representation. We usually
think about the frequency axis when we talk about equalizing, filtering, pitch shift-
ing, harmonizing . . . In fact, some of them are specific to this signal processing
approach and do not have an immediate counterpart in the time domain. On the
other hand, most (but not all) of the sound effects presented in this book can be
implemented in the frequency domain.

Another issue is whether or not this approach is the most efficient, or practical,
for a given application. The process of transforming a time domain signal into a fre-
quency domain representation is, by itself, not an immediate step. Some parameters
are difficult to adjust and force us to take several compromises. Some settings, such
as the size of the analysis window, have little or nothing to do with the high-level
approach we intend to favor, and require the user to have a basic signal processing
understanding.

In that sense, when we talk about higher level spectral processing we are thinking
of an intermediate analysis step in which relevant features are extracted or computed
from the spectrum. These relevant features should be much closer to a musical or
high-level approach. We can then process the features themselves or even apply
transformations that keep the features unchanged. For example, we can extract the
fundamental frequency and the spectral shape from a sound and then modify the
fundamental frequency without affecting the shape of the spectrum.

Assuming that there is no single representation and processing system optimal
for everything, our ap:proach will be to present a set of complementary spectral
models that can be combined to be used for the largest possible set of sounds and
musical applications.

In section 10.2 we introduce two spectral models: sinusoidal and sinusoidal plus
residual. These models already represent a step up on the abstraction ladder and

10.2 Spectral Models 375

Figure 10.2 Block diagram of a higher-level spectral processing framework.

from either of them, we can identify and extract higher-level information of a sound,
such as: harmonics, pitch, spectral shape, vibrato, or note boundaries, that is higher
level features. This analysis step brings the representation closer to our perceptual
understanding of a sound. The complexity of the analysis will depend on the type of
feature that we wish to identify and the sound to analyze. The benefits of going to
this higher level of analysis are enormous and open up a wide range of new musical
applications.

Having set the basis of the sinusoidal plus residual model, we will then give some
details of the techniques used both in its analysis and synthesis process, providing
MATLAB code to implement an analysis-synthesis framework in section 10.3. This
MATLAB implementation is based on the spectral modeling synthesis (SMS) frame-
work [SMS]. SMS is a set of spectral-based techniques and related implementations
for the analysis/transformation/synthesis of an audio signal based on the scheme
presented in Fig. 10.2.

In section 10.4 we will provide a set of basic audio effects and transformations
based on the implemented sinusoidal plus residual analysis/synthesis. MATLAB
code is provided for all of them.

We will finish with an explanation of content-dependent processing implementa-
tions. In section 10.5.1 we introduce a real-time singing voice conversion application
that has been developed for use in karaoke, and in section 10.5.2 we define the basis
of a nearly lossless time scaling algorithm. The complexity and extension of these
implementations prevent us from providing the associated MATLAB code, so we
leave that task as a challenge for advanced readers.

10.2 Spectral Models
The most common approach for converting a time domain signd into its frequency
domain representation is the short-time Fourier transform (STFT). It is a general

376 10 Spectral Processing

technique from which we can implement lossless analysis/synthesis systems. Many
sound transformation systems are based on direct implementations of the basic
algorithm and several examples have been presented in Chapter 8.

In this chapter, we will briefly mention the sinusoidal model and will concentrate,
with a MATLAB sample code, on the sinusoidal plus residual model. The decision
as to what spectral representation to use in a particular situation is not an easy
one. The boundaries are not clear and there are always compromises to take into
account, such as: (1) sound fidelity, (2) flexibility, (3) coding efficiency, and (4)
computational requirements. Ideally, we want to maximize fidelity and flexibility
while minimizing memory consumption and computational requirements. The best
choice for maximum fidelity and minimum computation time is the STFT that,
anyhow, yields a rather inflexible representation and inefficient coding scheme. Thus
our interest in finding higher-level representations as the ones we present in this
section.

10.2.1 Sinusoidal Model

Using the output of the STFT, the sinusoidal model represents a step towards a
more flexible representations while compromising both sound fidelity and computing
time. It is based on modeling the time-varying spectral characteristics of a sound
as sums of time-varying sinusoids. The input sound s(t) is modeled by

R

(10.1)
r=l

where A,(t) and t9,(t) are the instantaneous amplitude and phase of the rth sinusoid,
respectively [MQ86, SS87].

To obtain a sinusoidal representation from a sound, an analysis is performed in
order to estimate the instantaneous amplitudes and phases of the sinusoids. This es-
timation is generally done by first computing the STFT of the sound, as described
in Chapter 8, then detecting the spectral peaks (and measuring the magnitude,
frequency and phase of each one), and finally organizing them as time-varying si-
nusoidal tracks.

It is a quite general technique that can be used in a wide range of sounds and
offers a gain in flexibility compared with the direct STFT implementation.

10.2.2 Sinusoidal plus Residual Model

The sinusoidal plus residual model can cover a wide “compromise space” and can
in fact be seen as the generalization of both the STFT and the sinusoidal models.
Using this approach, we can decide what part of the spectral information is modeled
as sinusoids and what is left as STFT. With a good analysis, the sinusoidal plus
residual representation is very flexible while maintaining a good sound fidelity, and
the representation is quite efficient. In this approach, the sinusoidal representation is

20.2 Spectral Models 377

used to model only the stable partials of a sound. The residual, or its approximation,
models what is left, which should ideally be a stochastic component. This model is
less general than either the STFT or the sinusoidal representations but it results in
an enormous gain in flexibility [Ser89, SS90, Ser961.

The input sound s (t) is rnodeled by

R

s (t) = c AT(t) cos[@,(t)] + e (t)
,=l

(10.2)

where A,(t) and O,(t) are the instantaneous amplitude and phase of the rth sinusoid,
respectively, and e (t) is the noise component at time t (in seconds).

The sinusoidal plus residual model assumes that the sinusoids are stable partials
of the sound with a slowly changing amplitude and frequency. With this restriction,
we are able to add major constraints to the detection of sinusoids in the spectrum
and omit the detection of the phase of each peak. The instantaneous phase that
appears in the equation is taken to be the integral of the instantaneous frequency
w r (t) , and therefore satisfies

(10.3)

where w (t) is the frequency in radians, and r is the sinusoid number. When the
sinusoids are used to model only the stable partials of the sound, we refer to this
part of the sound as the deterministic component.

Within this model we can either leave the residual signal, e (t) , to be the difference
between the original sound and the sinusoidal component, resulting into an identity
system, or we can assume that e (t) is a stochastic signal. In this case, the residual
can be described as filtered white noise,

t
e (t) = h(t, 7)u(7)d7 (10.4)

where u(t) is white noise and h(t,.r) is the response of a time varying filter to an
impulse at time t . That is, the residual is modeled by the time-domain convolution
of white noise with a time-varying frequency-shaping filter.

The implementation of the analysis for the sinusoidal plus residual model is more
complex than the one for the sinusoidal model. Figure 10.3 shows a simplified block
diagram of this analysis.

The first few steps are the same as those in a sinusoidal-only analysis. The ma.jor
differences start in the peak continuation process since in order to have a good
partial-residual decomposition we have to refine this peak-continuation process in
such a way as to be able to identify the stable partials of the sound. Several strategies
can be used to accomplish this. The simplest case is when the sound is monophonic
and pseudo-harmonic. By using the fundamental frequency information in the peak
continuation algorithm, we can easily identify the harmonic partials.

378 l0 Spectral Processing

sound
she fmquency
sine magnitudes
sine phases

synthesis
additive

I
- sinusoidal

U amplitude
wrrection

magnitude
spectrum SpeCtNm

Figure 10.3 Block diagram of the sinusoidal plus residual analysis.

Figure 10.4 Spectrogram of sinusoidal component (upper plot) and residual component
(lower plot).

10.3 Techniques 379

The residual component is obtained by first generating the sinusoidal component
with additive synthesis, and then subtracting it from the original waveform. This
is possible because the instantaneous phases of the original sound are matched and
therefore the shape of the time domain waveform is preserved. A spectral analysis
of this time domain residual is done by first windowing it, using a window which
is independent of the one used to find sinusoids, and thus we are free to choose
a different time-frequency compromise. An amplitude correction step can improve
the time smearing produced in the sinusoidal subtraction. Then the FFT is com-
puted and the resulting spectrum can be modeled using several existing techniques.
The spectral phases might be discarded if the residual can be approximated as a
stochastic signal. Figure 10.4 shows a spectrogram illustrating the sinusoidal and
residual components.

The original sinusoidal plus residual model has led to other different spectral
models that still share some of its basic principles [DQ97, FHCOO, VMOO].

10.3 Techniques

It is beyond the scope of this chapter to discuss deeply the whole analysis-synthesis
process that results in a sinusoidal plus residual representation of the sound, but
let us describe in some detail the major steps.

10.3.1 Analysis

The analysis step of the sinusoidal plus residual model has already been presented
in the previous section and is illustrated in Fig. 10.3. Next we will introduce the
most important techniques and the basic considerations that need be taken into
account when analyzing a sound.

Previous Considerations: STFT Settings

In this section, we will see that the STFT process is far from being unsupervised,
and its settings are indeed critical in order to get a good representation of the sound.
The main parameters involved in this step are window size, window type, frame size
and hop size.

As has already been mentioned in previous chapters, the first step involved in the
process of converting a time domain signal into its frequency domain representation,
is the windowing of the sound. This operation involves selecting a number of samples
from the sound signal and multiplying their value by a windowing function [Har78].

The number of samples taken in every processing step is defined by the window
size. It is a crucial parameter, especially if we take into account that the number
of spectral samples that the DFT will yield at its output corresponds to half the
number of samples of its input spread over half of the original sampling rate. We will
not go into the details of the DFT mathematics that lead to this property, but it is

380 l 0 Spectral Processing

very important to note that the longer the window, the more frequency resolution
we will have. On the other hand, it is straightforward to see the drawback of taking
very long windows: the loss of time resolution. This phenomenon is known as the
time vs. frequency resolution trade-off (see Fig. 10.5). A more specific limitation of
the window size has to do with choosing windows with odd sample-length in order
to guarantee even symmetry about the origin.

Figure 10.5 Time vs. frequency resolution trade-off.

The kind of window used also has a very strong effect on the qualities of the
spectral representation we will obtain. At this point we should remember that a
time domain multiplication (such as the one between the signal and the windowing
function) becomes a frequency domain convolution between the Fourier transforms
of each of the signals (see Fig. 10.6). One may be tempted to forget about deciding
on these matters and apply no window at all, just taking n samples from the signal
and feeding them into the chosen FFT algorithm. Even in this case, though, a
rectangular window is being used, so the spectrum of the signal is being convolved
with the transform of a rectangular pulse, a sinc-like function.

0
sine wave. 2.000 HZ I I Hamming window

sine wave spectrum

Figure 10.6 Effect of applying a window in the time domain.

Two features of the transform of the window are specially relevant to whether
a particular function is useful or not: the width of the main lobe, and the main to
highest side lobe relation. The main lobe bandwidth is expressed in bins (spectral
samples) and, in conjunction with the window size, defines the ability to distinguish

10.3 Techniques 381

two sinusoidal peaks (see Fig. 10.7). The following formula expresses the relationship
the window size M , the main lobe bandwidth B, and the sampling rate fs should
have in order to distinguish two sinusoids of frequency f k and fk+1:

(10.5)

WO sinusoids of 2.000 Hz and 2.200 Hz

spectrum with a small window spectrum with a larger window

Figure 10.7 Effect of the window size in distinguishing between two sinusoids.

The amplitude relationship between the main and the highest side lobe explains
the amount of distortion a peak will receive from surrounding partials. It would
be ideal to have a window with an extremely narrow main lobe and a very high
main to secondary lobe relation. However, the inherent trade-off between these two
parameters forces a compromise to be taken.

Common windows that can be used in the analysis step are Rectangular, Trian-
gular, Kaiser-Bessel, Hamm.ing, Hanning and Blackmann-Harris. In the code sup-
plied in this cha,pter, we have chosen a Blackmann-Harris 92 dB window for the sake
of simplicity. This window has a rather wide main lobe (9 bins) but an extremely
high main-to-secondary lobe relation of 92 dB. This difference is so close to the
dynamic range of a 16-bit representation that, in that case, we need only take into
account the influence of the main lobe. The following M-file 10.1 implements the
generation of a Blackman-Harris window.

M-file 10.1 (bh92.m)
function[bh92SINE2SINE,bh92SINE2SINEsize]=bh92SINE2SINEgeneration;
%function~bh92SINE2SINE,bh92SINE2SINEsize]=bh92SINE2SINEgeneration;
%
% ==> generation of the Blackman-Harris window
% output data:

% bh92SINE2SINE: (sampled) window
% bh92SINE2SINEsize: size of the window

bh92SINE2SINEsize = 4096;
bh92SINE2SINE = zeros(bh92SINE2SINEsize,l);
bh92N = 512;
bh92const = C.35875, .48829, .14128, .Oll68] ;

382 10 Spectral Processing

bh92Theta = -4*2*pi/bh92N;
bh92ThetaIncr = 8*2*pi/bh92N/bh92SINE2SINEsize;
for i=l:bh92SINE2SINEsize

for m=0:3
bh92SINE2SINE(i)=bh92SINE2SINE(i)-bh92const(m+l~/2* ...

(sine2sine(bh92Theta-m*2*pi/bh92N,bh92N)+ . . .
sine2sine(bh92Theta+m*2*pi/bh92N,bh92N));

end ;
bh92Theta = bh92Theta + bh92ThetaIncr;

end ;
bh92SINE2SINE = ~ ~ ~ ~ S I N E ~ S I N E / ~ ~ ~ ~ S I N E ~ S I N E (~ ~ ~ ~ S I N E ~ S I N E S ~ Z ~ / ~ + I) :

The value of the sine2sine function (not included in the basic MATLAB package)
is computed as follows:

M-file 10.2 (sine2sine.m)
function x = sine2sine(x , N)

x = sin((N/2)*x) / sin(x/2) ;
sine2sine function ! ! !

One may think that a possible way of overcoming the timelfrequency trade-off is to
add zeros to the windowed signals in order to have a longer FFT and so increase the
frequency resolution. This process is known as zero-padding and it represents an
interpolation in the frequency domain. Thus, when we zero-pad a signal before the
DFT process, we are not adding any information to its frequency representation (we
will still not distinguish two sinusoids if (10.5) is not satisfied), but we are indeed
increasing the frequency resolution by adding intermediate interpolated bins. This
process can help in the peak detection process, as explained lat,er.

A final step is the circular shift already described in section 8.2.2. This buffer
centering guarantees the preservation of zero-phase conditions in the analysis pro-
cess.

Once the spectrum of a frame has been computed, the window must move to the
next position in the waveform in order to take the next set of samples. The distance
between the centers of two consecutive windows is known as hop size. If the hop size
is smaller than the window size, we will be including some overlap, that is, some
samples will be used more than once in the analysis process. In general, the more
overlap, the smoother the transitions of the spectrum will be across time, but that
is a computationally expensive process. The window type and the hop size must be
chosen in such a way that the resulting envelope adds approximately to a constant,
following the equation

00

A,(m) E c w(m - n H) M constant. (10.6)
n=--00

A measure of the deviation of A, from a constant is the difference between the
maximum and minimum values for the envelope as a percentage of the maximum

10.3 Techniques 383

value:

(10.7)

This measure is referred to as the amplitude deviation of the overlap factor. Vari-
ables should be chosen accordingly to keep this factor around or below 1 percent.

We have seen that the STFT process that is bound to provide a suitable fre-
quency domain representation of the input signal, is a far from trivial process and
is dependent on some low-level parameters closely related to the signal processing
domain. A little theoretical knowledge is required but only practice will surely lead
to the desired results.

Peak Detection

The sinusoidal model assumes that each spectrum of the STFT representation can
be explained by a series of sinusoids. For a given frequency resolution, using enough
points in the spectrum, a sinusoid can be identified by its shape. Theoretically,
a sinusoid that is stable both in amplitude and in frequency - a partial - has a
well-defined frequency representation: the transform of the analysis window used
to compute the Fourier transform. It should be possible to take advantage of this
characteristic to distinguish partials from other frequency components. However, in
practice this is rarely the case, since most natural sounds are not perfectly periodic
and do not have nicely spaced and clearly defined peaks in the frequency domain.
There are interactions between the different components, and the shapes of the
spectral peaks cannot be detected without tolerating some mismatch. Only certain
instrumental sounds (e.g., the steady-state part of an oboe sound) are periodic
enough and sufficiently free from prominent noise components that the frequency
representation of a stable sinusoid can be recognized easily in a single spectrum (see
Fig. 10.8). A practical solution is to detect as many peaks as possible, with some
small constraints, and delay the decision of what is a “well behaved” partial, to the
next step in the analysis: the peak continuation algorithm.

A “peak” is defined as a local maximum in the magnitude spectrum, and the only
practical constraints to be made in the peak search are to have a frequency range
and a magnitude threshold. Due to the sampled nature of the spectrum returned
by the FFT, each peak is accurate only to within half a sample. A spectral sample
represents a frequency interval of f s / N Hz, where f s is the sampling rate and N
is the FFT size. Zero-padding in the time domain increases the number of spectral
samples per Hz and thus increases the accuracy of the simple peak detection (see
previous section). However, to obtain frequency accuracy on the level of 0.1 percent
of the distance from the top of an ideal peak to its first zero crossing (in the case
of a Rectangular window), the zero-padding factor required is 1000.

A more efficient spectral interpolation scheme is to zero-pad such that quadratic
(or other simple) spectral interpolation, using only samples immediately surround-
ing the maximum-magnitude sample, suffices to refine the estimate to 0.1 percent
accuracy. That is the approach we have chosen and is illustrated in Fig. 10.9. The

384 10 Spectral Processing

- -40 m
9
2 -60

m
._ c c
E -80

I L, v , 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

frequency (Hz) x lo4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
frequency (Hz) X l o 4

Figure 10.8 Peak detection. (a) Peaks in magnitude spectrum. (b) Peaks in the phase
spectrum.

dB

spectral samples
\/-++-l

\ ,
kp.l kp k,., freq. bins

Y

X

-1 0 1

Figure 10.9 Parabolic interpolation in the peak detection process.

frequency and magnitude of a peak are obtained from the magnitude spectrum ex-
pressed in dB. Then the phase value of the peak is measured by reading the value
of the unwrapped phase spectrum at the position resulting from the frequency of
the peak.

Although we cannot rely on the exact shape of the peak to decide whether it is
a partial or not, it is sometimes useful to have a measure of how close its shape is

10.3 Techniques 385

to the ideal sinusoidal peak. With this idea in mind, different techniques have been
used in order to improve the estimation of the spectral peaks parameters [DH97].

The M-file 10.3 implements the peak detection algorithm, the function PickPeaks
finds the local maximums of the spectrum.

M-file 10.3 (Pickpeaks .m)
function [loc, val] = PickPeaks(spectrum, nPeaks, minspace)
%function [loc, val] = pickpeaks(spectrum, nPeaks, minspace)

X==> peaking the nPeaks highest peaks in the given spectrum
% from the greater to the lowest
% data:

%

% lac: bin number of peaks (if loc(i)==O, no peak detected)
% Val: amplitude of the given spectrum
% spectrum: spectrum (abs(fft(signa1))
% nPicks: number of peaks to pick
% minspace: minimum of space between two peaks

[r, cl = size(spectrum);
rmin = min(spectrum1 - l;

% ---find a peak, zero out the data around the peak, and repeat
val = ones(nPeaks,c)*NaN;
loc = zeros(nPeaks,c);

for k=l:c X--- find all local peaks
difference = diff([rmin; spectrum(:,k); rmin]); % derivate
iloc = find(difference(l:r)>= 0 & difference(2:r+l) <= 0) ;

ival = spectrum(i1oc ,k) ; % peak values
% peak locations

for p=l:nPeaks
[val(p,k) ,l] = max(iva1); % find current maximum
loc(p,k) = iloc(1) ; save value and location
ind = find(abs(iloc(1)-iloc) > minspace);

if (isempty (ind))
break % no more local peaks to pick

end
ival = ival (ind) ; shrink peak value and location array
iloc = iloc(ind);

% find peaks which are far away

end
end

The function interpolatedvalues (M-file 10.4) computes interpolated values for
each peak.

386 IO Spectral Processing

M-file 10.4 (interpolatedVa1ues.m)
function [iftloc, iftphase, iftval] = interpolatedvalues . . .

%function [iftloc, iftphase, iftval] = interpolatedvalues . . .
% (r, phi, N, zp, ftloc, ftval)
%
X==> computation of the interpolated values

% and phase (linear interpolation)
%
% data:
% iftloc: interpolated location (bin)
% iftval: interpolated magnitude
% iftphase: interpolated phase
% f tloc : peak locations (bin)
% f tval : peak magnitudes
% r: magnitude of the FFT
% phi : phase of the FFT
% N: size of the FFT
% zp : zero-padding multiplicative coefficient

”/-- e calculate interpolated peak position in bins (iftloc) ------

(r, phi, N, zp, ftloc, ftval)

of location and magnitude (parabolic interpolation)

leftftval =
rightftval=
lef tf tval =
rightftval=
f tval
iftloc =

- -

(leftftval - 2*ftval + rightftval);

iftloc = (iftloc>=i).*iftloc + (iftloc<l).*i;
if tloc = (if tloc>N/2+1) . * (zp/2+1) + (if tloc<=N/2+1) . *if tloc ;

y--- calculate interpolated phase (iphase)

leftftphase = phi(floor(ift1oc));
rightftphase= phi(floor(iftloc)+l);
intpfactor = iftloc-ftloc;
intpfactor = (intpfactor>O).*intpfactor . . .

dif fphase = unwrap2pi (rightf tphase-leftf tphase) ;
iftphase = leftftphase+intpfactor.*diffphase;

+(intpfactor<O) .*(i+intpfactor);

y--- calculate interpolate amplitude (iftval) -------------------
iftval = ftval-.25*(leftftval-rightftval) .*(iftloc-ftloc);

20.3 Techniques 387

These functions (as well as others that will be introduced later in this chapter) make
use of the unwrap2pi function given by M-file 10.5.

M-file 10.5 (unvraplpi .m)
function argunwrap = unwrap2pi (arg)
% function argunwrap = unwrap2pi (arg)
%
%==> unwrapping of the phase , in [-p i , p i]
% arg : phase to unwrap
a rg = a rg - f loor(arg/2/pi)*2*pi ;
argunwrap = a rg - (arg>=pi)*%pi;

Pitch Estimation

Although the term pitch should ideally be used to refer only to perceptual issues,
the term fundamental frequency is not suitable to describe the output of techniques
that will be explained herein. For that reason we will use both terms without making
any distinction to refer to the output of these algorithms that aim to provide an
estimation of this psychoacoustical sensation that is often (but not always) explained
by the value of the fundamental frequency of a given harmonic series.

Pitch estimation is an optional step used when we know that the input sound
is monophonic and pseudo-harmonic. Given this restriction and the set of spectral
peaks of a frame, obtained as in the sinusoidal analysis, with magnitude and fre-
quency values for each one, there are many possible pitch estimation strategies,
none of them perfect [Hes83, MB94, Can981. The most obvious approach is to cle-
fine the pitch as the common divisor of the harmonic series that best explains t,he
spectral peaks found in a given frame. For example, in the two-way mismatch proce-
dure proposed by Maher and Beauchamp the estimated F0 is chosen as to minimize
discrepancies between measured peak frequencies and the harmonic frequencies gen-
erated by trial values of Po, For each trial F', mismatches between the harmonics
generated and the measured peak frequencies are averaged over a fixed subset of
the available peaks. This is a basic idea on top of which we can add features and
tune all the parameters for a given family of sounds.

Many trade-offs are involved in the implementation of a fundamental frequency
detection system and every application will require a clear design strategy. For
example, the issue of real-time performance is a requirement with strong design im-
plications. We can add context-specific optimizations when knowledge of the signal
is available. Knowing, for instance, the frequency range of the F' of a particular
sound helps both the accuracy and the computational cost. Then, there are sounds
with specific characteristics, like in a clarinet where the even partials are softer than
the odd ones. From this information, we can define a set of rules that will improve
the performance of the usecl estimator.

In the framework of the sinusoidal plus residual analysis system, there are strong
dependencies between the fundamental frequency detection step and many other
analysis steps. For example, choosing an appropriate window for the Fourier analysis

388 10 Spectral Processing

will facilitate detection of the fundamental and, at the same time, getting a good
fundamental frequency will assist other analysis steps, including the selection of an
appropriate window. Thus, it could be designed as a recursive process.

M-file 10.6 implements an algorithm for pitch detection (note that, first, different
computations are accomplished in order to decide if the region being analyzed is
harmonic or not).

M-file 10.6 (pitchDetecti0n.m)
function[pitchvalue,pitcherror,isHarm]=pitchDetection(r,N, . . .

% function [pitchvalue ,pitcherror, isHarm] = . . .
% pitchDetection(r,N,SR,nPeaks,iftloc,iftval)

X==> pitch detection function, using the Two-way Mismatch

SR,nPeaks,iftloc,iftval)

%

% algorithm (see TWM.m)

% data:
%

% r: FFT magnitude
% N: size of the FFT
% SR : sampling rate
% nPeaks: number of peaks
% iftloc, iftval: location

tracked
(bin) and magnitude of the peak

I--- harmonicity evaluation of the signal
highenergy = sum(r(round(5000/SR*N):N/2)); % 5000 Hz to SR/2 Hz
lowenergy = sum(r(round(50/SR*N):round(2OOO/SR*N)));

isHarm = max(O,(highenergy/lowenergy < 0.6));
% 50 Hz to 2000 Hz

if (isHarm==l) %-- 2-way mismatch pitch estimation when harmonic
npitchpeaks = min(50,nPeaks);
[pitchvalue,pitcherror] = . . .

TWM(iftloc(1:npitchpeaks) ,iftval(l:npitchpeaks) ,N,SR);
else

pitchvalue = 0;
pitcherror = 0;

end ;

y--- , In . case of too much pitch error,
% signal supposed to be inhamonic
isHarm = min (isHarm,(pitcherror<=l.5));

The two-way mismatch procedure is implemented as follows:

M-file 10.7 (TWM.m)
function [pitch, pitcherror] = TWM (iloc, ival, N, SR)

10.3 Techniques 389

%function [pitch, pitcherrorl = TWM (iloc, ival, N, SR)
%
% => Two-way mismatch error pitch detection
% using Beauchamp & Maher algorithm
%
% data:
% iloc: location (bin) of
% ival: magnitudes of the
% N: number of peaks
% SR: sampling rate

the peaks
peaks

ifreq = (iloc-l)/N*SR; % frequency in Hertz

y--- avoid zero frequency peak
[zvalue , zindex] = min (if req) ;
if (zvalue==O)

ifreq(zindex) = 1;
ival(zindex) = -100;

end

ival2 = ival;
[MaxMag,MaxLocl] = max(i.val2) ;
ival2(MaxLocl) = -100;
CMaxMag2, MaxLoc2]= max (i.val2) ;
ivalZ(MaxLoc2) = -100;
CMaxMag3, MaxLoc3]= max (i.val2) ;

X--- pitch candidates
nCand = IO; % number of candidates
pitchc = zeros (I, 3*nCand) ;
pitchc(l:nCand)=(ifreq(MaxLocl)*ones(i,nCand)) ./((nCand . . .

+l-[I:nCandl));
pitchc(nCand+l:nCand*2)=(ifreq(MaxLoc2)*ones(i,nCand)) ./ ((nCand .

+l-[l:nCand]));
~ ~ ~ ~ ~ ~ (n ~ a n d ~ 2 + 1 : n C ~ d * 3) = o f r e q (M a x L o c 3 ~ * o n e s ~ ~ , n C ~ ~ ~ ~ . / ~ ~ ~ ~ ~ ~ .

+l- [l :nCand])) ;
~pitchc=l00:300;
harmonic = pitchc;

X--- predicted to measured mismatch error
ErrorPM = zeros(fliplr(size(harm0nic)));
MaxNPM = min(lO,length(iloc));
for i=l:MaxNPM

difmatrixPM = harmonic’ * ones(size(ifreq)) ’ ;
difmatrixPM = abs(difmatrixPM . . .

390 l 0 Spectral Processing

-ones (f liplr (size (harmonic))) *if req’) ;
[FreqDistance,peakloc] = min(difmatrixPM, [] ,2) ;
Ponddif = FreqDistance .* (harmonic’.-(-0.5));
PeakMag = ival (peakloc) ;
MagFactor = max(0, MaxMag - PeakMag + 20) ;
MagFactor = max(0, 1.0 - MagFactor/75.0);
ErrorPM = ErrorPM . . .

+(Ponddif+MagFactor.*(l.4*Ponddif-O.5));
harmonic = harmonic+pitchc;

end

y--- measured to predicted mismatch error
ErrorMP = zeros (fliplr(size(harmonic)));
MaxNMP = min(lO,length(ifreq));

for i=l : length(pitchc)
nharm = round(ifreq(l:MaxNMP)/pitchc(i));
nharm = (nharm>=l) . *nharm + (nharmcl) ;
FreqDistance = abs(ifreq(1:MaxNMP) - nharm*pitchc(i));
Ponddif = FreqDistance.* (ifreq(l:MaxNMP).-(-O.5));
P e akMag = ival(1:MaxNMP);
MagFactor = max(0,MaxMag - PeakMag + 20) ;
MagFactor = max(0,l.O - MagFactor/75.0);
ErrorMP(i) = sum(MagFactor.*(Ponddif . . .

+MagFactor.*(1.4*Ponddif-O.5)));
end

X - - - total error
Error = (ErrorPM/MaxNPM) + (0.3*ErrorMP/MaxNMP);
[pitcherror, pitchindex] = min(Error);

pitch = pitchc(pitchindex);

Peak Continuation

The peak detection process returns the estimated magnitude, frequency, and phase
of the prominent peaks in a given frame sorted by frequency. Once the spectral peaks
of a frame have been detected, and possibly a fundamental frequency identified, a
peak continuation algorithm can organize the peaks into time-varying trajectories.

The output of the sinusoidal analysis is a set of spectral peak values (frequency,
magnitude and phase) organized into frequency trajectories, where each trajectory
models a time-varying sinusoid (see Fig. 10.10). As will be shown later, from this
information we can synthesize a sound using additive synt,hesis. The less restrictive
the peak detection step is, the more faithful the reconstruction of the original sound
will be after synthesis.

10.3 Techniques 391

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
time (sec)

0 time (seconds)

partial number

Figure 10.10 Frequency trajectories resulting from the sinusoidal analysis of a vocal
sound.

The sinusoidal model assumes that each of these peaks is part of a frequency
trajectory and the peak continuation algorithm is responsible for assigning each peak
to a given "track". There are many possibilities for such a process. The original one
used by McAulay and Quatieri (see Fig. 10.11) in their sinusoidal representation
[MQ86] is based on finding, for each peak, the closest one in frequency in the
following frame.

The schemes used in the traditional sinusoidal model (as the one just mentioned),
incorporate all the spectral peaks into trajectories, thus obtaining a sinusoidal rep-
resentation for the whole sound. These schemes are not optimal when we want the
trajectories to follow just the stable partials, leaving the rest to be modeled as
part of the residual component. For example, when the partials significantly change
in frequency from one frame to the next, these algorithms easily switch from the
partial that they were tracking to another one, which is closer at that point.

392 IO Spectral Processing

t.

W
17
2
S
E ...

I I l

DEATH
..__......

BIRTH

..___.....

.._...____

...

TIME

Figure 10.11 Traditional peak continuation algorithm [MQ86].

freq.
current

n - 3 n - 2 n - 1 n +, frames

Figure 10.12 Peak continuation process. g represents the guides and p the spectral peaks.

Here we will describe a basic framework under which we can define rules for
specifying the behavior of the partials of musical sounds and thus implement systems
for identifying partials out of spectral peaks. The behavior of a partial, and therefore
the way to track it, varies depending on the signal. Whether we have speech, a
harmonic instrumental tone, a gong sound, a sound of an animal, or any other, the
time-varying behavior of the partials will be different. Thus, the algorithm requires
some knowledge about the characteristics of the sound that is being analyzed.

The basic idea of the algorithm is that a set of “guides” advances in time through
the spectral peaks of each frame, looking for the appropriate peaks to be used
(according to the specified constraints) and forming trajectories out of them (see
Fig. 10.12). Thus, a guide is an abstract entity employed to create sinusoidal trajec-
tories, which are the actual result of the peak continuation process. The instantan-
eous state of the guides, including their frequency and magnitude, is continuously
updated as the guides are turned on, continued, and finally turned off. In the case
of harmonic sounds, these guides are initialized according to the harmonic series
of the detected fundamental frequency, and for inharmonic sounds, each guide is
created dynamically.

10.3 Techniques 393

The guides use the peak values and their context, such as surrounding peaks
and fundamental frequency, to advance in time and form trajectories. For example,
by using the detected fundamental frequency and the “memory” of an incoming
trajectory to a given frame, we control the adaptation of the guides to the instan-
taneous changes in the sound. For a very harmonic sound, since all the harmonics
evolve together, the fundamental should be the main control. Nevertheless, when
the sound is less harmonic and we cannot rely on the fundamental frequency as a
strong reference for all the harmonics, the information of the incoming trajectory
should have a bigger weight.

Each peak is assigned to the guide that is closest to it and that is within a
given frequency and amplitude deviation. If a guide does not find a match, it is
assumed that the corresponding trajectory must “turn off’. In inharmonic sounds,
if a guide has not found a continuation peak for a given amount of time the guide is
killed. New guides, and therefore new trajectories, are created from the peaks of the
current frame that are not incorporated into trajectories by the existing guides. If
there are killed or unused guides, a new guide can be started. Searching through the
“unclaimed” peaks of the frame for the one with the highest magnitude creates a
guide. Once the trajectories have been continued for a few frames, the short ones can
be deleted and we can fill the “gaps” encountered in long trajectories. A real-time
implementation would not be able to use the rules that make use of the information
of “future” frames.

The creation of trajectories from the spectral peaks is compatible with very
different strategies and algorithms. A promising approach is to use Hidden Markov
models [DGR93]. This type of approach might be very valuable for tracking partials
in polyphonic sounds and complex inharmonic tones.

In our MATLAB implementation (M-file 10.8), we have chosen to provide a
simple tracking algorithm that uses a simplified version of the techniques previously
introduced for the case of harmonic and inharmonic sounds.

M-file 10.8 (peakTrackSimple .m)
functionCiloc,ival,iphase,previousiloc,previousival, . . .

distminindex]=peakTrackSimple(nSines,nPeaks,N, ...
SR,pitchvalue,iftloc,iftval,iftphase,isHarm, . . .
previousi loc,previousival) ;

% function[iloc,ival,iphase,previousiloc,previousival, . . .
% distminindex]=peakTrackSimple(nSines,nPeaks,N, . . .

SR,pitchvalue,iftloc,iftval,iftphase,isHarm, . . .
% previousiloc,previousival) ;
%
X==> simplest partial tracking
% data:
% iloc,ival,iphase: location (bin), magnitude

% previousiloc,previousival,previousiphase: idem for

% iftloc, iftval, iftphase: idem of all of the peaks in the FT

% and phase of peaks (current frame)

% previous frame

394 10 Spectral Processing

distminindex: indexes of the minimum distance
between iloc and iftloc

nPeaks : number of peaks detected
nSines : number of peaks tracked
N: size of the FFT
SR : sampling rate
pitchvalue: estimated pitch value
isHarm: indicator of harmonicity

tmpharm = pitchvalue; X--- temporary harmonic
iloc = zeros (nsines, 1) ;
MindB = -100;
ival = zeros(nSines,l) + MindB;
iphase = zeros(nSines,i);
distminindex = zeros(nSines,l);
Delta = 0.01;

for i=i :nSines x--- for each sinus detected
if (isHarm==l) %--- for a harmonic sound
[closestpeakmag,closestpeakindex]=min(abs((iftloc-l)/N*SR-tmpharm));
tmpharm = tmpharm + pitchvalue;
else x--- for an inharmonic sound
[closestpeakmag,closestpeakindex]=min(abs(iftloc-previousiloc(i)));

end
iloc(i) = iftloc(c1osestpeakindex); %--- bin of the closest
ival(i) = iftval(c1osestpeakindex);
iphase(i) = iftphase(c1osestpeakindex);
dist = abs (previousiloc-iloc (i)) ;
[distminval, distminindex(i)] = min(dist);
end

You will also need the code for the function CreateNewTrack (M-file 10.9), which
implements the initialization of newborn tracks during the peak continuation pro-
cess.

M-file 10.9 (CreateNeuTrack.m)
function~newiloc,newival]=CreateNewTrack(iftloc,iftval, . . .

previousiloc,previousival,nSines,MinMag);
% function~newiloc,newival]=CreateNewTrack(iftloc,iftval, . . .
% previousiloc,previousival,nSines,MinMag);
%
%==> creation of a new track by looking for a new significant
% peak not already tracked
% data: iftlov, iftval: bin number & magnitude of peaks detected
% previousiloc,
% previousival: idem for previous peaks detected

10.3 Techniques 395

% nSines : number of sines
% MinMag : minimum magnitude (-io0 dB) for
% 0 amplitude

y--- , removing peaks already tracked
for i=i:nSines

[min, ind] = min(abs(iftva1 - previousival(i)));
if tval (ind) = MinMag;

end
X--- keeping the maximum
[newival , ind] = max (if t.val) ;
newiloc = if tloc (ind) ;

M-file 10.10 implements a visual representation of the sinusoidal tracks.

M-file 10.10 (P1otTracking.m)
function PlotTracking(SineFreq, pitch)
%function PlotTracking(SineFreq, pitch)
%
%==> plot the partial tracking
% data:
% SineFreq: frequencies of the tracks
% pitch: frequency of the pitch
[nSines, nFrames] = size(SineFreq) ;

for n=i:nSines
f=l;
while (f<=nFrames)

while (f<=nFrames & SineFreq(n,f)==O)

end
iStart = min(f ,nFrames) ;
while (f<=nFrames & SineFreq(n,f)>O)

end
iEnd = min(max(1,f-l) ,nFrames);
if (iEnd > istart)
line((istart : iEnd) , SineFreq(n, istart : iEnd)) ;
end

f = f+l;

f = f + l ;

end
end

h = line((l:nFrames), pitch(1:nFrames));
set (h, linewidth’ , 2 , ’Color’ , ’black’) ;

396 l 0 Spectral Processing

Residual Analysis

Once we have identified the stable partials of a sound, we are ready to subtract
them from the original signal and obtain the residual component. This subtraction
can be done either in the time domain or in the frequency domain. A time domain
approach requires that first the time domain signal is synthesized from the sinu-
soidal trajectories, while if we stay in the frequency domain, we can perform the
subtraction directly in the already computed magnitude spectrum. For the time
domain subtraction, the phases of the original sound have to be preserved in the
synthesized signal, thus we have to use a type of additive synthesis with which we
can control the instantaneous phase and this is a t,ype of synthesis that is com-
putationally quite expensive. On the other hand, the sinusoidal subtraction in the
spectral domain is simpler but not considerably more. Our sinusoidal information
from the analysis is very much undersampled, since for every sinusoid we only have
the value at the top of the peaks, and thus we have to generate all the frequency
samples that belong to the sinusoidal peak to be subtracted.

Once we have either the residual spectrum or the residual time signal, it is useful
to study it in order to check how well the partials of the sound were subtracted and
therefore analyzed. If partials remain in the residual, the possibilities for transfor-
mations will be reduced, mainly because it will not be possible to approximate the
residual as a stochastic signal, thus reducing its flexibility. In this case, we should
re-analyze the sound until we get a good residual, free of deterministic components.
Ideally, the resulting residual should be as close as possible to a stochastic signal.

From the residual signal, we can continue our modeling strategy. To model the
stochastic part of sounds, such as the attacks of most percussion instrument, the bow
noise in string instruments, or the breath noise in wind instruments, we need a good
time resolution and we can give up some frequency resolution. The deterministic
component cannot maintain the sharpness of attacks, because, even if a high frame-
rate is used, we are forced to use a long enough window, and this size determines
most of the time resolution. When the deterministic subtraction is done in the
time domain, the time resolution in the stochastic analysis can be improved by
redefining the analysis window. The frequency domain approach implies that the
subtraction is done in the spectra computed for the deterministic analysis, thus the
STFT parameters cannot be changed [Ser89].

Since it is the deterministic signal that is subtracted from the original sound,
measured from long windows, the resulting residual signal might have the sharp
attacks smeared. To improve the stochastic analysis, we can “fix” this residual so
that the sharpness of the attacks of the original sound is preserved. The result-
ing residual is compared with the original waveform and its amplitude re-scaled
whenever the residual has a greater energy than the original waveform. Then the
stochastic analysis is performed on this scaled residual. Thus, the smaller the win-
dow, the better time resolution we will get in the residual. \.lie can also compare the
synthesized deterministic signal with the original sound and whenever this signal
has a greater energy than the original waveform, it means that a smearing of the
deterministic component has been produced. This can be fixed somewha,t by scal-

10.9 Techniques 397

ing the amplitudes of the deterministic analysis in the corresponding frame by the
difference between the original sound and the deterministic signal.

Sinusoidal Subtraction

The first step of the residual analysis is the synthesis of the sinusoidal tracks ob-
tained as the output of the peak continuation algorithm. For a time domain subtrac-
tion (see Fig. 10.13) the synt,hesized signal will reproduce the instantaneous phase
and amplitude of the partials of the original sound. One frame of the sinusoidal part
of the sound, d(m), is generaied by

R

d(m) = c A, cos[m3, + g,], m = 0, l, 2 , . . . , S - 1 (10.8)
T= 1

where R is the number of trajectories present in the current frame and S is the
length of the frame. To avoid “clicks” at the frame boundaries, the parameters
A,, G,, G, are smoothly interpolated from frame to frame.

The instantaneous amplitude A(m) is easily obtained by linear interpolation
from frame to frame. Frequency and phase values are tied together (frequency is
the phase derivative), and both control the instantaneous phase 8(m), defined by

O(m) = m3 +G. (10.9)

Different approaches are possible for computing the instantaneous phase [MQ86].
Thus we are able to synthesize one frame of a sound by

(10.10)

which goes smoothly from the previous to the current frame with each sinusoid
accounting for both the rapid phase changes (frequency) and the slowly varying
phase changes.

Residual Approximation

One of the underlying assumptions of the sinusoidal plus residual model is that the
residual is a stochastic signal. Such an assumption implies that the residual is fully
described by its amplitude and its general frequency characteristics (see Fig. 10.14).
It is unnecessary to keep either the instantaneous phase or the exact spectral shape
information. Based on this, a frame of the stochastic residual can be completely
characterized by the output of a filter, which has a noise input signal. The filter
encodes the amplitude and general frequency characteristics of the residual. The
representation of the residual for the overall sound will be a sequence of these
filters, i.e., a time-varying filter.

398 10 Spectral Processing

original sound
x(n)

synthesized sound
with phase matching

residual sound
e(n) = w(n) x(x(n) - s(n)),
n=0 ,1 , N - l

Figure 10.13 Time domain substraction.

-30 I . a) original spectrum

b) residual spectrum and its approximation

e -70

E -60

-100

-90

5 10 15 20
frequency (KHz)

Figure 10.14 (a) Original spectrum, (b) residual spectrum and approximation

The filter design problem is generally solved by performing some sort of curve
fitting in the magnitude spectrum of the current frame [Str80, Sed881. Standard
techniques are: spline interpolation COX^^], the method of least squares [Sed88], or
straight-line approximations.

One way to carry out the line-segment approximation is to step through the
magnitude spectrum and find local maxima in each of several defined sections, thus
giving equally spaced points in the spectrum that are connected by straight lines to
create the spectral envelope. The number of points gives the accuracy of the fit, and
can be set depending on the sound complexity. Other options are unequally spaced
points, for example, logarithmically spaced, or spaced according to other perceptual

10.3 Techniques 399

criteria.

Another practical alternakive, as already seen in Chapter 9 (see section 9.2.2),
is to use a type of least squares approximation called linear predictive coding, LPC
[Mak75, MG751. LPC is a popular technique used in speech research for fitting an
nth-order polynomial to a magnitude spectrum. For our purposes, the line-segment
approach is more flexible than LPC, and although LPC results in less analysis
points, the flexibility is considered more important. For a comprehensive collection
of different approximation techniques of the residual component see [Goo97].

10.3.2 Feature Analysis

The accomplishment of a meaningful parameterization for sound transformation
applications is a difficult task. We want a parameterization that offers an intuitive
control over the sound transformation process, with which we can access most of the
perceptual attributes of a sound. The analysis techniques described so far result in
a simple parameterization, appropriate for describing the lower physical character-
istics of the sound. In the sinusoidal plus residual model, these parameters are the
instantaneous frequency, amplitude and phase of each partial and the instantaneous
spectral characteristics of the residual signal.

There are other useful instantaneous attributes that give a higher-level abstrac-
tion of the sound characteristics. For example, we can describe fundamental fre-
quency, amplitude and spectral shape of the sinusoidal component, amplitude and
spectral shape of the residual component, and the overall amplitude. These at-
tributes are calculated at each analysis frame from the output of the basic sinusoidal
plus residual analysis. Afterwards, some of them can be extracted.

From a digital effects design point of view, the extraction of such attributes al-
lows us to implement transformations that modify only one of those features without
affecting the rest. A clear example is illustrated in Fig. 10.2 where the fundamental
frequency is extracted, multiplied by a scaling factor, and then incorporated back
into the original spectral data.

Many other features like the degree of harmonicity, noisiness, spectral tilt, or
spectral centroid, can also be computed from the spectral representation of a sound.
Some of them are just information attributes that describe the characteristics of the
frame and have mainly f0un.d applications in sound classification tasks.

Apart from the instantaneous, or frame, values, it is also useful to have param-
eters that characterize the -time evolution of the sound. The time changes can be
described by the derivatives of each one of the instantaneous attributes.

Another important step towards a musically useful parameterization is the seg-
mentation of a sound into regions that are homogeneous in terms of its sound
attributes. Then we can identify and extract region attributes that will give higher-
level control over the sound.

From the basic sinusoidal plus residual representation it is possible to extract
some of the attributes mentioned above. The critical issue is how to extract them

400 10 Spectral Processing

while minimizing interferences, thus obtaining significant high level attributes free
of correlations [SB98]. The general process will be to first extract instantaneous
attributes and their derivatives, then segment the sound based on that information,
and finally extract region attributes.

As already indicated, the basic insta.ntaneous attributes are: amplitude of sinu-
soidal and residual component, overall amplitude, fundamental frequency, spectral
shape of sinusoidal and residual component, harmonic distortion, noisiness, spectral
centroid, and spectral tilt. These attributes are obtained at each frame using the
information that results from the basic sinusoidal plus residual analysis and not
taking into account the data from previous or future frames. The amplitude of the
sinusoidal component is the sum of the amplitudes of all ha,rmonics of one frame
expressed in dB,

(10.11)

where ai is the linear amplitude of the ith harmonic and E is the total number of
harmonics found in the frame.

The amplitude of the residual component is the sum of the absolute values of
the residual of one frame expressed in dB. This amplitude can also be computed by
adding the frequency samples of the corresponding magnitude spectrum, according
to

/ N - l \

(10.12)

where z ~ (n) is the residual sound, M is the size of the frame, X ~ (l c) is the spectrum
of the residual sound, and N is the size of the magnitude spectrum.

The total amplitude of the sound at one frame is the sum of its absolute val-
ues expressed in dB. It can also be computed by summing the amplitudes of the
sinusoidal and residual components, as given by

/ z N-l \
(10.13)

where ~ (n) is the original sound and X (k) is its spectrum.
The fundamental frequency is the frequency that best explains the harmonics

of one frame. Many different algorithms can be used to compute the fundamental
frequency (see previous section 10.3.1, for example) but a reasonable approximation,

10.3 Techniques 40 1

once we have the sinusoidal component, can be the weighted average of all the
normalized harmonic frequencies

(10.14)

where fi is the frequency of the ith harmonic.

The spectral shape of the sinusoidal component is the envelope described by the
amplitudes and frequencies of the harmonics, or its approximation,

Sshape = ((f~,a~)(f~,a~)...(fi,al)}. (10.15)

The spectral shape of the residual component is an approximation of the magnitude
spectrum of the residual sound of one frame. A simple function is computed as the
line segment approximation of the spectrum,

R s h a p e = {el, ez, . . . ,e4, . . . , eNcoef} (10.16)

Other spectral approximation techniques can be considered depending on the type
of residual and the application [Goo96].

The frame-to-frame variation of each attribute is a useful measure of its time
evolution, thus an indication of changes in the sound. It is computed in the same
way for each attribute,

Val(l) - Val(Z - 1)
A =

H / f S

(10.17)

where Val(l) is the attribute value for the current frame, Val(l - 1) is the attribute
value for the previous one, H is the hop size and fs is the sampling rate.

As an example, the following function (M-file 10.11) implements the computation
of the spectral shape that will be used in some of the effects implemented in the
next sections.

M-file 10.11 (sort .m)

[isortedloc, ind] = sort (iloc) ;
isortedval = ival (ind) ;
[indr, indc] = f ind(isorted1oc) ;
newloc = isortedloc(indr);
newval = isortedval(indr);

spectralshape = [] ;
spectralShape(1,l) = 1;
spectralShape(2,l) = MinMag;
shapePos = 1;
f o r i=l:length(newloc)

y--- I sorting according to the frequencies iloc

y--- I computing the spectral shape without redundant values

if newloc(i) > spectralShape(1,shapePos)

402 l 0 Spectral Processing

shapePos = shapePos + 1;
spectralshape (1, shapePos) = newloc (i) ;
spectralShape(2,shapePos) = newval(i);

end
end
y--- I adding boudaries values
spectralShape(l,shapePos+l) = N/2;
spectralShape(2,shapePos+l) = MinMag;

Segmentation

Sound segmentation has proven important in automatic speech recognition and
music transcription algorithms. For our purposes it is very valuable as a way to
apply region-dependent transformations. For example, a time stretching algorithm
would be able to transform the steady state regions, leaving the rest unmodified.

A musically meaningful segmentation process divides a melody into notes and

The techniques originally developed for speech [VidSO], such as those based on
pattern recognition or knowledge-based methodologies, start to be used in music
segmentation applications [RRSC98]. Most of the approaches apply classification
methods that start from sound features, such as the ones described in this chapter,
and are able to group sequences of frames into predefined categories. Xo reliable
and general-purpose technique has been found. Our experience is that they require
narrowing the problem to a specific type of musical signal or including a user inter-
vention stage to help direct the segmentation process.

silences and then each note into an attack, a steady state and a release region.

Region Attributes

Once a given sound has been segmented into regions we can compute the attributes
that describe each one. Most of the interesting attributes are the mean and variance
of each of the frame attributes for the whole region. For example, we can compute
the spectral shape or the mean and variance for the amplitude of sinusoidal and
residual components, the fundamental frequency, or the spectral tilt.

Global attributes that can characterize attacks and releases make use of the
average variation of each of the instantaneous attributes, such as average funda-
mental frequency variation, average amplitude variation, or average spectral sha,pe
change. In the steady state regions it is important to extract the average value of
each of the instantaneous attributes and measure other global attributes such as
time-varying rate and depth of vibrato. Vibrato is a specific attribute present in
many steady state regions of sustained instrumental sounds that requires a special
treatment [HB98].

Some region attributes can be extracted from the frame attributes in the same
way that they were extracted from the sinusoidal plus residual data. The result of
the extraction of the frame and region attributes is a hierarchical multi-level data
structure where each level represents a different sound abstraction.

10.3 Techniques 403

10.3.3 Synthesis

From the output of the analysis techniques presented we can synthesize a new
sound. The similarity with respect to the original sound will depend on how well
the input sound fits the implicit model of the analysis technique and the settings of
the different variables that the given technique has. In the context of the chapt-er
we are interested in transforming the analysis output in order to produce a specified
effect in the synthesized sound.

All these transformations can be done in the frequency domain. Afterwards, the
output sound can be synthesized using the techniques presented in this section.
The sinusoidal component will be generated using some type of additive synthe-
sis approach and the residual, if present, will be synthesized using some type of
subtractive synthesis approach.

Thus, the transformation and synthesis of a sound are done in the frequency
domain; generating sinusoids, noise, or arbitrary spectral components, and adding
them all to a spectral frame. Then, we compute a single IFFT for each frame, which
can yield efficient implementations.

Figure 10.15 shows a block diagram of the final part of the synthesis process.
Previous to that we have to transform and add all the high-level features, if they
have been extracted, and obtain the lower level data (sine and residual) for the
frame to be synthesized. Since the stored data might have a different frame rate, or
a variable one, we also have to generate the appropriate frame by interpolating the
stored ones. These techniques are presented in the following sections.

sine generation
phases spectrum

synthesis

residual

generation
rectangular
conversion

I- spectrum

Figure 10.15 Diagram of the spectral synthesis.

Sinusoidal Synthesis

The sinusoidal component is generated with additive synthesis, similar to the si-
nusoidal synthesis that was part of the analysis, with the difference that now the
phase trajectories might be discarded.

404 10 Spectral Processing

Figure 10.16 Additive synthesis block diagram.

Additive synthesis is based on the control of the instantaneous frequency and
amplitude of a bank of oscillators, as shown in Fig. 10.16. The instantaneous am-
plitude A(,) of an oscillator is obtained by linear interpolation

(10.18)

where m = 0,1, . . . , S - 1 is the time sample in the Z t h synthesis frame.

The instantaneous phase is taken to be the integral of the instantaneous fre-
quency, where the instantaneous radian frequency ;(m) is obtained by linear inter-
polation

(10.19)

and the instantaneous phase for the rth sinusoid is given by

Finally, the synthesis equation becomes

R'

dl(,) = c A:(,) cos[e:(m)]
r=l

(10.21)

where A(,) and 8(m) are the calculated instantaneous amplitude and phase.

A very efficient implementation of additive synthesis, when the instantaneous
phase is not preserved, is based on the inverse FFT [RD92]. While this approach

10.3 Techniques 405

loses some of the flexibility of the traditional oscillator bank implementation, espe-
cially the instantaneous control of frequency and magnitude, the gain in speed is
significant. This gain is based on the fact that a sinusoid in the frequency domain is
a sinc-type function, the transform of the window used, and in these functions not
all the samples carry the same weight. To generate a sinusoid in the spectral domain
it is sufficient to calculate the samples of the main lobe of the window transform,
with the appropriate magnitude, frequency and phase values. We can then synthe-
size as many sinusoids as we want by adding these main lobes in the FFT buffer and
performing an IFFT to obtain the resulting time-domain signal. By an overlap-add
process we then get the time-varying characteristics of the sound. In M-file 10.12
we implement a sinusoidal synthesis algorithm based on this latter approach.

M-file 10.12 (sinefi1lspectrum.m)
function padsynthft=sinefillspectrum(iloc,ival,iphase,nSines, . . .

%function padsynthf =sinefillspectrum(iloc,ival,iphase,nSines, . .
% wllength, zp, bh92SINE2SINE, bh92SINE2SINEsize)

%=> compute the spectrum of all the sines in the frequency
% domain, in order to remove it from the signal

wllength, zp, bh92SINE2SINE, bh92SINE2SINEsize)

%

% data:
% padsynth:
% iloc, ival, iphase:
%
% nsines:
% wllength:

% bh92SINE2SINE:
% bh92SINE2SINEsize:

% zp:

location (bin), magnitude value (dB)
and phase of a peak
number of sines (=length of ival and iloc)
size of the analysis window
zero-padding multiplicative coefficient
Rlackman-Harris window
Rlackman-Harris window size

% magnitude (in CO ; l])
% bin number of the half lobe

f irstbin=f loor (iloc) -half lobe; % first bin for filling positive
% frequencies

firstbin2=floor(wlLength*zp-iloc+2)-halflobe;

binremainder=iloc-floor(i1oc);
sinphase=sin (iphase) ;
cosphase=cos(iphase);
findex=l-binremainder;
bh92SINE2SINEindexes =zeros(8*zp,l);
sinepadsynthft=zeros(wl~ength*zp+halflobe+halflobe+l,l);
padsynthft =zeros(wlLength*zp,l);

% idem for negative frequencies

y--- I computation of the complex value
for i=l:nSines X--- for each sine

406 10 Spectral Processing

if (iloc(i)-=O) %--- JUST WORK WITH NON ZEROS VALUES OF iloc ! ! !
% -> tracked sines

beginindex = floor(0.5 + findex(i)*512/zp)+l;
bh92SINE2SINEindexes=[beginindex:512/zp:beginindex . . .

if (bh92SINE2SINEindexes(8*zp)>bh92SINE2SINEsize)
bh92SINE2SINEindexes(8*zp)=bh92SINE2SINEsize;

end
magsin=bh92SINE2SINE(bh92SINE2SINEindexes) . . .

. *sinphase (i) *peakmag(i) ;
magcos=bh92SINE2SINE(bh92SINE2SINEindexes) . . .

.*cosphase(i)*peakmag(i);
%--- fill positive frequency
sinepadsynthft(firstbin(i)+halflobe:firstbin(i) . . .

+halflobe+8*zp-l)= . . .
sinepadsynthft(firstbin(i)+halflobe:firstbin(i)+ . . .
halflobe+8*zp-l)+(magcos+j*magsin);
%--- fill negative frequency
if (f irstbin2(i)+half lobe <= wlLength*zp)
sinepadsynthft(firstbin2(i)+halflobe:firstbin2(i) . . .

sinepadsynthft(firstbin2(i)+halflobe:firstbin2(i)+ . . .
halflobe+8*zp-l)+(magcos-j*magsin) ;
end

+512/~p*(8*~p-l)] ’ ;

+halflobe+8*zp-l)= . . .

end
end

%--- fill padsynthft
padsynthft=padsynthft+sinepadsynthft(halflobe+l:halflobe+l . . .

padsynthft(1:halflobe) = padsynthft(1:halflobe) + . . .

padsynthft(wlLength*zp-halflobe+l:wlLength*zp) = . . .

+wlLength*zp-l);

sinepadsynthft(wlLength*zp+l:wlLength*zp+halflobe);

padsynthft(wlLength*zp-halflobe+l:wlLength*zp) . . .
+ sinepadsynthft(1:halflobe);

The synthesis frame rate is completely independent of the analysis one. In the im-
plementation using the IFFT we want to have a frame rate high enough so as to
preserve the temporal characteristics of the sound. As in all short-time based pro-
cesses we have the problem of having to make a compromise between time and
frequency resolution. The window transform should have the fewest possible signifi-
cant bins since this will be the number of points required to generate each sinusoid.
A good window choice is the Blackman-Harris 92dB because, as already explained
in section 10.3.1, its main lobe includes most of the energy. However, the problem
is that such a window does not overlap perfectly to a constant in the time domain
without having to use very high overlap factors, thus very high frame rates. A solu-

10.9 Techniques 407

tion to this problem [RD92] is to undo the effect of the window by dividing by it in
the time domain and applying a triangular window before performing the overlap-
add process. This will give a good time-frequency compromise. The Matlab code
for generating the triangular window is given by M-file 10.13.

M-file 10.13 (triang.m)
function W = triang(n)
% TRIANG Triangular window.
if rem(n, 2)
% It's an odd length sequence
W = 2*(l: (n+l)/2)/(n+i);
W = [W w((n-1)/2:-1:1)] ';
else
% It ' s even
W = (2*(1: (n+l)/2)-l)/n;
W = [W w(n/2:-1:1)]';
end

Residual Synthesis

The synthesis of the residual component of the sound is also performed in the
frequency domain (see Fig. 10.17). When the analyzed residual has not been ap-
proximated, i.e. it is represented as a magnitude and phase spectrum for each frame,
as a STFT, each residual spectrum is added to the spectrum of the sinusoidal com-
ponent a t each frame. But when a magnitude spectral envelope has approximated
the residual, an appropriate complex spectrum has to be generated.

approximation of residual
spectral magnitude

L :hsr- ",,W -
random spectral phase

synthesized sound

synthesized sound
with window

Figure 10.17 Residual synthesis approximation.

The synthesis of a stochastic signal from the residual approximation can be
understood as the generation of noise that has the frequency and amplitude charac-
teristics described by the spectral magnitude envelopes. The intuitive operation is

408 10 Spectral Processing

to filter white noise with these frequency envelopes, that is, perform a time-varying
filtering of white noise, which is generally implemented using the time-domain con-
volution of white noise with the impulse response corresponding to the spectral
envelope of a frame. We do it in the frequency domain by creating a magnitude
spectrum from the approximated one, or its transformation, and generating a ran-
dom phase spectrum with new values at each frame in order to avoid periodicity.

Integration of Sinusoidal and Residual Synthesis

Once the two spectral components are generated, we have to add the spectrum
of the residual component to that of the sinusoids. In the process of generating
the noise spectrum there has not been any window applied, since the data was
added directly into the spectrum without any smoothing consideration, but in the
sinusoidal synthesis we have used a Blackman-Harris 92dB, which is undone in
the time domain after the IFFT. Therefore we should apply the same window to
the noise spectrum before adding it to the sinusoidal spectrum. Convolving the
transform of the Blackman-Harris 92dB by the noise spectrum accomplishes this,
and there is only the need to use the main lobe of the window since it includes
most of its energy. This is implemented quite efficiently because it only involves
a few bins and the window is symmetric. Then we can use a single IFFT for the
combined spectrum (see Fig. 10.18). Finally, in the time domain we undo the effect
of the Blackman-Harris 92dB and impose the triangular window. By an overlap-add
process we combine successive frames to get the time-varying characteristics of the
sound.

Sinousoidal data -
Blackman-Harris I
92 dB

I

T - u

spectral data
Residual

Figure 10.18 Integrating sinusoidal plus residual synthesis

Several other approaches have been used to synthesize the output of a sinusoidal
plus residual analysis. However, these techniques include modifications to the model
as a whole (see [FHCOO], for example).

10.9 Techniques 409

10.3.4 Main Analysis-Synthesis Application

In M-file 10.14 we make use of all the previous functions in order to implement
a complete analysis-synthesis process. We will use this framework to implement
sound effects in the next sections. Note that no residual approximation is used in
this implementation.

M-file 10.14 (SMS.m)

% SMS-Matlab like emulation
.

. 0 0

clear all
close all
y==== USER DATA =====

DAFx-in = wavread(’love.wav’); % wave file
SR = 44100; sampling rate
wlLength = 2048; % analysis window size
nl = 256; % analysis window hop size
nPeaks = 100; % number of peaks detected
nSines = 50; % number of sinuosoids to track (and synthetise)
minSpacePeaks = 2; % minimum space (bins) between two picked peaks

rgain = l. ; % gain for the residual component
MaxFreq = 11000; % maximum frequency, in Hertz, for plottings
MinMag = -100; % minimum magnitude, in dB, for plottings

ZP = 2; % zero-padding coefficient

X--- figure data
%fig1 = ’yes’; % if uncommented, will plot the Blackman-Harris

%fig2 = ’yes’; % if uncommented, will plot the peaks detection

%fig3 = ’yes’; % if uncommented, will plot the peak trackings

%fig4 = ’yes’; % if uncommented, will plot the original and

%fig5 = ’yes’; % if uncommented, will plot the peak trackings
% only at the end of the process

%fig6 = ’yes’; % if uncommented, will plot the original signal,
% its sine and residual part,
% and the transformed signal

% window

% and tracking in one frame

% real-time

% the transformed FFT in one frame

%=== Definition of the Windows ===

x- - - definition of the analysis window
fConst=2*pi/(wlLength+l-l);
wl= [l : wlLength] ’ ;

410 IO Spectral Processing

wl=.35875 -.48829*cos(fConst*wl)+.14128*cos(fConst*2*~1~ . . .
- .01168*cos(fConst*3*w1) ;

wl=wl/sum(wl) *2;

y--- a synthesis window
w2=w 1 ;
n2=nl;
X--- triangular window
wt2=triang(n2*2+1); % triangular window
y--- D main lobe table of bh92
[bh92SINE2SINE,bh92SINE2SINEsize]=bh92SINE2SINEgeneration;
x - - - data for the loops
frametime = nl/SR;
pin = 0;

TuneLength=length(DAFx-in) ;
pend=TuneLength-wlLength;

N=wlLength*zp; % new size of the window

pout = 0;

%=== Definition of the data arrays ===

DAFx-in = [zeros(wlLength/2-nI-l ,l> ; DAFx-in] ;
DAFx-outsine = zeros(TuneLength,l);
DAFx-outres = zeros(TuneLength,l);

iloc = zeros (nsines, 1) ;
ival = zeros(nSines,l);
iphase = zeros(nSines,l);
previousiloc = zeros(nSines, 1) ;
previousival = zeros (nSines, l) ;
maxSines = 400; % maximum voices for harmonizer
syniloc = zeros (maxSines, l) ;
synival = zeros(maxSines,i);
previoussyniloc = zeros(maxSines,l);
previousiphase = zeros(maxSines,l);
currentiphase = zeros(maxSines,l);

SineFreq = zeros(nSines,ceil(TuneLength/n2));
SineAmp = zeros(nSines,ceil(TuneLength/n2));
pitch = zeros(l,l+ceil(pend/nl));
pitcherr = zeros(l,l+ceil(pend/nl));

y--- arrays for the partial tracking

y--- arrays for the sinus) frequencies and amplitudes

y--- creating figures ---
if (exist(’fig1)))

end
if (exist(’fig2’))

h = f igure(1) ; set (h, ’position’, [IO, 45, 200, 2001) ;

10.3 Techniques 411

h = figure(2) ; set(h, ’position’, [lo , 320, 450, 3501);
axisFig2 = [0 MaxFreq MinMag 01; zoom on;
end
if(exist(’fig3’))

h = figure(3); set(h, ’position’, c220, 45, 550, 2001);
axisFig3 = [l l+ceil(pend/nl) 0 MaxFreql; zoom on;

end
if(exist(’fig4’))

h = figure(4); set(h, ’position’, C470, 320, 450, 3501);
axisFig4 = [0 MaxFreq MinMag 01 ; zoom on;

end
if(exist(’fig5’))

h = figure(5) ; set(h, ’position’, [220, 45, 550, 2001);
axisFig5 = [l l+ceil(pend/nl) 0 MaxFreql ; zoom on;

end

%--- plot the Blackman-Harris window
if (exist(’fig1’))
figure (1)
plot(20*log10(abs(fftshift(fft(bh92SINE2SINE)/bh92SINE2SINEsize))))
title(’B1ackman-Harris window’);xlabel(’Samples’);
ylabel(’Amplitude’)
end

tic

disp(’analyzing frame . . . ’1 ;
%Pmrwwmnrwvmnrwuuuwwu

while pincpend

grain = DAFx-in(pin+i:pin+wlLength).*wi(i:wlLength);

padgrain = zeros (N, 1) ;
padgrain(l:wiLength/2) = grain(wlLength/2+l:wiLength);
padgrain(N-wlLength/2+1 :N) = grain(1: wlLength/2) ;
x-- - fft computation
f = f ft (padgrain) ;
r = abs(f);
phi = angle(f) ;
ft = r.*exp(j*phi);

y--- D windowing

y--- I zero padding

%--- peak detection (and their plottings)
[ftloc, ftval]=PickPeaks(r(i:N/2),nPeaks,minSpacePeaks);

412 IO Spectral Processing

y--- calculate interpolated values (peak position,phase,amplitude)
[iftloc, iftphase, iftval] = . . .

interpolatedvalues (r,phi,N,zp,ftloc,ftval);

%--- pitch detection
[pitchvalue,pitcherror,isHarm] = . . .

pitch(i+pin/nl) = pitchvalue*isHarm;
pitcherr(l+pin/nl) = pitcherror;

pitchDetection (r,N,SR,nPeaks,iftloc,iftval);

%--- peaks tracking
if (pin==O) x- - - for the first frame

else x--- creating new born tracks
for i=l:nSines

nNewPeaks = nSines;

if (previousiloc (i)==O)
[previousiloc(i), previousival(i)] = CreateNewTrack . . .

nNewPeaks = nNewPeaks - l;
end

(iftloc, iftval, previousiloc, previousival, nSines, MinMag);

end

y--- simple Peak tracker
[iloc,ival,iphase,previousiloc,previousival,distminindex] = . . .
peakTrackSimple(nSines,nPeaks,N,SR,pitchvalue,iftloc, . . .
iftval,iftphase,isHarm,previousiloc,previousival);

end

y--- savings
previousival = ival;
previousiloc = iloc;
SineFreq(:,i+pin/nl)=max((iloc-l)/N*SR,O.);

SineAmp (: , i+pin/ni) =max (ival , MinMag) ;
% frequency of the partials

% amplitudes of the partials

syniloc(i:nSines) = max(1,iloc);
synival(1:nSines) = ival;

10.9 Techniques 413

y--- , residual computation
resfft = ft;
if (isHarm==l)
resfft=resfft-sinefillspectrum(iloc,ival,iphase,nSines, . . .

end
wllength, zp, bh92SINE2SINE, bh92SINE2SINEsize);

X - - - figures
if(exist(’fig2’))
f igure(2) ; clf ; hold on

plot((l:N/2)/N*SR, 20*loglO(r(l:N/2)));
% plot: FFT of the windowed signal (Hz,dB)

for 1=1:nPeaks % plot: the peaks detected

[20*logIO(ftval(l)) ,MinMag-l] ,’r:x’);
end

plot([ftloc(l)-l ftlo~(l)-I]/N*SR, . . .

for l=l:nSines % plot: sines tracked and the residual part
plot([iloc(l)-l, iloc(l.)-I]/N*SR, [ival(l), MinMag-l] , ’k’)
end
plot((l:N/2)/N*SR, 20*10g10(abs(resfft(1:N/2))),’g7);
if (isHarm) plot: true pitch of each harmonic
for l=l:nSines
plot([pitchvalue*l, pitchvalue*l], [l, MinMag-l] , ’y: ’)

end
end
xlabel(’Frequency (Hz) ’) ; ylabel(’Magnitude (dB) ’) ; axis (axisFig2) ;
title(’Peak detection and tracking for one frame’); drawnow
end

%--- phase computation
if (pin > 0)

for i=l:nSynSines

ifreq = (previoussyniloc(distminindex(i))+ syniloc(i))/2;

freq = (ifreq-l)/N*SR; % freq in Hz (if loc=l --> freq=O)
currentiphase(i)=unwrap2pi(previousiphase(distminindex(i))+ ...

if (syniloc (i) “=O>

average bin

414 10 Spectral Processing

2*pi*freq*frametime);
end
end

end

previoussynival = synival;
previoussyniloc = syniloc;
previousiphase = currentiphase; .

x--- residual computation
respadgrain=real(ifft(resfft));
resgrain=[respadgrain(N-~lLength/2+1:N) ; . . .
respadgrain(l:wlLength/2)~./w2(i:wlLength);
ressynthgrain=wt2(l:n2*2).*resgrain(wlLength/2-n2:wlLength/2+n2-1);
DAFx~outres(pout+i:pout+n2*2)=DAFx~outres(pout+l:pout+n2*2)+ . . .

ressynthgrain;

y--- I sinusoidal computation
sinpadgrain=real (iff t (padsynthf t)) ;
singrain=[sinpadgrain(N-~lLength/2+I:N); . . .

sinsynthgrain=wt2(1 :n2*2) . *singrain(wlLength/2-n2: wlLength/2+n2-1) ;
DAF~~outsine(pout+l:pout+n2*2)=DAFx_outsine~pou~+~:p~~~+~~*~~+ . . .

sinpadgrain(l:wlLength/2)]./~2(i:wlLength);

sinsynthgrain;

x-- - figure with original signal and transformed signal FFT
synthr = abs(fft(respadgrain + sinpadgrain));
if (exist (’f ig4’))
figure(4); clf; hold on
plot((l:N/2)/N*SR, 20*loglO(r(l:N/2)),’b:’); axis(axisFig4);
plot((l:N/2)/N*SR, 20*log10(synthr(l:N/2)),’r’);
figure (4) ;
xlabel(’Frequency (Hz)’);ylabel(’Magnitude (dB)’);axis(axisFig4);
title(’FFT of original (blue) and transformed (red) signals’);
drawnow
end

%--- increment loop indexes
pin = pin + nl;

10.4 FX and Transformations 415

pout = pout + n2;
disp(pin/nl) ;

end
% w v w w v v v w m n n n n n r v v r n n r w u
toc

x===== write output sounds =====
DAFx-in = DAFx-in(wlLength/2-nl:length(DAFx-in));
% remove the zeros added for the process
DAFx-outresynth = DAFx-outsine(l:TuneLength)+ . . .
rgain*DAFx-outres(1:TuneLength);
mm = max(abs(DAFx-outresynth)) ;
wavwrite(DAFx-outresynth/mm, SR, ’DAFx-out.wav’);
wavwrite(DAFx-outsine/mm, SR, ’DAFx-outsine.wav’);
wavwrite(DAFx-outres/m, SR ,’DAFx-outres.wav’);

if (exist (’f ig3’)==0 t exist (’f ig5’))% plot : trackings of partials
% only at the end of the process

figure(5); clf; hold on
PlotTracking(SineFreq(:,l:l+pend/nl), pitch(l:l+pend/nl));
xlabel(’Frame number ’) ; ylabel(’Frequency (Hz) ’) ; axis (axisFig5) ;
title(’Peak tracking’) ; drawnow
end

if(exist(’fig6’)) % plot the input signal, its sinus

figure (6)
subplot(4,1,1); plot(DAFx-in); xlabel(’input signal’);
subplot (4, l ,2) ; plot (DAFx-outsine) ;xlabel(’sinus part’) ;
subplot (4, l, 3) ; plot (DAFx-outres) ;xlabel (’residual part ’> ;
subplot (4,1,4) ; plot (DAFx-outresynth) ;
xlabel(’resynthetized signal’);
end

% and its residual part, and the transformed signal

10.4 FX and Transformations

In this section we introduce a set of effects and transformations based on the
analysis-synthesis framework introduced throughout this chapter. All of them are
accompanied by their corresponding Matlab code. In order to use them, you just
have to add the code of the effect to use under the “= Transformation =” line in
the main analysis-synthesis application code of the previous section.

416 10 Spectral Processing

10.4.1 Filtering with Arbitrary Resolution

Filters are probably the paradigm of a “classical” effect. Many different implemen-
tations are provided in the general DSP literature and in the previous chapters of
this book. Here we introduce a different approach that differs in many aspects from
the classical one.

For our “filter” implementation, we take advantage of the sinusoidal plus residual
model in order to modify the amplitude of any arbitrary partial present in the
sinusoidal component.

For example, we can implement a bandpass filter defined by (x, g) points where z
is the frequency value in Hertz and g is the amplitude factor to apply (see Fig. 10.19).
In the example code given below, we define a bandpass filter with passband range
[2100 30001.

Ill, 4 2 0 5 10 15 20 f in kHz

Figure 10.19 Bandpass filter with arbitrary resolution.

M-file 10.15 (chlO-t-filter-arb.m)
x===== Filtering with arbitrary resolution =====
Filter = [0 2099 2100 3000 3001 22050 ; 0 0 l 1 0 0 1 ;
[syniloc,ind] = sort (iloc) ;
FilterEnvelope = interpi (Filter(l, :) ’ ,Filter(2, : ’ , syniloc/N*SR) ;
synival = ival (ind) +(2O*loglO (max(FilterEnvelope, 10--9)) ;
synival (ind) = synival ;
syniloc(ind) = syniloc;

As shown, our filter does not need to be characterized by a traditional transfer
function, and more complex functions can be defined by summing delta-functions.

For example, the following code filters out the even partials of the input sound.
If applied to a sound with a broadband spectrum, like a vocal sound, it will convert
it to a clarinet-like sound.

M-file 10.16 (chl0~t~voice2clar.m)
X=== voice to clarinet ===
syniloc = iloc;
synival = ival;
if (isHarm == I)

10.4 FX and Transformations 417

for i=l:nSines
harmNum = round(((iloc(i)-l)/w1Length*SR/2)/pitchvalue);
if (mod (harmNum, 2)==0) % case of an even harmonic number

end
synival(i) = MinMag;

end
end

10.4.2 Partial Dependent Frequency Scaling

In a similar way, we can apply a frequency scaling to the sinusoidal components of
our modeled sound. In that way, we can transpose all the partials in the spectrum or
reproduce pseudo-inharmonicities like frequency stretching of higher partials, which
is representative of a piano sound.

In this first example we introduce a frequency shift factor to all the partials of
our sound (see Fig. 10.20). Note, though, that if a constant is added to every partial
of a harmonic spectrum, the resulting sound will be inharmonic.

t

Figure 10.20 Frequency shift of the partials.

M-file 10.17 (chlO-tfreqshift .m)
X==== Frequency Shift =====

fstretch = 300; % frequency shift in Hz
syniloc = iloc + round(f stretch/SR*N) ;
syniloc = syniloc.*(syniloc<=N/2);

Another effect we can implement following this same idea is to add a stretching
factor to the frequency of every partial. The relative shift of every partial will
depend on its original partial index, following the formula

f . - fz . f (i - 1) 2 - stretch ' (10.22)

Figure 10.21 illustrates this frequency stretching.

M-file 10.18 (chiO-t2reqstretch.m)
x===== Frequency Stretch =====

fstretch = 1.1;
[syniloc,ind] = sort(i1oc);
syniloc = syniloc.*((fstretch) .-[O:nSines-l] ' > ;
syniloc = syniloc.*(syniloc<=N/2);

418 IO Spectral Processing

4 4

Figure 10.21 Frequency stretching.

In the same way, we can scale all the partials multiplying them by a given scaling
factor. Note that this effect will act as a pitch shifter without timbre preservation.

M-file 10.19 (chlO-tfreqsca1e.m)
x==== Frequency Scale ====S

fscale = 1.6; % frequency scaling factor
syniloc = iloc * fscale;
syniloc = syniloc.*(syniloc<=N/2);

10.4.3 Pitch Transposition with Timbre Preservation

In section 9.3.4, a technique was introduced in order to transpose the pitch of a
sound without affecting its timbre. Here we use a similar technique in order to
preserve the spectral shape of only the sinusoidal component. For that reason we
scale the frequency of each partial applying the original spectral shape.

M-file 10.20 (chlO-t-pitchtimbre.m)
l===== Pitch transposition with timbre preservation =====
if (isHarm == l)
pt = 2.; % pitch transposition factor
[spectralShape,shapePos]=CalculateSpectralShape(iloc, . . .
ival , MinMag , N) ;
[syniloc, synival]= PitchTransposition(iloc,ival, . . .
spectralShape,shapePos,pt,N);

CombCoef = 1;
if (isHarm==l)
resf f t = CombFilter (resf f t , N , SR/ (pitchvalue*pt) , CombCoef) ;
end

"/-- e comb filtering the residual

end

The function PitchTransposition is given by:

M-file 10.21 (PitchTransposition.m)

function [syniloc,synival]=PitchTransposition(iloc,ival, . . .

syniloc = iloc.*pt;

x===== Pitch Transposition =====

spectralShape,shapePos,pt,N)

10.4 FX and Transformataons 419

syniloc = syniloc. *(syniloc<=N/2) ;
%lin. interpol. of the spectral shape for synival computation
if shapePos > 1
synival=interpl (spectra:lShape(1, : ’ , spectralshape (2, : ’ , syniloc) ;
else
synival = ival;
end

The function CombFilter is implemented as:

M-file 10.22 (CombFi1ter.m)
function combFT = CombF:ilter(FT, N, delay, ampl)
X===> Comb filter in the frequency domain
% data:
% combFT: FT of the signal comb filtered
% FT : FT of the signal to filtered
% N: size of the FT
% delay: delay to apply, in samples
% ampl: amplitude of the multiplying coefficient (in CO, l])
coef = ampl * exp (-2* j *:pi*delay* (0 : N-l) /N) ’ ;
combFT = FT . * (1 + coef + coef . -2) ;

Pitch Discretization to Temperate Scale

An interesting effect can be accomplished by forcing the pitch to take the nearest
frequency value of the temperate scale. It is indeed a very particular case of pitch
transposition where the pitch is quantified to one of the 12 semitones of an octave.
This effect is widely used on vocal sounds for dance music and is many times referred
to with the misleading name of vocoder effect.

M-file 10.23 (chlO-t3itchDiscrete.m)
X===== Pitch discretization to temperate scale =====
if (pitchvalue -= 0)
nst = round(l2*log(pitchvalue/55)/log(2)) ;
discpitch = 55*((2̂ (1/12))̂ nst); % discretized pitch
pt = discpitch/pitchvalue ; % pitch transposition factor
[spectralShape,shapePos]=CalculateSpectralShape(iloc,ival, . . .
MinMag,N);
[syniloc, synival]=PitchTransposition(iloc,ival,spectralShape, . . .
shapePos,pt,N);

CombCoef = 1;
if (isHarm==l)
resfft = CombFilter(resfft, N, SR/(pitchvalue*pt), CombCoef);
end

y--- comb filtering the residual

end ;

420 IO Spectral Processing

10.4.4 Vibrato and Tremolo

Vibrato and tremolo are common effects used in different kinds of acoustical instru-
ments, including the human voice. Both are low frequency modulations: vibrato is
applied to the frequency and tremolo to the amplitude of the partials. Note, though,
that in this particular implementation, both effects share the same modulation fre-
quency.

M-file 10.24 (chlO-t-vibtrem.m)

if (isHarm == l)

va = IO; % vibrato depth in percentil
td = 3; % tremolo depth in dB
synival = ival + td*sin(2*pi*vtf*pin/SR); % tremolo
pt=l+va/200*sin(2*pi*vtf*pin/SR);% pitch transposition factor
[spectralshape, shapePos] = CalculateSpectralShape(iloc, . . .
ival,MinMag,N);
[syniloc,synival]=PitchTransposition(iloc,ival,spectralShape, . . .
shapePos,pt,N);

X===== vibrato and tremolo =====

vtf = 5; % vibrato-tremolo frequency in Hz

y--- I comb filtering the residual
CombCoef = l;
resfft = CombFilter(resfft, N, SR/(pitchvalue*pt), CombCoef);

end

10.4.5 Spectral Shape Shift

As already seen in the previous chapter, many interesting effects can be accom-
plished by shifting the spectral shape or spectral envelope of the sinusoidal compo-
nents of a sound. This shift is performed in such a way that no new partials are
generated, just the amplitude envelope of the sinusoidal components is modified (see
Fig. 10.22). In the following code we implement a shift of the spectral envelope by
just modifying the amplitude of the partials according to the values of the shifted
version of the spectral shape. I; t

L
Figure 10.22 Spectral shape shift of value A f.

M-file 10.25 (chlO-t-SpectSS .m)
X===== Spectral Shape Shift (positive or negative) =====

10.4 FX and Transformations 421

sss = -200; % spectral shape shift value in Hz
y--- spectral shape computation
[spectralShape,shapePos]=CalculateSpectralShape(iloc, . . .
ival , MinMag , N) ;

syniloc = zeros (nsines, 1) ;
if shapePos > 1
[shiftedSpectralShape,shapePos]=SpectralShapeShift~sss, ...
iloc, ival, spectralshape, shapePos, N, SR);
end
syniloc = iloc;
%linear interpol. of the spectral shape for synival computation
if shapePos l
synival = interpl(shiftedSpectralShape(l,l:shapePos+l)’,
shiftedSpectralShape(2,1:shapePos+1)’, syniloc, ’linear’);
else
synival = ival;
end

y--- I spectral shape shift

The function SpectralShapeShift is implemented as follows:

M-file 10.26 (SpectralShapeShift .m)

function [shiftedSpectralShape,shapePos]=SpectralShapeShift(sss, . . .
iloc, ival, spectralshape, shapePos, N, SR)
ShiftedSpectralShape = spectralshape;
sssn = round (sss*N/SR);% spectral shape shift in number of bins
if sssn > 0

X===== Spectral Shape Shift =====

shif tedSpectralShape (.l ,2 : shapePos) =min(N/2, . . .
spectralshape (l, 2 : shapePos) + sssn) ;
for i=shapePos:-1:l

shapePos = i;
break;

if shiftedSpectralShape(1,i) < N/2

end;
end ;

shiftedSpectralShape(l,2:shapePos)= . . .
max(l,spectralShape(l,2:shapePos)+ sssn);
for i=l:shapePos

else

if shiftedSpectralShape(1,i) > 1

shiftedSpectralShape(l>i:shapePos+l);
shiftedSpectralShape(l,2:2+shapePos+l-i) = . . .

shapePos = shapePos-(i-2);
break;

end ;

422 l 0 Spectral Processing

end ;
end ;

10.4.6 Gender Change

Using the results of 10.4.3 and 10.4.5 we can change the gender of a given vocal
sound. Note how by combining different “basic” effects we are able to step higher in
the level of abstraction and get closer to what a naive user could ask for in a sound
transformation environment, such as having a gender control on a vocal processor.

In this implementation, we apply two transformations in order to convert a male
voice into a female one (variable tr=’m2f ’). The first one is a pitch transposition
an octave higher. The other one is a shift in the spectral shape . The theoretical
explanation to this effect is that women change their formant (resonant filters)
frequencies depending on the pitch. That is, when a female singer rises up the
pitch, the formants move along with the fundamental frequency.

To convert a female into a male voice (variable tr= ’ f 2m’) we also apply a pitch
transposition and a shift in the spectral shape. This shifting has to be applied
in such a way that the formants of the female voice remain stable along different
pitches.

M-file 10.27 (chlO-t3ender.m)
X===== gender change: woman to man =====
tr=’m2f’; %male to female
%tr=’f2m’ ; %female to male
if (isHarm == I)
pitchmin=lOO;
pitchmax=500;
sssmax = 50;
if (pitchvaluecpitchmin)
sss = 0;
elseif (pitchvalue>pitchmax)
sss = sssmax;
else
sss = (pitchvalue-pitchmin)/((pitchmax-pitchmin)/sssmax);
end
if (tr==’f2m’)
sss=-sss;
pt=O .5;

pt=2 ;

y--- spectral shape computation

y --- spectral shape shift

else

end

~spectralShape,shapePos]=CalculateSpectralShape(iloc,ival,MinMag,N);

syniloc = zeros(nSines,l);

10.4 FX and Transformations 423

if shapePos > 1
[shiftedSpectralShape,shapePos]=SpectralShapeShift(sss,iloc, ...

end
syniloc = iloc;
%linear interpol. of the spectral shape for synival computation
if shapePos > 1
synival = interpl(shiftedSpectralShape(l,l:shapePos+l)’, . . .
shiftedSpectralShape(2,1:shapePos+l)’, syniloc, ’linear’) ;
else
synival = ival;
end
%--- pitch transposition
pt = 0.5;
[syniloc, synival] = PitchTransposition(iloc,ival,spectralShape, . . .
shapePos,pt ,N) ;
%--- comb filtering the residual
CombCoef = 1;
if (isHarm==l)
resf f t = CombFilter (resf f t , N, SR/ (pitchvalue*pt) , CombCoef) ;
end
end

ival,spectralShape,shapePos,N,SR);

10.4.7 Harmonizer

In order to create the effect of a harmonizing vocal chorus, we can add pitch-shifted
versions of the original voice (with the same timbre) and force them to be in tune
with the original melody.

M-file 10.28 (chiO-tharm0nizer.m) r===== harmonizer ===X=

nVoices = 2 ;
nSynSines = nSines*(l+nVoices);
[spectralshape, shapePos] = CalculateSpectralShape(. . . .

syniloc (l : nSines) , synival(1: nSines) , MinMag, N) ;
synival(1:nSines) = synival(1:nSines) - 100;
pt = [l . 3 l .5] ; 1 pitch transposition factor
ac = [-l -21; % amplitude change factor in dB
for i=l:nVoices

[tmpsyniloc, tmpsynival] = PitchTransposition(. . .
syniloc(l:nSines), synival(l:nSines), . . .

spectralshape, shapePos, pt (i) , N) ;
tmpsynival = tmpsynival + ac(i);
syniloc(nSines*i+l:nSines*(i+l)) = tmpsyniloc;
synival(nSines*i+l.:nSines*(i+i)) = tmpsynival;
if (pin > 0)

424 10 Spectral Processing

distrninindex(nSines*i+i:nSines*(i+l))= . . .
distminindex(i:nSines)+nSines*i;

end
end

10.4.8 Hoarseness

Although hoarseness is sometimes thought of as a symptom of some kind of vocal
disorder [Chi94], this effect has sometimes been used by singers in order to resemble
the voice of famous performers (Louis Armstrong or Tom Waits, for example). In
this elemental approximation, we accomplish a similar effect by just applying a gain
to the residual component of our analysis.

M-file 10.29 (chlO-th0arse.m)
rgain = 2; % gain factor applied to the residual

10.4.9 Morphing

Morphing is a transformation with which, out of two or more elements, we can
generate new ones with hybrid properties.

With different names, and using different signal processing techniques, the idea
of audio morphing is well known in the computer music community [Ser94, THH95,
Osa95, SCL961. In most of these techniques, the morph is based on the interpolation
of sound parameterizations resulting from analysis/synthesis techniques, such as the
short-time Fourier transform (STFT), linear predictive coding (LPC) or sinusoidal
models (see cross-synthesis and spectral interpolation in sections 9.3.1 and 9.3.3,
respectively).

In the following Matlab code we introduce a morphing algorithm based on the
interpolation of the frequency, phase, and amplitude of the sinusoidal component of
two sounds. The factor alpha controls the amount of the first sound we will have
in the resulting morph. Different controlling factors could be introduced for more
flexibility. Note, that if the sounds have different durations, the sound resulting
from the morphing will have the duration of the shortest one.

Next, we include the code lines that have to be inserted in the transformation
part. However, the morph transformation requires two or more inputs we have not
included in order to keep the code short and understandable. Therefore the code
will have to include the following modifications:

1. Read two input sounds:

DAFx-in1 = wavread(’sourcel.wav’);
DAFx-in2 = wavread(’source2.wav’);

2. Analyze both sounds. This means every analysis code line will have to be
duplicated using the variable names:

10.4 FX and Transformations 425

iloci, iloc2, ivall,, ival2,
iphasei, iphase2, synilocl, syniloc2, synivali, synival2,
syniphasei, syniphase2, distminindexl, distminindex2,
previousiloci, previousiloc2, previousivali, previousival2,
pitchl, pitch2, and pitcherrorl, pitcherror2.

M-file 10.30 (chlO-tm0rph.m)
A--- Morphing ===
x- - - sorting the frequencies in bins; iloci, iloc2
[synilocl , indi] = sort (iloci) ;
synivall = ivall (indl) ;
syniphasei = iphasei(ind1);
distminindexi = distminindexi (indi) ;
[syniloc2, ind2] = sort (iloc2) ;
synival2 = ival2(ind2);
syniphase2 = iphase2 (ind2) ;
distminindex2 = distminindex2 (ind2) ;
%--- interpolation -----
alpha = 0.5; 1 interpolation factor
syniloc = alpha*synilocl + (i-alpha)*syniloc2;
synival = alpha*synivall + (l-alpha)*synival2;
%--- pitch computation
isHarmsyn = isHarmi*isHarm2;
if (isHarmsyn ==l)
npitchpeaks = min(50,nPeaks);
[pitchvalue ,pitcherror] =
TWM(syniloc(l:npitchpeaks),synival(l:npitchpeaks),N,SR);
else
pitchvalue = 0;
pitcherror = 0;
end
if (pin==O) x--- for the first frame
nNewPeaks = nSines;
else
x- - - creation of new born tracks
for i=i:nSines

@ ---

if (previoussyniloc(i)==O)
[previoussyniloc(i),previoussynival(i~]=CreateNewTrack . . .
(syniloc, synival ,previ.oussyniloc,previoussynival,nSines ,MinMag) ;
nNewPeaks = nNewPeaks - 1;
end
end
x-- - peak tracking of the peaks of the synthetized signal
[syniloc,synival,syniphase,previoussyniloc,previoussynival, . . .
distminindex]=peakTrackSimple (nSines,nPeaks,N,SR,pitchvalue, ...
syniloc,synival,syniphase,isHarmsyn,previoussyniloc, . . .

426 10 Spectral Processing

previoussynival);
end

10.5 Content-Dependent Processing

The hierarchical data structure that includes a complete description of a given sound
offers many possibilities for sound transformations. Modifying several attributes at
the same time and at different abstraction levels achieve, as has already been pointed
out in the previous section, most musically or end-user meaningful transformations.
Higher-level transformations can refer to aspects like sound character, articulation
or expressive phrasing. These ideas lead to the development’ of front ends such as
graphical interfaces or knowledge-based systems [ALS97, ALS981 that are able to
deal with the complexity of this sound representation.

In this section we introduce two applications that have been developed with
these ideas in mind: a singing voice conversion and a time scaling module.

10.5.1 Real-time Singing Voice Conversion

Here we present a very particular case of audio morphing. We want to morph, in
real-time, two singing voice signals in such a way that we can control the resulting
synthetic voice by mixing some characteristics of the two sources. Whenever this
control is performed by means of modifying a reference voice signal matching its
individual parameters to another, we can refer to it as voice conversion [ANSK88].

In such a context, a karaoke-type application, in which the user can sing like
his/her favorite singers, was developed [CanOO]. The result is basically an automatic
impersonating system that allows the user to morph his/her voice attributes (such
as pitch, timbre, vibrato and articulations) with the ones from a pre-recorded singer,
which from now on we will refer to as target.

In this particular implementation, the target’s performance of the complete song
to be morphed is recorded and analyzed beforehand. In order to incorporate the
corresponding characteristics of the target’s voice to the user’s voice, the system first
recognizes what the user is singing (phonemes and notes), looks for the same sounds
in the target performance (i.e. synchronizing the sounds), interpolates the selected
voice attributes, and synthesizes the morphed output voice. All this is accomplished
in real time.

Figure 10.23 shows the general block diagram of the voice impersonator system.
The system relies on two main techniques that define and constrict the architec-
ture: the SMS framework (see 10.2.2) and a Hidden Markov model-based Speech
Recognizer (SR). The SMS implementation is responsible for providing a suitable
parameterization of the singing voice in order to perform the morph in a flexible and
musically-meaningful way. On the other hand, the SR is responsible for matching
the singing voice of the user with the target.

10.5 Content-Dependent Processing 427

Morph 8 Synthesis

Alignment Analysis

Analysis 8 Alignment

Figure 10.23 System block diagram.

Let us take an overview of the whole process. Before we can morph a particular
song, we have to supply information about the song to be morphed and the song
recording itself (Target Information and Song Information). The system requires
the phonetic transcription of the lyrics, the melody as MIDI data, and the actual
recording to be used as the target audio data. Thus, a good impersonator of the
singer that originally sang the song has to be recorded. This recording has to be an-
alyzed with SMS, segmented into morphing units (phonemes), and each unit labeled
with the appropriate note and phonetic information of the song. This preparation
stage is done semi-automatically, using a non-real-time application developed for
this task.

Once we have all the required inputs set we can start processing the user’s
voice. The first module of the running system includes the real-time analysis and
the recognition/alignment steps. Each analysis frame, with the appropriate param-
eterization, is associated with the phoneme of a specific moment of the song and
thus with a target frame. Once a user frame is matched with a target frame, we
morph them by interpolating data from both frames and we synthesize the output
sound. Only voiced phonemes are morphed and the user has control over which
parameters are interpolated, and by how much. The frames belonging to unvoiced
phonemes are left untouched, thus always having the user’s unvoiced consonants in
the output.

Several modifications are done to the basic SMS procedures to adapt them to the
requirements of the impersonator system. The major changes include the real-time
implementation of the whole analysis/synthesis process with a processing latency
of less than 30 milliseconds and the tuning of all parameters to the particular
case of the singing voice. These modifications include the extraction of higher-level
parameters meaningful in the case of the singing voice and that will be later used
in the morphing process.

428 10 Spectral Processing

The system includes an Automatic Speech Recognizer (ASR) based on phoneme-
base discrete Hidden Markov models in order to solve the matching problem. This
ASR has been adapted to handle musical information and works with very low delay
[LCB99] since we cannot wait for a phoneme to be finished before it is recognized,
moreover, we have to assign a phoneme to each frame. This would be a rather
impossible/impractical situation if it were not for the fact that the lyrics of the
song are known beforehand. This reduces a large portion of the search problem:
all the possible paths are restricted to just one string of phonemes, with several
possible pronunciations. The problem is cut down to the question of locating the
phoneme in the lyrics and positioning the start and end points.

As well as knowing the lyrics, musical information is also available. The user
is singing along with the music, and hopefully according to a tempo and melody
already specified in the score. Thus, we also know the time at which a phoneme is
supposed to be sung, its approximate duration, its associated pitch, etc. All this
information is used to improve the performance of the recognizer and also allows
resynchronization, for example, in the case of a singer skipping a part of the song.

Depending on the phoneme the user is singing, a unit from the target is se-
lected. Each frame from the user is morphed with a different frame from the target,
advancing sequentially in time. Then the user has the choice of interpolating the
different parameters extracted at the analysis stage, such as amplitude, fundamen-
tal frequency, spectral shape, residual signal, etc. In general, the amplitude will not
be interpolated, thus always using the amplitude from the user and the unvoiced
phonemes will not be morphed either, thus always using the consonants from the
user. This will give the user the feeling of being in control. This recognition and
matching process is illustrated in Fig. 10.24.

Figure 10.24 Recognition and matching of morphable units.

Whenever the spectral shape is interpolated, and the morph factor is set around
50 percent, the resulting spectral shape is smoothed and loses much of its timbre
characteristic. This problem can be solved if formants are included in the spectral
shape model and they are taken into account in the interpolation step.

10.5 Content-Dependent Processing 429

In most cases, the durations of the user and target phonemes to be morphed will
be different. If a given user's phoneme is shorter than the one from the target, the
system will simply skip the remaining part of the target phoneme and go directly
to the articulation portion. 111 the case when the user sings a longer phoneme than
the one present in the target data, the system enters in the loop mode. Each voiced
phoneme of the target has a loop point frame, marked in the pre-processing, non-
real time stage. The system uses this frame for loop-synthesis in case the user sings
beyond that point in the phoneme. Once we reach this frame in the target, the rest
of the frames of the user will be interpolated with that same frame until the user
ends the phoneme. This process is illustrated in Fig. 10.25.

Selected frame
for looping

n

'.
1 Normal morphing 1 Loop-mode morphing"..

I *q User

'.

U
Amplitude of each user's frame
Spectral shape of target's frame

Pitch of target's frame +delta pitch from table

Figure 10.25 Loop synthesis diagram.

The frame used as a loop frame requires a good spectral shape and, if possible,
a pitch very close to the note that corresponds to that phoneme. Since we keep
a constant spectral shape, are have to do something to make the synthesis sound
natural. The way we do it is by using some "natural" templates obtained from the
analysis of a longer phoneme that are then used to generate more target frames to
morph with the loop frame. For example, one feature that adds naturalness is pitch
variations of a steady state note sung by the same target. These delta pitches are
kept in a look-up table whose first access is random and consecutive values are read
afterwards. Two tables are kept, one with variations of steady pitch and another
one with vibrato to generate target frames.

Once all the chosen parameters have been interpolated in a given frame, they
are added to the basic synthesis frame of the user. The synthesis is done with the
standard synthesis procedurles of SMS.

10.5.2 Time Scaling

Time scaling an audio signal means changing the length of the sound without affect-
ing other perceptual features, such as pitch or timbre. Many different techniques,

430 IO Spectral Processing

both in time and frequency domain, have been proposed to implement this effect.
Some frequency domain techniques yield high-quality results and can work with
large scaling factors. However, they are bound to present some artifacts, like phasi-
ness, loss of attack sharpness and loss of stereo image. In this section we will present
a frequency domain technique for near lossless time-scale modification of a general
musical stereo mix [BonOO].

The Basic System

The general block diagram of the system is represented in Fig. 10.26. First, the
input sound is windowed and applied to the FFT which gives the analysis frame
AF,, that is, the spectrum bins and the amplitude and phase envelopes (n is the
analysis frame index). Then the time scaling module generates the synthesis frame
SF, that is fed to the inverse FFT (IFFT, m is the synthesis frame index). Finally,
the windowing and overlap-add block divides the sound segment by the analysis
window and multiplies it by the overlap-add window, to reconstruct the output
sound. The basics of the FFT/IFFT approach are detailed in Chapter 8.

Windowing

Overlap
& output

Figure 10.26 Block diagram of a general time scaling system based on the FFT/IFFT
approach.

It is important to remark that the frame rate used in both the analysis and
synthesis modules is the same, as opposed to the most broadly used time scaling
techniques in which a change of frame rate in synthesis is used in order to achieve
the effect. The window size and type must also be the same in both processes.

Figure 10.27 illustrates the operations for a time-scale stretching factor T S > 1,
and a time compression factor T S < 1. The horizontal axis corresponds to the
time of the center of the frame in the input audio signal. Therefore, when T S >
1, the time increments relative to the input audio signal will be shorter in the
synthesis than in the analysis frames, but the actual frame rate will be exactly the
same. Each synthesis frame points to the nearest look-ahead analysis frame. In some
cases, as shown in Fig. 10.27, an analysis frame is used twice (or more) while in
other cases some frames are never used. This technique will not add any artifacts,
provided the frame size we use is small enough and the sound does not present
abrupt changes in that particular region. In the case of a percussive attack, though,
a frame repetition or omission can be noticed regardless of the analysis frame size.
Therefore, some knowledge of the features of a sound segment is needed to decide
where this technique can or cannot be applied.

10.5 Content-Dependent Processing 43 l

Analysis
f r a m e 5 , .

S y n t h e z = L

TS < 1

frames

Analysis
frames Not used!

S y n t h e z f :/ i I
frames

Figure 10.27 Analysis and synthesis frames.

Figure 10.28 shows a detailed block diagram of the time scaling module. The
analysis frames AF,, containing the spectrum amplitude and phase envelopes, are
fed to the time scaling module. This module performs a peak detection and a peak
continuation algorithm (see 10.3.1) on the current and previous z-' amplitude en-
velopes. Then, only the peaks that belong to a sinusoidal track are used as inputs
to the spectrum phase generation module. Note that the time scaling module only
changes the phase, leaving the spectral amplitude envelope as it is.

Generation

Amplitude
Continuation

Detection

L Amplitude)

Figure 10.28 The time scaling module.

The phase of each peak is computed supposing that the frequency varies linearly
between two consecutive frames and that there is some phase deviation Acp (see
Fig. 10.29). The usage of the same frame rate in analysis and synthesis allows us to
suppose that the phase variation between two consecutive frames is also the same.

Common Problems and Solutions in Time Scaling

Chapter 8 has already introduced a spectral technique for time scaling based on
the phase vocoder approach. This kind of implementation presents very well-known
artifacts. In this section we will describe some of these problems and the solution
that the implementation we are proposing can provide.

432 10 Spectral Processing

f2
f '3

f '2

f '1

f 'Q

AF,.. AF,

n = Analysis frame index
m = Synthesis frame index

n
Figure 10.29 Peak continuation and phase generation.

Phasiness. In the phase vocoder implementation, the original frame has a flat
phase envelope around the peak because of the circular convolution of the analysis
window with the sinusoid. But after time scaling is applied, the phase loses its
original behavior. This artifact is introduced due to the fact that the phase of
each bin advances at different speed (see section 8.4.3). This loss of peak's phase
coherence is known as phasiness. To avoid this problem we can apply the original
relative behavior of the phase around the peak. As pointed out in [LD97], each peak
subdivides the spectrum into a different region, with a phase related to that of the
peak. The phase around each peak is obtained applying the delta phase function of
the original spectrum phase envelope (see Fig. 10.30).

Amplitude f. Amplitude f.

' AF, ' SF,

Figure 10.30 Original delta phase function around each peak.

Loss of attack transients. Another typical artifact of the phase vocoder ap-
proach is the smoothing of the attack transients. A possible solution is to modify the
sinusoidal plus residual model in order to model these transients [VM98]. Another
possible approach is not to time-scale the input signal on this kind of regions so
that the original timing is respected (see Fig. 10.31). Consequently, and in order to
preserve the overall scaling factor, a greater amount of scaling should be applied to
surrounding regions.

In order to apply the previous technique, it is necessa,ry to detect attack tran-
sients of the sound in an unsupervised manner. The computation of relative changes
of energy along several frequency bands can be used for that purpose. A low fre-
quency band could, for example, detect sharp bass notes, while a high frequency
band could be set to detect hits of a crash cymbal.

10.5 Content-Dependent Processing 433

FAST CHANGING REGION
2.-

Analysis frames 7 ”

SF,

Closest synthesis frame to AF,

Figure 10.31 Attack transient region.

The spectrum of the input signal is given by

X (s R u , k) = IX(sR,, IC)[. e j 4 s R - k) (10.23)

where the FFT has been sampled every R, samples in time, and S is the time index
of the short-term transform. If we define a set of frequency bands Bi(k), then the
energy of the i th band can be computed as

(10.24)

and the relative change of energy C (s , i) at frame S as

C (s , i) =
-2E(s - 2, ‘i) - E (s - 1, i) + E(. + 1, i) + 2E(s + 2, i)

E(% 4 . (10.25)

The maxima of C (s , i) over some threshold should then indicate the attack tran-
sients of the input signal at the desired band.

Frequency versus time resolution. As explained in 10.3.1, it is desirable to
have long windows in order to achieve a high frequency resolution, but also to have
short windows so to achieve a better time resolution. If the audio signal presents an
important low frequency component, the use of a long window is a must, because the
low frequency peaks will be t,oo close to be distinguishable if we use a short window.
On the other hand if we apply a very long window, the time scaling process will
add reverb and will smooth the sound.

The solution proposed is to use parallel windowing, that is, several analysis
channels (see Fig. 10.32). Each channel is the result of an FFT with a specific window
size, window type and zero-.padding. Obviously, the window should be longer for
low frequencies than for high frequencies. The peak detection process is applied to
each of the channels while the peak continuation takes care of the desired channel
frequency cuts, so it can connect peaks of different channels. Then the time scaling
module fills the spectrum of all the channels (amplitude and phase envelopes) and
applies a set of parallel filters Hk(f) that must add up to a constant (allpass filter).

If the cut-off frequency of a channel was close to a spectral peak, this would be
broken apart into two different channels and we would be introducing some kind

434 10 Spectral Processing

.

Figure 10.32 Multiple parallel windowing.

of artifacts. For that reason, and in order to guarantee that phase and amplitude
envelopes around the peak behave the way we expect, we need to provide our system
with time-varying frequency cuts. Each frequency cut is computed as the middle
point between the two closest peaks to the original frequency cut (see Fig. 10.33).

Synthesis Frame m-l Synthesis Frame m

Amolitude Arnolitude

Freq

/ Desired / Desired
Used frequency Used frequency

frequency
cut

cut frequency cut
cut

Figure 10.33 Variable phase frequency cut.

Loss of stereo image. In the case of stereo signals, if we process each one
of the channels independently, most of the stereo image is bound to be lost. This
artifact is mainly due to the fact that the time scaling process changes the phase
relationship between the two channels. Therefore, if we want to keep the stereo
image, it is necessary to preserve the phase and amplitude relationship between left
and right channels.

The fact that the system does not change the amplitude envelope of the spec-
trum guarantees that the amplitude relationship between channels will be preserved,
provided we always use frames with identical time tags for both channels. For that
purpose, we need to synchronize the attack transients between the two channels.

Figure 10.34 shows the simplified block diagram of the stereo time scaling sys-
tem. Notice that the number of FFT and IFFT operations is multiplied by two and,
as a consequence, the same happens to the processing time.

10.6 Conclusion 435

Right Windowing Right
input Overlap -output

Figure 10.34 Stereo time scaling.

Time-varying Time Scaling

The system presented can deal with time-varying scaling factors with no loss of
quality trade-off. The only significant change is that the time increments of the
synthesis frames in the input signal are not constant.

The application of time-varying tempo variations opens up many new and inter-
esting perspectives. The system could easily be adapted and used for alignment and
synchronization of two sound sources. Also, the amount of time scaling could be
used in a wise way to inspire emotions. For example, to increase the climax or the
suspense of a musical piece, by slowing or increasing the t,empo during certain frag-
ments. Another interesting application could be to control the time scaling factor
in the same way as the orchestra conductor does and play in real time a previously
recorded background with a live performance.

10.6 Conclusion

Throughout this chapter, we have shown how the use of higher-level spectral models
can lead to new and interesting sound effects and transformations. We have also
seen that it is not easy nor immediate to get a good spectral representation of a
sound, so the usage of this kind of approach needs to be carefully considered bearing
in mind the application and the type of sounds we want to process. For example,
most of the techniques presented here work well only on monophonic sounds and
some rely on the pseudo-harmonicity of the input signal.

Nevertheless, the use of spectral models for musical processing has not been
around too long and it has already proven useful for many applications, as the ones
presented in this chapter. TJnder many circumstances, higher-level spectral mod-
els, such as the sinusoidal plus residual, offer much more flexibility and processing
capabilities than more immediate representations of the sound signal.

In general, higher-level sound representations will offer more flexibility at the
cost of a more complex and time-consuming analysis process. It is important to
remember that the model of the sound we choose will surely have great effect on
the kind of transformations we will be able to achieve and on the complexity and
efficiency of our implementation. Hopefully, the reading of this chapter, and t,he
book as a whole, will guide the reader towards making the right decisions in order
to get the desired results.

436

Bibliography

IO Spectral Processing

[ALS97]

[ALS98]

[ANSK88]

[BonOO]

[Can981

[CanOO]

[Chi941

[Cox711

[DGR93]

[DH97]

[DQW

[FHCOO]

J.L. Arcos, R. Ldpez de MBntaras, and X. Serra. Saxex: a case-based
reasoning system for generating expressive musical performances. In
Proc. International Computer Music Conference, pp. 25-30, 1997.

J.L. Arcos, R. Ldpez de Mhntaras, and X. Serra. Saxex: a case-based
reasoning system for generating expressive musical performances. Jour-
nal of New Music Research, 27(3):194-210, September 1998.

M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara. Voice conversion
through vector quantization. In Proc. IEEE ICASSP-1988, pp. 655-
658, 1988.

J. Bonada. Automatic technique in frequency domain for near-lossless
time-scale modification of audio. In Proc. International Computer Mu-
sic Conference, pp. 396-399, 2000.

P. Cano. Fundamental frequency estimation in the SMS analy-
sis. In Proc. DAFX-98 Digital Audio Eflects Workshop, pp. 99-102,
Barcelona, November 1998.

P. Cano, A. Loscos, J. Bonada, M. de Boer, and X. Serra. Voice mor-
phing system for impersonating in karaoke applications. In Proc. In-
ternational Computer Music Conference, pp. 109-112, 2000.

D.G. Childers. Measuring and modeling vocal source-tract interac-
tion. IEEE Transactions on Biomedical Engineering, 41(7):663-671,
July 1994.

“ L . Cox. An algorithm for approximating convex functions by means
of first-degree splines. Computer Journal, 14:272-275, 1971.

Ph. Depalle, G. Garcia, and X. Rodet. Analysis of sound for additive
synthesis: tracking of partials using Hidden Markov models. In Proc.
International Computer Music Conference, pp. 94-97, 1993.

Ph. Depalle and T. Hdie. Extraction of spectral peak parameters us-
ing a short-time Fourier transform modeling and no sidelobe windows.
In Proceedings of the 1997 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, pp. 298-231, Monhonk, 1997.

Y. Ding and X. Qian. Sinusoidal and residual decomposition and resid-
ual modeling of musical tones using the QUASAR signal model. In
Proc. International Computer Music Conference, pp. 35-42, 1997.

K. Fitz, L. Haken, and P. Christensen. A new algorithm for bandwidth
association in bandwidth-enhanced additive sound modeling. In Proc.
International Computer Music Conference, pp. 384-387, 2000.

Bibliography 437

[Goo961

[Goo971

[Har78]

[HB98]

[Hest331

[LCB99]

[LD97]

[Mak75]

[MB94]

[MG75]

[MQ861

[Osa95]

[RD92]

[RRSC98]

[SB98]

M. Goodwin. Residual modeling in music analysis-synthesis. In Proc.
IEEE ICASSP-1996, pp. 1005-1008, Atlanta, 1996.

M. Goodwin. Adaptative Signal Models: Theory, Algorithms and Audio
Applications. PhD thesis, University of California, Berkeley, 1997.

F.J. Harris. On the use of windows for harmonic analysis with the
discrete Fourier transform. Proceedings IEEE, 66:51-83, 1978.

P. Herrera and -J. Bonada. Vibrato extraction and parameterization in
the spectral modeling synthesis framework. In Proc. DAFX-98 Digital
Audio Eflects Workshop, pp. 107-110, Barcelona, November 1998.

W. Hess. Pitch Determination of Speech Signals. Springer-Verlag, 1983.

A. Loscos, P. Cano, and J. Bonada. Low-delay singing voice alignment
to text. In Proc. International Computer Music Conference, pp. 437-
440, 1999.

J. Laroche and M. Dolson. About this phasiness business. In Proc.
International Computer Music Conference, pp. 55-58, 1997.

J . Makhoul. Linear prediction: a tutorial review. Proceedings of the
IEEE, 63(4):56:1-580, 1975.

R.C. Maher and J.W. Beauchamp. Fundamental frequency estimation
of musical signals using a two-way mismatch procedure. J . Acoust.
Soc. Am., 95(4):2254-2263, 1994.

J.D. Markel and A.H. Gray. Linear Prediction of Speech. Springer-
Verlag, 1975.

R.J. McAulay and T.F. Quatieri. Speech analysis/synthesis based on
a sinusoidal representation. IEEE Transactions on Acoustics, Speech
and Signal Processing, 34(4):744-754, 1986.

N. Osaka. Timbre interpolation of sounds using a sinusoidal model. In
Proc. International Computer Music Conference, pp. 408-411, 1995.

X. Rodet and]'h. Depalle. Spectral envelopes and inverse FFT syn-
thesis. Proc. 9tlrd AES Convention, San Francisco, AES Preprint No.
3393 (H-3), October 1992.

S. Rossignol, X. Rodet, J . Soumagne, J.-L. Collette, and Ph. Depalle.
Feature extraction and temporal segmentation of acoustic signals. In
Proc. International Computer Music Conference, 1998.

X. Serra and J. Bonada. Sound transformations based on the SMS high
level attributes. In Proc. DAFX-98 Digital Audio Effects Workshop,
pp. 138-142, Barcelona, November 1998.

438 10 Spectral Processing

[SCL96]

[Sed881

[Ser89]

[Ser94]

[Ser96]

[SS901

[Str80]

[THH95]

[VidSO]

[VM98]

[VMOO]

M. Slaney, M. Covell, and B. Lassiter. Automatic audio morphing. In
Proc. IEEE ICASSP-1996, pp. 1001-1004, 1996.

R. Sedgewick. Algorithms. Addison-Wesley, 1988.

X. Serra. A System for Sound Analysis/Transformation/Synthesis
based on a Deterministic plus Stochastic Decomposition. PhD thesis,
Stanford University, 1989.

X. Serra. Sound hybridization techniques based on a deterministic
plus stochastic decomposition model. In Proc. International Computer
Music Conference, pp. 348-351, 1994.

X. Serra. Musical sound modeling with sinusoids plus noise. In G.
De Poli, A. Picialli, S. T. Pope, and C. Roads (eds), Musical Signal
Processing, pp. 91-122, Swets & Zeitlinger Publishers, 1996.

www.iua.upf.es/"sms

J.O. Smith and X. Serra. PARSHL: an analysis/synthesis program for
non-harmonic sounds based on a sinusoidal representation. In Proc.
International Computer Music Conference, pp. 290-297, 1987.

X. Serra and J. Smith. Spectral modeling synthesis: a sound analy-
sis/synthesis system based on a deterministic plus stochastic decom-
position. Computer Music Journal, 14(4):12-24, 1990.

J. Strawn. Approximation and syntactic analysis of amplitude and fre-
quency functions for digital sound synthesis. Computer Music Journal,
4(3):3-24, 1980.

E. Tellman, L. Haken, and B. Holloway. Timbre morphing of sounds
with unequal numbers of features. J. Audio Eng. Soc., 43(9):678-689,
1995.

E. Vidal and A. Marzal. A review and new approaches for automatic
segmentation of speech signals. In L. Torres and others (eds), Signal
Processing V: Theories and Applications, pp. 43-53, Elsevier Science
Publishers, 1990.

T.S. Verma and T.H.Y. Meng. Time scale modification using a
sines+transients+noise signal model. In Proc. DAFX-98 Digital Audio
Effects Workshop, pp. 49-52, Barcelona, November 1998.

T.S. Verma and T.H.Y. Meng. Extending spectral modeling synthesis
with transient modeling synthesis. Computer Music Journal, 24(2):47-
59, 2000.

Chapter 11

Time and Frequency
Warping Musical Signals

G . Evangelista

11.1 Introduction

In this chapter we describe interesting audio effects that can be obtained by deform-
ing the time and/or the frequency axis. Whilst discrete-time warping techniques
were introduced in 1965 [Bro65], their interest in musical applications is fairly re-
cent. Time warping aims at deforming the waveform or the envelope of the signal
while frequency warping modifies its spectral content, e.g., by transforming an har-
monic signal into an inharmonic one or vice versa. The effects obtained by warping
often increase the richness of the signal by introducing detuning or fluctuation of
the waveform. The sounds from natural instruments like piano and drums already
possess this property. The wave propagation in stiff strings and membranes can ac-
tually he explained in terms of frequency warping. By warping these sounds one can
enhance or reduce their natural features. Even uninteresting synthetic sounds such
as pulse trains may be transformed into interesting sounds by warping. Frequency
warping is amenable to a time-varying version that allows us to introduce dynamic
effects such as vibrato, tremolo, Flatterzunge in flute.

The quality of warping ultimately depends on the warping map, i.e., on the func-
tion describing the deformat,ion of the time or frequency axis. Time and frequency
warping are flexible techniques that give rise to a tremendous amount of possibili-
ties, most of which are at present still unexplored from a musical point of view. By
choosing the proper map one can actually morph the sound of an instrument into
that produced by another instrument.

This chapter is divided into two main sections. In the first section we describe
the time and frequency warping operations and derive algorithms for computing

439

440 I 1 Time and Frequency Warping Musical Signals

these effects. In the second section we illustrate some of their musical applications
based on examples and case studies.

1 1.2 Warping

11.2.1 Time Warping

Suppose that we want to change the shape of a periodic waveform s (t) by moving
the amplitude values attained by the signal to other time instants. One can achieve
this by plotting the signal on an elastic sheet and by stretching and/or compressing
the sheet in different points along its horizontal direction. The waveshape appears as
if the original time axis had been deformed. Instants of time that were equidistant
now have a different time distribution. This deformation of the time axis called
time warping is characterized by a warping map O(t) mapping points of the original
t-axis into points of the transformed axis. An example of time warping a sinewave is
shown in Fig. 11.1. The figure is obtained by plotting the original signal along the
ordinates and transforming time instants into new time instants via the warping
map, obtaining the signal plotted along the abscissa axis. Notice that to one point
of the original signal there can correspond more points of the warped signal. These
points are obtained by joining time instants of the original signal to points on the
warping characteristic O(t) using horizontal lines. The corresponding warped time
instants are the value(s) of the abscissa corresponding to these intersection point(s).
The time warped signal is obtained by plotting the corresponding amplitude values
at the new time instants along the abscissa. In this example the signal sin(O(t))
may be interpreted as a phase modulation of the original sinewave. Time warping a
signal composed of a superposition of sinewaves is equivalent to phase modulating
each of the component sinewaves and adding them together. By time warping we
alter not only the waveshape but also the period of the signal. Clearly, the map is
effective modulo the period of the signal, that is, the map O(t) and the map

Figure 11.1 Time warping a sinewave by means of an arbitrary map O(t) .

11.2 Warping 44 1

where rem(x,T) denotes the remainder of the integer division of x by T , have
the same net effect on a T-periodic signal. More generally, we can time warp an
arbitrary, aperiodic signal s (t) via an arbitrary map, obtaining a signal

st,(t) = s(O(t))
whose waveshape and envelope may be completely different from the starting signal,
If the map is invertible, i.e., one-to-one, then

st,(O-'(t)) = s (t) .

That is, at time 7 = O-l (t) the time warped signal attains the same amplitude
value as that attained by the starting signal at time t .

Time warping transformations are useful for musical applications, e.g., for mor-
phing a sound into a new one in the time domain.

11.2.2 Frequency Warping

Frequency warping is the frequency domain counterpart of time warping. Given a
signal whose discrete-time Fourier transform (DTFT) is S(W) , we form the signal
spw(t) whose DTFT is

S f W (W) = S(@J)).
That is, the frequency spectrum of the frequency warped signal agrees with that of
the starting signal at frequencies that are displaced by the map O(w). If the map is
invertible, then

S f w (O - l (W)) = S(W)

The frequency warped signal is obtained by computing the inverse DTFT of the
warped frequency spectrum. In order to obtain a real warped signal from a real
signal, the warping map must have odd parity, i.e.,

e (- W) = -O(W).

In order to illustrate the features of frequency warping, consider a periodic signal s (t)
whose frequency spectrum peaks at integer multiples of the fundamental frequency
WO. The frequency spectrum. of the warped signal will peak at frequencies

G k = O-l(lCw0).

The situation is illustrated in Fig. 11.2, where the original harmonic frequencies are
represented by dots along the ordinate axis. The warped frequencies are obtained
by drawing horizontal lines from the original set of frequencies to the graph of O(W)
and by reading the corresponding values of the abscissa. As a result, harmonically
related partials are mapped into non-harmonically related ones. Furthermore, if
the frequency warping map is not monotonically increasing, one obtains effects
analogous to the foldover of frequencies. This is similar to that which is obtained
from a phase vocoder in which the frequency bands are scrambled in the synthesis of
the signal. However, the resolution and flexibility of the frequency warping method
are generally much higher than that of the scrambled phase vocoder.

442 11 Time and Frequency Warping Musical Signals

Figure 11.2 Frequency warping of a periodic signal: transformation of the harmonics into
inharmonic partials.

Energy Preservation and Unitary Frequency Warping

By frequency warping a signal one dilates or shrinks portions of its frequency spec-
trum. As a result, the areas under the spectral characteristics are affected. Percep-
tually this results in an amplification of certain bands and an attenuation of other
bands. This is depicted in Fig. 11.3 where the original narrow band spectrum of
Fig. 11.3(a) is dilated obtaining the dotted curve shown in 11.3(b). In order to cir-
cumvent this problem, which causes an alteration of the relative energy levels of the
spectrum, one should perform an equalization aimed at reducing the amplitude of
dilated portions and increasing that of shrunk portions of the spectrum. Mathemat-
ically this is simply achieved, in the case where the warping map is increasing, by
scaling the magnitude square of the DTFT of the warped signal by the derivative
of the warping map. In fact, the energy in an arbitrary band [WO, w1] is

By the simple change of variable W = @(O) in the last integral we obtain

where

(11.2)

is the DTFT of the scaled frequency warped signal. Equation (11.1) states the energy
preservation property of the scaled warped signal in any band of the spectrum: the
energy in any band [wg,w1] of the original signal equals the energy of the warped
signal in the warped band [@- l (wo) ,& l (w l)] . Thus, the scaled frequency warping
is a unitary operation on signals.

11 ..2 Warping 443

K)o20003ow40005000MKx);'000~9000
Frequency (Hz) Frequency (Hz)

Figure 11.3 Frequency warping a narrow band signal: (a) original frequency spectrum
and (b) frequency warped spectrum (dotted line) and scaled frequency warped spectrum
(solid line).

11.2.3 Algorithms for Warping

In sections 11.2.1 and 11.2.2 we explored basic methods for time warping in the time
domain and frequency warping in the frequency domain, respectively. However, one
can derive time and frequency warping algorithms in crossed domains. It is easy to
realize that time and frequency warping are dual operations. Once a time domain
algorithm for frequency warping is determined, then a frequency domain algorithm
for time warping will work the same way. This section contains an overview of
techniques for computing frequency warping. The same techniques can be used for
time warping in the dual domain. We start from the basic maps using the Fourier
transform and end up with time-varying warping using allpass chains in dispersive
delay lines.

Frequency Warping by Means of FFT

A simple way to implement the frequency warping operation on finite length discrete-
time signals is via the FFT algorithm. Let

denote the DFT of a length N signal s(n) . Consider a map 0 (W) mapping the
interval [-x, 7 r] onto itself and extend B (W) outside this interval by letting

B (W + 2k7r) = 6(w) + 2k7r, k integer

The last requirement is necessary in order to guarantee that the warped discrete
time signal has 27r-periodic Fourier transform

sfw(W + 2kT) = S (6 (W -k 2kT)) = S (6 (W) -b 2kT) = S (6 (W)) = sfw(W),

444 11 Time and Frequency Warping Musical Signals

i.e., Sfw(w) is the Fourier transform of a discrete-time signal. In order to obtain the
frequency warped signal we would need to compute S (6' (T)) and then perform
the inverse Fourier transform. However, from the DFT we only know S (W) at integer
multiples of g. The map 6' (W) is arbitrary and 6' (F) is not necessarily a multiple
of %. However, we may approximate 6' (9) with the nearest integer multiple of

i.e., we can define the quantized map 2 X

O4 (7) = F round [H g] 21rm 21r 21rm

The values S (0, (v)) are known from the DFT of the signal and we can compute
the approximated frequency warped signal by means of the inverse DFT:

Figure 11.4 Frequency warping by means of FFT: schematic diagram.

The diagram of the frequency warping algorithm via FFT is shown in Fig. 11.4. If
the warping map is an increasing function, one can introduce the equalization factor

_ I

as in (11.2) simply by multiplying S (0, (F)) by the factor dg I before
W= Slrm

processing with the IFFT block. The FFT algorithm for warping is ratheyefficient,
with a complexity proportional to Nlog N. However, it has some drawbacks. The
quantization of the map introduces distortion in the desired frequency spectrum,
given by repetitions of the same value in phase and magnitude at near frequencies.
These sum almost coherently and are perceived as beating components that have a
slow amplitude decay. In frequency warping signals one must pay attention to the
fact that the warped version of a finite length signal is not necessarily finite length.
In the FFT-warping algorithm, components that should lie outside the analysis
interval are folded back into this causing some echo artifacts. Furthermore, even if
the original warping map is one-to-one, the quantized map is not and the warping
effect cannot be undone without losses. The influence of the artifacts introduced by
the FFT-warping algorithms may be reduced by zero-padding the original signal in
order to obtain a larger value of N and, at the same time, a smaller quantization
step for 8, at the expense of an increased computational cost.

11.2 Warping 445

Dispersive Delay Lines

In order to derive alternate algorithms for frequency warping [Bro65,0J72], consider
the DTFT (11.2) of the scaled frequency warped version of a causal signal s (n) :

(11.3)

The last formula is obtained by considering the DTFT of the signal s (n) , replacing

w with 8(w) and multiplying by G. The warped signal Zfw(k) is obtained from

the inverse DTFT of gfW(u) :

Defining the sequences X,(k) as follows,

we can put (11.4) in the form

W

(11.4)

(11.5)

(11.6)
n=O

If we find a way of generating the sequences Xn(k), then we have a new algorithm
for frequency warping, which consists of multiplying these sequences by the signal
samples and adding the result. From (11.5) we have an easy way for accomplishing
this since

A,(w) := DTFT[X,](w) = An-l(w)e-je('"), (11.7)

with

Notice that the term e-je(u') has magnitude 1 and corresponds to an allpass filter.
The sequence &(IC) may be generated as the impulse response of the filter G. The
sequence Xn(k) is obtained by filtering X,-1 (k) through the allpass filter e - j e (w) .
This can be realized in the structure of Fig. 11.5 for computing the sequences Xn(k)
as the impulse responses of a chain of filters. In order to perform warping it suffices
to multiply each of the outputs by the corresponding signal sample and sum these
terms together. The structure is essentially a delay line in which the elementary

446 l 1 T i m e and Frequency Warping Musical Signals

dispersive delay line

Figure 11.5 Dispersive delay line for generating the sequences &(/c).

delays are replaced by allpass filters. Each of these filters introduces a frequency
dependent group delay

de
dw

7G(W) = -

The result is reminiscent of propagation of light in dispersive media where speed
depends on frequency. For this reason this structure is called a dispersive delay line.
What happens if we input a generic signal y(k) to the dispersive delay line? The
outputs &(/c) are computed as the convolution of the input signal by the sequences
Xn(k):

As a special case, for k = 0 and choosing as input the signal s (k) = y (- k) , which
is the time-reversed version of y(k), we obtain

The last equation should be compared with (11.6) to notice that the summation is
now over the argument of X,(T). However, we can define the transposed sequences

and write

(11.8)
r

From (11.5) we have

Suppose that the map O(w) has odd parity, is increasing and maps T into T . Then
we can perform in (11.9) the same change of variable S1 = O(w) as in (11.1) to obtain

l l , 2 Warping

dispersive delay line

s(k) ATti reversal F e-jW'(W) e-ie-l(w)
-aGT

T k = O Sf@) T k = O S,(l) S&)

Figure 11.6 Computational structure for frequency warping.

447

As a result,

hence the transposed sequences AT(n) have the same form as the sequences Ar(n)
except that they are based on the inverse map &'(U). Consequently, (11.8) is a
formula for unwarping the signal. Furthermore, by exchanging the roles of Q(w) and
0-1 (W) , (11.8) is also a valid algorithm for warping. The corresponding structure

is shown in Fig. 11.6. The input signal is time reversed, then fed to the E
filter and to the dispersive delay line. The output of each filter is collected at time
k = 0 by means of switches closing at that instant to form the scaled frequency
warped sequence Zfw(n). The structures in Figures 11.5 and 11.6 still present some
computational problems. In general, the transfer functions involved are not rational.
Furthermore, an infinite number of filters is needed for computing the transform.
One can show that the only one-to-one map implementable by a rational transfer
function is given by the phase of the first-order allpass filter

A (z) =
z-l - b
1 - bz - l ' (11.10)

where -1 < b < 1. By varying the real parameter b in the allowed range, one obtains
the family of Laguerre curves shown in Fig. 11.7. The curves with a negative value
of the parameter are the inverses of those with a positive value, i.e., the inverse
mapping O-l(w) corresponds to a sign reversal of the parameter. One can show

that for causal signals the derivative can be replaced by the filter

The structure of Fig. 11.6 includes a time reversal block and switches closing at
time zero. It is clear that for a finite-length N signal one can equivalently form the
signal s (N - n) and close the switches at time k = N . Furthermore, by inspection
of the structure, the required number M of allpass filters is approximately given by
N times the maximum group delay, i.e.,

448 11 Time and Frequency Warping Musical Signals

A larger number of sections would contribute little or nothing to the output signal.

The main advantage of the time-domain algorithm for warping is that the family
of warping curves is smooth and does not introduce artifacts as opposed to the FFT-
based algorithm illustrated in the above. Furthermore, the effect can be undone and
structures for unwarping signals are obtained by the identical structure for warping
provided that we reverse the sign of the parameter. In fact, the frequency warping
algorithm corresponds to the computation of an expansion over an orthogonal basis
giving rise to the Laguerre transform. Next we provide a simple MATLAB function
implementing the structure of Fig. 11.6. The following M-file 11.1 gives a simple
implementation of the Laguerre transform.

i

W

Figure 11.7 The family of Laguerre warping maps.

M-file 11.1 (lagt .m)
func t ion y=lagt (x , b , M)
% computes M terms of the Laguerre transform y of the input x
% with Laguerre parameter b
N=length(x) ;

% f i l t e r by n o r m a l i z i n g f i l t e r lambda-0
yy=f i l t e r (sqr t (l -b-2) , [l, b] ,x) ;
y(I)=yy(N) ; % r e t a i n t h e l a s t sample only
f o r k=2:M

x=x(N:-I: l) ; % t ime reverse input

f i l t e r t h e p r e v i o u s o u t p u t by a l l p a s s
y y = f i l t e r (C b , l l ,Cl,bl , yy> ;
y(k)=yy(N) ; % r e t a i n t h e last sample only

end

l l . 2 Warping 449

11.2.4 Short-time Warping and Real-time Implementation

The frequency warping algorithm based on the Laguerre transform illustrated in
section 11.2.3 is not ideally suited to real-time implementation. Besides the com-
putational cost, which is of the order of N 2 , each output sample depends on every
input sample. Another drawback is that on a long signal the frequency-dependent
delays cumulate to introduce large delay differences between high and low frequen-
cies. As a result, the time organization of the input signal is destroyed by frequency
warping. This can also be seen from the computational structure in Fig. 11.6, where
subsignals pertaining to different frequency regions of the spectrum travel with dif-
ferent speeds along t,he dispersive delay line. At sampling time some of these signals
have reached the end of the line, whilst other are left behind. For example, con-
sider the Laguerre transform of a signal s (n) windowed by a length N window h(n)
shifted on the interval r M , ...,rM + N - 1. According to (11.6) we obtain

n=rM n=O

where

x"'(.) = h(n)s(n f T M) .

The DTFT of (11.11) yields

From this we can see that the spectral contribution of the signal supported on
r M , ..., r M + N - 1 is delayed, in the warped signal, by the term e - jMe(w) , which
introduces a largely dispersed group delay M T G (W) . Approximations of the warping
algorithm are possible in which windowing is applied in order to compute a short-
time Laguerre transform (STLT) and, at the same time, large frequency-dependent
delay terms are replaced by constant delays. In order to derive the STLT algorithm,
consider a window w (n) satisfying the perfect overlap-add condition

+cc
r L) = 1, (11.13)

r=-cc

where L 5 N is an integer. This condition says that the superposition of shiftled
windows adds up to one. If Zfw(n) denotes the Laguerre transform (11.6) of the
signal s (n) , then we have identically:

+m +cc +cc
Zfw(k) = C ~ (k - r L) Z j w (k) = c C s(n)w(k - rL)Xn(k) . (11.14)

r=-cc r=-m n=O

450 11 Time and Fkequency Warping Musical Signals

By taking the DTFT of both sides of (11.14) one can show that

On the other hand, from (11.12) a delay compensated version of g r i (w) is

j j y i (U) = e-Jr(Lw-Mo(m))gyi((w) = e - j r L w n , (w) ~ (') (8 (w)) (11.16)

which is the DTFT of the sequence

N - l

$ i (k) = c h(n)s(n + ?-M)X,(k - ?-L). (11.17)
n = O

This equation defines the short-time Laguerre transform (STLT) of the signal s (n) .
In order to select the proper integer M we need to study the term X (r) (O (w)) . One
can show that

We would like to approximate the integral in (11.15) by Ao(w)X(') (O(w)) . Suppose
that H (w) is an unwarped version of W (w) , i.e., that

dB-' (W)

dw
H (w) = ~ W (O - ' (w)) = IAT(w)12 W(O- ' (w)) . (11.19)

By performing in (11.18) the change of variable 0 = O(w) + O(Q - W) we obtain

Since W (w) is a lowpass function, only the terms for Q M w contribute to the last
integral. Therefore, from (11.16) and (11.20) we conclude that the superposition of
delay compensated versions of gY i (w) can be approximated as follows:

(11.21)

Equation (11.21) should be compared with (11.15). A linear approximation of O(a)
is

e(Q) = e'(o)a + o (4 = l+ba + o (a 3) . (11.22)
l - b

One can show that this is a fairly good approximation for la(< FT. In this

11.2 Warping 451

'v1 I I I

1 ' I I I
I I l

0 50 100 150 200 250 300

0 50 100 150 200 250 300
2, I I I I I l

0

I I I l
0 50 100 150 200 250 300

Figure 11.8 Short-time warping: different length of warped signals from low to high
frequencies (top to bottom).

frequency range, if we select

M = - l - b
l f b

L (11.23)

then

i.e., the overlap-add of STLT components well approximates the Laguerre transform.
In other words, an approximate scheme for computing the Laguerre transform con-
sists of taking the Laguerre transform of overlapping signal frames windowed by the
unwarped window h(n) and overlap-adding the result, as shown in Fig. 11.9. This
method allows for a real-time implementation of frequency warping via the Laguerre
transform. It relies on the linear approximation (11.22) of the phase of the allpass,
valid for the low-frequency range. An important issue is the choice of the window
W(.). Many classical windows, e.g., rectangular, triangular, etc., satisfy condition
(11.13). However, (11.21) is a close approximation of the Laguerre transform only
if the window sidelobes are sufficiently attenuated. Furthermore, the unwarped ver-
sion (11.19) of the window can be computed via a Laguerre transform with the

452 I 1 Time and Frequency Warping Musical Signals

A c Prototype window

1 ILT (pre-compute)

/I c Unwarped window

Figure 11.9 Block diagram of the approximate algorithm for frequency warping via
overlap-add of the STLT components. The block LT denotes the Laguerre transform and
ILT its inverse.

normalizing filter AT(w) removed. In principle h(n) has infinite length. However,
the inverse Laguerre transform of a lowpass window w (n) has essential length

In order to avoid artifacts in the multiplication of the signal by the window we are
interested in windows whose Laguerre transform essentially is a dilated or stretched
version of the window itself. This property turns out to be approximately well
satisfied by the Hanning window

The choice of the length NW is arbitrary. Furthermore, the Hanning window sat-
isfies (11.13) for any L integer submultiple of N W . Long windows tend to better
approximate pure frequency warping. However, both response time and compu-
tational complexity increase with the length of the window. Moreover, the time-
organization destruction effect is more audible using extremely long windows. The
integer L controls the overlap NW - L of the output warped frames. When warping
with a positive value of the parameter b one should select a considerable overlap,
e.g., NW = 5L, in order to avoid amplitude distortion of the high-frequency compo-
nents, which, in this case, are more concentrated in the Laguerre domain, as shown
in Fig. 11.8. Finally, the integer M fixing the input frames overlap is obtained by
rounding the right-hand side of (11.23). Next we provide a simple M-file 11.2 im-
plementing frequency warping by means of STLT overlap-add. The function gives
a simple implementation of frequency warping via short-time Laguerre transform.'

'The function lugtun is the same as lagt reported in section 11.2.3, except that the line
yy=filter(sqrt(l-b^2),[l,b],x); is replaced by the line yy=x; in order to compute the non-normalized
Laguerre transform.

l l .2 Warping 453

M-file 11.2 (winlagt .m)
function sfw=winlagt(s,b,Nw,L)
% Frequency warping via STLT of the signal S with parameter b,

w=L*(l-cos(2*pi*(O:Nw-l)/Nw))/Nw; % normalized Hanning window
N=ceil(Nw*(l-b)/(l+b)); % length of unwarped window h
M=round(L*(l-b)/(l+b)); % time-domain window shift
h=lagtun(w,-b,N); h=h(:) % unwarped window
Ls=length(s) ; % pad signal with zeros
K=ceil((Ls-N) /M) ; to fit an entire number
s=s(:) ; s=[s ; zeros(N+K\ast M-Ls, l)] ; % of windows
Ti=l; To=l; 1 initialize I/O pointers
Q=ceil(N*(l+abs(b))/(l-abs(b))); % length of Laguerre transform
sfw=zeros (Q, l) ; % initialize output signal
for k=l:K

output window length NW and time-shift L

yy=lagt(s(Ti:Ti+N-l).*h,b,Q); % Short-time Laguerre transf.
sfw(To:end)=sfw(To:end)+yy; % overlap-add STLT
Ti=Ti+M;To=To+L; % advance 1/0 signal pointers
sfw=[sfw; zeros(L,l)l ; % zero pad for overlap-add
end

11.2.5 Time-varying Frequency Warping

Suppose that each frequency-dependent delay element in the structure of Fig. 11.5
has its own phase characteristics Ok(w) and suppose that we remove the scaling
filter. Accordingly, the outputs of the structure are the sequences

= Q (k) * a2(k) * ... * a n (k)

with $,,(/c) = 6 (k) , obtained by convolving the impulse responses a,(k) of the
allpass filters

Hence the z-transforms of the sequences +,(/c) are

454 11 Time and Frequency Warping Musical Signals

is the sign-reversed cumulative phase of the first n delay elements. By multiplying
each signal sample s (n) by the corresponding sequence cpn(lc) we obtain the signal

n=O

whose DTFT is

n=O

Note that this is an important generalization of (11.3) in which the phase terms
are not integer multiples of each other. In the special case where all the delays are
equal we have O,(w) = O (W) and @,(W) = nO(w). If we suppose that the delays
are equal in runs of N , then signals of finite length N , supported on the intervals
(r - 1)N, ...,rN - 1 are frequency warped according to distinct characteristics. For
the same reason, signal samples falling in these intervals are differently warped.
Portions of the signal falling in two adjacent intervals are warped in a mixed way.
More generally, one can have a different delay for each signal sample. This results in
a time-varying frequency warping [EC99, ECOO]. From a musical point of view one
is often interested in slow and oscillatory variations of the Laguerre parameter, as
we will discuss in section 11.3. It is possible to derive a computational structure for
time-varying warping analogous to that reported in Fig. 11.6. This is obtained by
considering the sequences &(IC) whose z-transforms satisfy the following recurrence:

where

and bo = 0. This set of sequences plays the same role as the transposed sequences
(11.9) in the Laguerre expansion. However, the sequences p n (IC) and $,(IC) are not
orthogonal, rather, they are biorthogonal, i.e.,

k=O

Consequently, our time-varying frequency warping scheme is not a unitary trans-
form of the signal, hence it does not verify the energy preservation property (11.1).
However, one can show that this is a complete representation of signals. Hence the
time-varying frequency warping is an effect that can be undone without storing the
original signal. The modified structure for computing time-varying frequency warp-
ing is reported in Fig. 11.10. In order to preserve the same direction of warping as

1 l ..2 Warping 455

in the fixed parameter Laguerre transform, the sign of the parameter sequence must
be reversed, which is equivalent to exchanging the roles of Bn(w) and B;'(w). The
inverse structure can be derived in terms of a tapped dispersive delay lined based
on a n (w) with the warped signal samples used as tap weights. Next we provide a
simple M-file 11.3 implementing the structure of Fig. 11.10. The function gives a
simple implementation of the variable parameter generalized Laguerre transform.

Figure 11.10 Structure for computing time-varying frequency warping via generalized
Laguerre transform with variable parameter.

M-file 11.3 (1agtbvar.m)
function y=lagtbvar(x,b,M)
% computes coefficients y of biorthogonal Laguerre expansion of x
using variable parameters b(k) where b is a length M

N=length(x) ;
yy=x(N:-l:l); % time reverse input ..

y=zeros(i,M);
yy=filter(i, [l, b(l)] ,yy); % filter
y(l)=yy(N) ; % retain
% filter by H-I(z)(unscaled, b to -b)
yy=filter(CO,ll, [l, b(2)I ,yy>;
y(2>=yy(N>*(1-b(l>*b(2)); % retain
for k=3:M

% filter by H-(k-l) (2) (unscaled, b to
yy=filter(Cb(k-2) ,l], [l., b(k)l ,yy);
y(k)=yy(N)*(i-b(k-l)*b(k)); % retain
end

Time-varying frequency warping has a fast

by psi-0 (2)
the last sample

the last sample

-b)

the last sample

array

only

only and scale

only and scale

approximate algorithm whose block
diagram is reported in Fig. 11.11. The scheme is similar to the overlap-add method
derived for the Laguerre transform and is shown in Fig. 11.9. However, due to the
time-varying aspect, the inverse time-varying warping of the prototype window must
be computed for each input frame.

456 11 Tame and Frequency Warping Musical Signals 7-7 b(n)

C Prototype window

ITVFW

i
TVFW

Figure 11.11 Block diagram of the approximate algorithm for time-varying frequency
warping. The blocks TVFW and ITVFW respectively denote time-varying frequency warp-
ing and its inverse.

11.3 Musical Uses of Warping

In this section we describe a few applications of warping in music. As already pointed
out, many aspects and properties of warping musical signals are still to be explored
and many results of this section may be deemed as experiment'al. Applications
that will be discussed range from accurate pitch-shifting of inharmonic sources and
inharmonization of harmonic sources, to feature and transient extraction, vibrato
editing and morphing.

11.3.1 Pitch Shifting Inharmonic Sounds

The sounds from a large class of instruments are inherently inharmonic. The spac-
ing of the frequencies of the partials is not uniform. In piano sounds, in the low
register, the displacement of the partials from the harmonics becomes more and
more apparent as we move towards the lower end of the keyboard. In Fig. 11.12
we report data (X marks) extracted from a low-pitch piano tone (M 27 Hz). These
represent the differences between the frequency of a partial and that of the next one.
If the sound were harmonic, one should observe a flat distribution of points aligned
on the pitch frequency. On the contrary, one observes that the spacing between the
partials increases with the order of the overtones. The distribution of the partials
can be closely matched to the derivative of a Laguerre curve. This can be obtained
by means of an optimization of the parameter b in (11.10). It turns out that the
absolute value of the optimum Laguerre parameter decreases as we move from lower
to higher tones. This means that the warping curve becomes more and more linear,
as can be seen from Fig. 11.7. By frequency warping the original piano tone with the
inverse of the fitted Laguerre map one transforms the originally inharmonic partials
into a set of harmonic partials. As a result of warping the fundamental frequency,
the pitch of the resulting tone will be higher. Vice versa, by warping by a Laguerre
map with a small positive value of the parameter one decreases pitch and increases
the degree of inharmonicity. This gives us a method for pitch shifting piano tones

11.3 Musical Uses of Warping 457

38.t

36,s

35.1

33.:

H Z

31 .E

29.E

28.1

26.:

Piano lnharmonicity Characteristics

x x

10 20 30 40 50 60
Partial Number

Figure 11.12 Inharmonicity characteristics of a 27 Hz piano tone: data are marked by x
and the solid curve represents the optimum Laguerre difference curve fitting the data.

that is particularly accurate in matching the inharmonicity of lower tones. Given
a piano tone one can determine the value and the sign of the warping parameter
in order to transform it to a lower or higher tone. Specifically,suppose that, the
fundamental frequency is f o and that the desired frequency is f o . In terms of the
normalized frequency W , with a sampling rate f s , we have, respectively, WO =

and 20 = y. As remarked in section 11.2.2 the new normalized fundamental
frequency after warping is 2 0 = 8-'(wo). One can show that

?.

hence we can determine the required value of b as follows:

tan 9 - tan 2
tan 2 + tan $j ' h = (11.24)

For inharmonic sounds, pitch shifting by frequency warping is more accurate than
conventional algorithms based on proportional scaling of fundamental frequency and
overtones. In fact, the warping characteristics can be ultimately justified by means
of a physical model of stiff strings or membranes [VS94, TEC971. It is quite striking
that the Laguerre characteristics match those of piano tones for a large range.
Therefore one obtains accurate pitch-shifting and the inharmonicity law by pure
frequency warping. Otherwise one should resort to a combination of conventional

458 l 1 Time and Frequency Warping Musical Signals

\
/ b

compute
Laguerre --------+’

desired 4 1 parameter

transposition

Figure 11.13 Block diagram of inharmonic sounds pitch shifter.

pitch-shifting and warping. The block diagram of a pitch shifter for inharmonic
sounds based on the Laguerre transform is shown in Fig. 11.13. Frequency warping
can also be used in conjunction with proportional pitch-shifting algorithms to pitch-
shift harmonic signals. These techniques usually yield a rational alteration of the
pitch and one needs to improve their resolution. Also, ratios other than simple
ratios with small integers in both numerator and denominator are costly from a
computational point of view. By frequency warping the proportionally pitch-shifted
signal with a small absolute value of the warping parameter one can introduce a
small incremental pitch-shifting operation, which, when added to the rational pitch-
shifting operation, provides a pitch closer or equal to the desired pitch. At the same
time, the inharmonicity introduced is not perceptually relevant due to the small
value of the warping parameter.

11.3.2 Inharmonizer

Among the new effects introduced by frequency warping there is the inharmonizer.
This effect is obtained by frequency warping an original harmonic sound with a
large absolute value (-0.5) of the parameter. The resulting sound is enriched by
inharmonic partials, maps of the original harmonic partials, as discussed in section
11.2.2. Notice that both pitch and duration of the original sound are altered by
warping. In fact, frequency warping stretches or shrinks the width of the peaks
centered on the partial frequencies. As a result, the amplitude envelopes of the
partials are altered. In the first approximation they are simply time-scaled. In order
to restore the original pitch and duration one can resort to resampling techniques.
At conventional sampling rates (20-44 kHz) the fundamental frequency of a large
class of sounds from natural instruments falls into the low frequency portion of
the axis. In that region the warping map is approximately linear with coefficients
which are the derivative of the map in W = 0. This is also the amount by which the
duration of the signal is scaled. This makes it possible to achieve pitch and duration
rescaling by a single resampling operation. In many cases the inharmonizer effect
introduces interesting detuning of the higher partials, transforming, for example, a
trumpet sound into a bell-like sound or a guitar sound into a piano-like sound.

11.3 Musical Uses of Warping 459

The inharmonizer can also be used in physical model synthesis, e.g., as a Karplus-
Strong post-processing block. or embedded in the delay line, in order to model
inharmonicity due to dispersive propagation in stiff media.

11.3.3 Comb Filtering+Warping and Extraction of
Excitation Signals in Inharmonic Sounds

As previously pointed out, by frequency warping the original piano tone with the
inverse of the fitted Laguerre map, one transforms the originally inharmonic partials
into a set of harmonic partials. This property can be exploited in order to extract
the hammer noise from piano sounds. In fact, the audible effect of the hammer noise
lies in areas of the frequency spectrum that are not masked by the partials, i.e., in
between the partials. It is easy to build a comb filter based on the harmonics of the
transformed piano sound. In fact, given a narrow-band lowpass filter with frequency
response H (w) , the frequency response H (w P) , where P is the period of the signal
expressed in number of samples is a comb filter adjusted to the harmonics. This
filter is obtained by inserting P - 1 zeros in the filter coefficients. Likewise, if G(w)
is a high-pass filter, the filter G(wP) will select all the frequency bands that lie
in between the harmonics. In order to obtain the piano hammer noise it suffices
to unwarp the signal in order to regularize the partials into harmonics, determine
the transformed pitch, filter with G(wP) and apply frequency warping to re-obtain
the inharmonic distribution. In the present case it is more convenient to prewarp
the filters rather than the si.gnals. However, in a more general setting where the
inharmonic signal component,s are analyzed by means of pitch-synchronous wavelets
[Eva93, Eva941, which include downsampling operations, it can be shown that it is
more convenient to warp the signal [EC97, EC98a, EC98bI. The block diagram of
a tuned warped comb filter i:s shown in Fig. 11.14.

pitch
detector pitch

8 4

Figure 11.14 Block diagram of tuned warped comb structure for extracting partials or
excitation noise from inharmonic sounds.

460 11 T ime and Frequency Warping Musical Signals

11.3.4 Vibrato, Glissando, Trill and Flatterzunge

Vibrato can be generated by means of time-varying frequency warping, by using an
oscillating sequence of parameters b with low amplitude and frequency. For small
values of the warping parameter, the warping curve only slightly deviates from
the linear map and the harmonic structure of the signal is essentially preserved,
while pitch-shifting is the only perceptually relevant effect. This is especially true
when the parameter law is oscillatory so that the harmonics fluctuate around their
original frequency. This allows us to introduce dynamic pitch fluctuations in natural
or synthetic sounds, which can be directly controlled by the warping parameter
sequence according to equation (11.24). In particular, one can use a sinusoidal LFO
as a control parameter generator to insert very natural vibrato. Both the frequency
and amplitude of the oscillator can be changed at will, i.e., to synchronize the effect
to the amplitude envelope of the signal or to include random fluctuations. Trill and
rapid fluctuations of the pitch can be obtained by means of a square wave LFO. By
mixing pitch-modulated versions of the sound with the original signal one can obtain
effects similar to phasing, flanging and chorusing. By frequency warping a flute
sound using random noise or random amplitude square wave as parameter sequences
one obtains interesting effects typical of Flatterzunge. As another example, glissando
can be inserted by means of an increasing or decreasing sequence of parameters. A
general structure based on mixed independent time-varying warping channels for
computing the above effects is shown in Fig. 11.15. In much the same way, one
can edit sounds containing vibrato or any pitch modulation in order to reduce or
remove this effect. It suffices to extract the pitch fluctuation law from the sound by
means of a pitch detection algorithm or by tracking the partials in the spectrogram
of the sound. From this law one can obtain the law of variation of the parameter b
and by applying the time-varying frequency warping algorithm with a reversed sign
sequence of parameters, one can counteract the pitch modulation effect [ECOO].

11.3.5 Morphing

Accurate spectral morphing requires arbitrary maps of the frequency axis in order
to transform the partials of one sound into the partials of another sound. The FFT
warping algorithm illustrated in section 11.2.3 can be employed with simplicity to
perform this task. However, since invertibility is not an issue, versions of the La-
guerre transform based on higher order allpass filters can be employed as well. In
order to determine the suitable warping map one can use a peak-picking algorithm
in the frequency domain to detect the partials of both the original and desired
sound. Simple morphing examples can be computed using the structure shown in
Fig. 11.16. A set of points on an initial-final frequency plane is determined, which
can be interpolated to produce a smooth warping curve. As an example one can elim-
inate the even harmonics in a voiced sound by mapping these into odd harmonics.
Realistic morphing also requires amplitude scaling of the partials. This corresponds
to a simple filtering operation on the signal. Morphing can also be performed as a
dynamic operation by means of time-varying frequency warping using a sequence
of maps.

11.3 Musical Uses of Warping 46 l

I

Time-Vatying
Warping

4

Figure 11.15 Block diagram for computing vibrato, trill, chorus-like, phasing-like or
flange-like effects. For Flatterzunge we add random noise to the LFOs. For glissando the
LFOs are replaced by envelope generators.

:quelltiy
tarping Filter

I

Match
peaks

interpolate
and

Target
signal FFT

Figure 11.16 Simple diagram for computing morphing via frequency warping.

462 11 Time and Frequency Warping Musical Signals

11.4 Conclusion

In this chapter we introduced a class of digital audio effects based on frequency
warping techniques of recent interest in musical applications. The deformation of
the frequency axis, whether static or dynamic, introduces a new point of view and
new tools for processing sounds. This transformation allows us to insert or edit
vibrato, trill, Flatterzunge and glissando, adding controlled expression to static
sounds. Harmonic sounds can be mapped into inharmonic sounds, introducing fine
partial detuning to color them. Frequency warping also provides a concerned or
model-based method for pitch-shifting inherently inharmonic sounds such as piano
and drums sounds. Mixing independent time-varying warping channels achieves
interesting generalizations of flanging, chorusing and phasing effects. An efficient
algorithm based on the short-time Laguerre transform makes frequency warping
computable in real-time. Since frequency warping is at present fairly unexploited in
musical contexts we encourage musicians and sound engineers to experiment with
this appealing technique.

Bibliography

[Bro65]

[EC97]

[EC98a]

[EC98b]

[EC99]

[ECOO]

[Eva931

P.W. Broome. Discrete orthonormal sequences. J. Assoc. Comput. Ma-
chinery, 12(2):151-168, 1965.

G. Evangelista and S. Cavaliere. Analysis and regularization of inharmonic
sounds via pitch-synchronous frequency warped wavelets. In Proc. Inter-
national Computer Music Conference, pp. 51-54, Thessaloniki, Greece,
September 1997.

G. Evangelista and S. Cavaliere. Discrete frequency warped wavelets:
theory and applications. IEEE Trans. on Signal Processing, special issue
on Theory and Applications of Filter Banks and Wavelet,s, 46(4):874-885,
April 1998.

G. Evangelista and S. Cavaliere. Frequency warped filter banks and
wavelet transform: a discrete-time approach via Laguerre expansions.
IEEE Trans. on Signal Processing, 46(10):2638-2650, October 1998.

G. Evangelista and S.Cavaliere. Time-varying frequency warping: results
and experiments. In Proc. DAFX-99 Digital Audio Eflects Workshop,
pp. 13-16, Trondheim, 1999.

G. Evangelista and S. Cavaliere. Audio effects based on biorthogonal
time-varying frequency warping. EURASIP Journal on Applied Signal
Processing, 1(1):27-35, March 2001.

G. Evangelista. Pitch synchronous wavelet representations of speech and
music signals. IEEE Trans. on Signal Processing, special issue on Wavelets
and Signal Processing, 41(12):3313-3330, December 1993.

Bibliography 463

[Eva941 G. Evangelista. Cornb and multiplexed wavelet transforms and their appli-
cations to signal processing. IEEE Trans. on Signal Processing, 42(2):292-
303, February 1994.

[OJ72] A.V. Oppenheim and D.H. Johnson. Discrete representation of signals.
Proc. IEEE, 60:681-691, June 1972.

[TEC97] I. Testa, G. Evangelista, and S. Cavaliere. A physical model of stiff strings.
Proc. of the Institute of Acoustics (Internat. Symp. on Music and Acous-
tics, ISMA '971, Vol. 19: Part 5 (1997) Book 1, pp. 219-224, Edinburgh,
August 1997.

[VS941 S.A. Van Duyne and J.O. Smith. A simplified approach to modeling
dispersion caused by stiffness in strings and plates. In Proc. International
Computer Music Conference, pp. 407-410, 1994.

Chapter 12

Control of Digital Audio
Effects

T. Todoroff

12.1 Introduction

The control of parameters of sound processing algorithms is an important issue,
which cannot be overlooked. However cleverly programmed, an algorithm in itself
has rarely been a useful tool in the hands of a musician, a sound engineer or a
composer ... unless he also happens to be a computer programmer and has the
ability to design his own control strategies.

Control, in the broad meaning of the word, encompasses every possible method
available to the user for accessing the various parameters of a digital audio effect. It
embraces all traditional computer user interfaces, from command-line instructions
typed on a computer keyboard to complex window-based GUIs (Graphical User
Interface) controlled with the mouse. Control also includes specially designed mu-
sical interfaces, mainly MIDI (Musical Instrument Digital Instrument) triggering
devices mimicking various aspects of traditional instruments and widely commer-
cialized by the music industry: organ-like or piano-like keyboards, drum pads, string
and wind instrument controllers, as well as common studio controllers like rotary
potentiometers, faders and push-buttons. And if all this does not give enough pos-
sibilities, there is a whole range of more or less experimental devices that have been
designed to fulfill more specific needs. They include the radio baton, electromag-
netic and ultrasound localization systems, power gloves, complete virtual reality
environments, video image analysis systems and just about every possible sensor.

Features extracted from a sound may also be used to control parameters. The two
most commonly found feature extractors, envelope and pitch followers, were already
widely used in older analogue equipment like modular synthesizers, vocoders or gui-
tar controllers. But partial tracking, spectral envelope tracking, centroid tracking,

465

466 12 Control of Digital Audio Effects

voiced/unvoiced and silence/sound detection can also prove very useful. Often the
feature extractors are so deeply integrated into some audio effects that they cannot
be separated. Consider some of the effects described in the previous chapters: non-
linear dynamics processors, vocoders, pitch-synchronous processes, hybridization,
etc.

Finally, one can design control algorithms whose only task is to send parameter
values to the sound processing algorithm. Stochastic functions, cellular automata,
genetic algorithms, physical models or any time-varying function might be used. In
this case, the control algorithm in turn has to be controlled by the user. This opens
up an endless list of potentially interesting combinations.

But, first, we will have a look at the general context which guides all control
approaches and discuss the important mapping issues. They address the search for
intuitive and effective ways to translate user intentions into parameter values needed
for sound processing algorithms. Control is such a broad topic that we have to limit
the scope of this chapter and try to give a brief overview. We will therefore put an
emphasis on real-time systems and on gestural control.

12.2 General Control Issues

Control is not only about technology, there is a strong human side involved. Control
of our actions in daily life relies on many concurrent processes where feedback
loops play an important part. We use the many signals coming from the body
to continuously adjust the way we control our muscles. One cannot speak properly
without hearing one’s voice, hence the great difficulties deaf people face when trying
to learn how to speak. We use sensory information that gives us hints about position
of jaw, tongue, lips, etc. But it is interesting to note that most training strategies
developed for deaf people make use of visual feedback to compensate for the missing
sense, showing the importance of feedback and demonstrating at the same time that
one can learn to implement alternative feedback mechanisms. The learning process
plays a leading role as we can gradually use our past experiences to predict the
effects signals sent to the muscles will have. And as more basic feedback patterns
become subconscious (we almost never think consciously about how we articulate
when talking in our native language nor about how we are walking), we can devote
more attention to controlling the subtle variations. We have to keep this in mind
when designing control interfaces for Digital Audio Effects. Figure 12.1 shows a
simplified view of the various feedback mechanisms applied to playing a computer
instrument.

With such complex processes taking place, it is little wonder that we accept as
normal the fact that traditional performers learn their instruments for many years
before performing in front of an audience. On the other hand, strangely enough,
we expect computer interfaces to give us access to the full expressive power of an
instrument after only a few hours or days of training. Understanding this discrep-
ancy, we should accept some trade-off and choose between implementing either an
easy-to-play instrument or a more difficult one, where training will be rewarded by

467

GUI Computer

Sound Algorithm
outputs

outputs
Sound

Sound
Inputs Sound

Inputs

Gestural
Inputs Input

Mapping Control

Haptic output
Mapping

Internal

Figure 12.1 Schematic control feedback loop.

wider expressive capabilities. The best choice depends on the context. While it is
normal for a performer to practise his instrument before a concert, one should not
expect a visitor of an interactive sound installation to train for several days before
being allowed in.

Therefore, the most important thing to keep in mind when designing a user in-
terface for a specific audio effect is to think about the end user. It may sound trivial
but, as it facilitates their only link with the underlying algorithm, the chosen inter-
face should not only implement an effective way of controlling the sound processing,
but should also focus on understanding and fulfilling the needs of the intended user.
This means evaluating his acquired knowledge and practice and building on it. It is
therefore easier to design art interface when emulating an acoustical instrument or
an existing analog effect than when devising a totally new one. The large number of
digital audio products sold in hardware boxes which feature almost identical control
buttons as their analog ancestors illustrates this.

As a consequence, different control strategies should be applied to the same
sound-processing algorithm [Tod95] depending on whether it will be used by a
sound engineer for a post-production task, a musician during a live performance, a
composer in his studio, a dancer on stage or an audience visiting a sound installation.

12.3 Mapping Issues

Mapping is a way to transform one representation into another. If we look again at
Fig. 12.1, we see two categories of mapping:

468 12 Control of Digital Audio Eflects

0 Input mapping translates user’s actions into parameter values needed to drive
the sound processing algorithms. This is the most commonly accepted meaning
of the word “mapping”.

0 Output mapping does the reverse, representing the algorithms parameters
in a way that makes sense to the user. This aspect of mapping is obviously
most often related to visual feedback, but it could also be used to give a
tactile or haptic feedback. For instance, the resistance of a gestural interface
could increase proportionally to one parameter. This can be compared to what
happens when a musician pulls the string of an instrument: the further he pulls
it away from the body of the instrument, the higher the resistance to pulling
it further increases.

Therefore, some forms of mapping are needed whatever type of control is used (GUI,
gestural controllers, feature extraction or algorithmic control). The more it takes
perceptive aspects into account, the better it will fulfill its role in making the control
loops work intuitively and effectively.

In the case of traditional instruments, it seems that the mapping between ges-
tural parameters and sound parameters is usually direct and simple: the position
of the finger on the piano directly maps to the frequency of the note played as the
velocity of the finger hitting the key maps to the loudness.

The number of parameters a performer is able to control simultaneously is lim-
ited. Therefore instruments, like the piano, which offer a large polyphony, do not
allow as much control of note envelope parameters as monophonic instruments do.
Some instruments, like a violin, offer both polyphony and a high degree of contin-
uous control. But the latter is not fully used when played in a polyphonic manner.

Mapping consists of projecting a N-dimensional space of control parameters
onto the M-dimensional space of the algorithm’s variables, where N is generally
larger than M . Even though mapping is not only linked with real-time processing
nor with the use of gestural controllers, it is obvious that it has the most acute
implications in that context. What parameter change should be associated with a
given gestural input? What kind of gestural interface is best suited to control a
given algorithm? There is no immediate answer to these questions. It depends on
the user’s experiences and preferences and on his artistic vision, as mapping usually
integrates implicit or explicit rules that define relationships between parameters. We
will nevertheless review two important aspects of mapping: assignation and scaling.

12.3.1 Assignation

One can split the various ways of assigning the space of control parameters to the
space of the algorithms variables into four categories:

One-to-one assignation: an example is the tuning of a filter, where a frequency
control is used to modify the center frequency of a filter. Another is the posi-
tional mapping of the note on a synthesizer keyboard.

12.3 Mapping Issues 469

0 One-to-M assignation: an instance of this is the case when a MIDI velocity
message from a keyboard (giving information about how fast a keyboard key
was depressed) is used to control the volume of a sound, its brightness (for
instance modifying the cut-off frequency of a lowpass filter), its attack time,
etc. An interesting example is the constraint-based spatialization approach
[PD98], where changing the position of an instrument in space also moves
several others depending on previously defined constraints.

0 N-to-one assignation: Still using an example involving a keyboard control, a
filter cutting frequency might be controlled both by the velocity value, for
individual notes, and by a control wheel to increase or decrease the overall
brightness. Additionally, it could also be controlled by a foot pedal or by a
breath controller.

0 N-to- M assignation: We will give the GUI example of the SYTER interpo-
lation screen in Fig. 12.3, where 2-D mouse movements are used to control 16
parameters.

12.3.2 Scaling

Once we have assigned a. control input to an algorithm parameter, we still have to
decide if and how we will scale the value given by that input to control effectively
the chosen parameter. The sound processing algorithms usually use internal vari-
ables ranging from -1 to 1. This was the rule with DSP (Digital Signal Processors)
chips which use a fixed-point number representation. This is now changing with
the availability of cheap andl powerful floating-point DSPs and with an increasing
number of programs running on the main computer’s microprocessor. However, this
does not change the fact tha,t a “gain” value used by the algorithm relies on an in-
ternal linear representation ranging from 0 to the maximum. As the user perceives
it according to a logarithmic scale, expressed in dB, a scaling (in fact a one-to-one
mapping) must be applied to transform the values entered by the user in dB to
the linear representation needed by the algorithm. The reverse is also true: when
displaying an internal volume on a level meter that makes sense to the user, the
internal linear value must be transformed into a logarithmic value. We can express
this by y = F (p) or p = F p l (y) , where p is a perceptive value in dB or in Hz and y
is the internal value in the range -1 < y < 1. Depending on the type of paramet,er
one needs to control, F (p) and F-‘(y) can take different forms. Sometimes an offset
b and a gain factor a are useful according to y = .(p + b) and the inverse operation
p = g - b b .

Logarithmic scaling. Perception usually follows what is known as Steven’s
law: we are more sensitive to relative changes, 9, than to absolute changes of
the internal values. Changing the attack time of a sound from 100 to 200 ms is
very noticeable, but changing it from 10000 ms to 10100 ms will not be heard. The
absolute change is 100 ms in both cases, but there is a 100 percent increase in the
first one and only a 1 percent increase in the second one. In assigning a linear scaling
to a MIDI fader, which offers only 128 steps from 0 to 127, to an attack time that

470 12 Control of Digital Audio Effects

you want to go up to one minute, the minimum time increment is - ms= 472
ms. This does not give enough precision in the lower end and wastes precious steps
in the upper end. Using a logarithmic scale, one achieves the same relative precision
all the way through the run of the fader. This may be expressed by the formula
y = a b 9 and the inverse operation by plog, E - c. We know for instance that
the perception of pitch follows such a scale, with the frequency doubling for each
octave made out of 12 half tones. If we then want to map incoming MIDI notes to
frequencies, knowing that note number 69 corresponds to a A at 440 Hz, we could
use the following values: a = 440, b = 2, c = -69 and d = 12. If we want to map a
MIDI potentiometer to a gain with 1 dB steps, where MIDI value 127 corresponds
to 0 dB and tjo the internal value of 1, we could use a = 1, b = 10, c = -127 and
d = 20. The complementary equation can be used to drive a level meter from the
internal linear volume value.

Approximations. The computations of log and exp functions might be too
computer intensive when the processing is done on fixed point DSPs. Curves might
be calculated out of real time, when ranges of the parameters are entered by the user,
and put into tables. Those tables are then read in real time, eventually computing
the missing points with simple linear interpolation. Another solution, used in TC
Elect,ronic effect units [Nie99], is to let the host processor compute off-line the
coefficients of a third order polynomial (y = ax3 + bx2 + cx + d) t,hat best fits the
desired scaling. The DSP can then effectively perform the polynomial calculation
in real-time. When there is no previous knowledge about what kind of law applies
best, one may always provide a system like a table, with the input value on the 2
axis and the output value on the y axis. The user then draws the most appropriate
curve by trial and error.

12.4 GUI Design and Control Strategies

12.4.1 General GUI Issues

One could say that every strategy that proves useful for a particular user in a specific
context is valid in that special case. But it is important to remember several general
issues that have proven to play an important role in any GUI design [MeiSl, pp. 57-
621 :

0 Visibility: it allows the user to see what he can do with a given tool.

0 Transparency: the user does not see what has been intentionally hidden from
him (what the computer system is really doing), but he is given a way to
visualize the task being performed according to the mental image he has built
UP.

0 Foresee ability: the system performs the task that the user naively expects it to
do, building up on his previous knowledge, often with the help of metaphors,
like a piano keyboard or a fader.

12.4 GUI Design and Control Strategies 471

0 Consistency: the interface is foreseeable in every context within the program
and from one application to another.

0 Integrity: the interface protects the precious data even if the user makes a
mistake; there should be a way to cancel or undo certain actions.

0 Concision: it is a very important element, both at the control level (short-cuts,
pop-up menus, default values, etc.) and at the screen layout level (especially
the useful information).

Screen appearance: the screens have to look good, be clear and well ordered;
brightness, color, textures, flickering should be used mostly for their meaning
than only for aesthetic reasons.

Adaptability: the user may, without the need to program, configure the inter-
face to suit his needs and his level of knowledge.

0 Guiding: every user sometimes needs answers to certain questions such as
“how can I quit this program?”; if the interface is not self-explanatory, an
on-line manual or contextual help may be useful.

12.4.2 A Small Case Study

Let us imagine that a sound engineer, familiar with analog compressors, is presented
with a neat GUI comprising five potentiometers clearly labeled gain, threshold,
ratio, attack and release (see Fig. 12.2). He may move the potentiometers with the
mouse and values indicated are given in the proper units (dB, dB, -, ms, ms). It is
obvious that most of the issues raised before are answered: visibility, transparency,
foresee ability, concision and screen appearance. Integrity is not really an issue
here, though one may add ways to name and save parameter configurations for
later recall. Consistency within the application is already evident, but if a noise
gate or an expander or a bunch of other audio effects are proposed with the same
type of interface and self-explanatory names, consistency between applications will
also be met. The screen appearance in Fig. 12.2 is very clear and, as an additional
help, the transfer function is also shown graphically.’ A certain level of adaptability
is achieved by allowing the user to modify the knee type and to activate a side-chain.
If the potentiometers cannot be moved during the computation of the sound result,
a score function that enables the user to define the evolution of the parameter’s
values over time before computation would be a welcome addition.

Another important category of visual interfaces relies on a representation where
time is mapped to the II: axis and frequency to the y axis. The first of this kind,
with a discrete frequency axis, was the UPIC [Loh86]. It used the time-frequency
representation only as a control interface to literally “draw” a composition. Closer
to t,he sonogram, AudioSculpt is a program where several tools allow the user to
modify a graphical representation of the signal over time, obtained by FFT analysis,

lhttp://wwW.digidesign.com

472 12 Control of Digital Audio Effects

Figure 12.2 Plug-in compressor for a screen-based mixing program.

before proceeding to the inverse FFT and to synthesize the transformed sound. Some
important issues about that category of interfaces are discussed in [Arf99].

12.4.3 Specific Real-time Control Issues

If the sound is computed in real time, the ease of use of this audio effect will be
improved as the user will be able to fine-tune parameter values while hearing the
resulting sound change accordingly. He will be given one of the feedback channels
described in section 12.2.

Modern MIDI sequencers and Direct-to-Disk recording programs2 running on
multiple platforms, are good examples of the implementation of these principle and
third party plug-ins often following most of the same rules. These environments also
allow the user to customize his virtual studio without too much hassle. But even
then something important is missing: in the real world the user could have twisted
two of those potentiometers simultaneously or jumped from one to the other almost
instantaneously, using his kinesthetic knowledge of their position. This is one of the
big differences between a musical instrument and a screen-based GUI. One writes
with one hand, but one usually plays music with both hands, often quickly changing
hand positions. Standard computer interfaces only acknowledge the use of two hands
to enter text on a typewriter-styled keyboard. We see that, even though translating
the studio metaphor to the GUI makes a digital audio effect easy to understand
and to operate, it does not translate the playing modes.

Simultaneous access to all parameters with the help of MIDI faders would restore

'http://www.digidesign.corn. http://www.ernagic.de, http://vvv.steinberg.net

12.4 GUI Design and Control Strategies 473

the highly praised studio habits and allow the user to make faster adjustments. Also,
adding automation would expand the possibilities of the digital audio effect beyond
those of its analog counterpart. This example shows that new issues have to be
addressed on top of the general computer interface issues, because the way an effect
sounds depends heavily on the control given to the user. Different ways to access the
parameters lead the user into different paths and experience has shown that even
minor changes to the user interface can dramatically raise or lower the creative use
of a digital audio effect.

One should also point 0u.t that it is not always a good idea to stick to the studio
metaphor, as an overly conservative approach might unnecessarily limit the power
of an algorithm. As an example of this, we have seen many composers starting to use
a band-pass filter plug-in3 only when a 2-D control window allows them to change
both the center frequency and the bandwidth in one single gesture, by moving the
cursor with the mouse along the z and y axis. It suddenly became more than just
a filter though the underlying algorithm had not changed at all.

12.4.4 GUI Mapping Issues

This latter example introduces the important notion of mapping that is discussed in
section 12.3. Mapping usually consists in projecting a space of control parameters
into the space of the algorithm's variables. Unlike the bandpass filter example given
above, those two spaces have often different dimensions. An interesting graphical
solution was proposed in l984 by Daniel Teruggi (SYTER SYstkme TEmps Rhel,
[A1184, A1185, Dut91, Ges98, Ter91, Ter94, Ter981) which was a very user-friendly
real-time digital signal processing workstation built on their previous experience
[AM81]. The INTERPOL window (see Fig. 12.3) allowed the user to size and po-
sition numbered circles in a. 2-D plane. Each circle was assigned a set of up to 16
parameters controlling the ongoing sound processing. Whenever the user clicked in-
side one of those circles, the corresponding set of parameters was instantly recalled
and they could be used as presets. But it was also a metaphor for a gravitational
system, where larger objects have a further ranging influence. By moving the cur-
sor along the screen, one was able to continuously interpolate between the select'ed
parameters of the presets. When reaching an interesting sounding point, the user
could also create a new circle with that very set of parameters, changing the whole
distribution of values across the 2-D plane at the same time. It is a powerful empir-
ical way to define, by trial and error, the domain of a digital audio effect one wishes
to explore.

These ideas have been further developed for 3-D space [TTL97, TT981 on the
NeXT-ISPW (IRCAM Signal Processing Workstation). Figure 12.4 shows several
spheres associated to sets of parameters. Additionally, the user could record tra-
jectories in the space and recall them on the fly. They could be scaled, played
at various speeds and reversed. As the same interface was designed to spatialize
sounds, it became an interesting tool to experiment with spatio-timbral correla-

'http://www.ina.fr/grm/

474 12 Control of Digital Audio Effects

tions. These examples show some form of adaptability of the interface: the control
space is defined by the user.

m . 1 lwLES ECTLRE CRITURE I M f R p a REBI.2
1 5 9 1

Figure 12.3 "Interpol" control screen of SYTER.

Figure 12.4 3-D interpolation control screen.

12.4 GUI Design and Control Strategies 475

12.4.5 GUI Programming Languages

Going one step further in adaptability, we find the graphical programming envi-
ronment. They are usually based on the modular analogue synthesizer or on the
studio metaphor. A library of modules may be combined to create complex patches
including both control paths (usually asynchronous, depending on the user actions)
and audio paths (usually at the sampling frequency or downsampled by an integer
factor). The oldest program of this kind is MAXTM, originally developed by Miller
Puckette at IRCAM. Signal processing modules were added later [Pucgla, PucSlb].
Several offsprings [Zic97] have followed QMAX, PD and MAX/MSP), running on
several computer platforms. Figure 12.5 shows a simple patch performing additive
synthesis with 4 sine oscillators. One can see the signal processing modules, ending
with a "-", the number boxes for entering values, toggle buttons, a preset box and a
virtual oscilloscope. Tables, sliders, multisliders, meters, drawing windows and en-
velope editors are also available, as well as many data control and signal processing
modules.

This kind of environment takes much more time to master, but the user has
complete freedom in designing the audio effects and controls he wants. It is also
an open environment where one can program new modules in C. This has led to a
large offer of third party modules performing many different functions: data control,
signal processing, visualization and drivers for various hardware.

Fnp. P l a r Amp. Fnp. P l a r h p , Fnp. Pbrsc h p . Fnp. Pbrse Amp.

WWefOrnS

lhis scope h# hen
stntched to 256 p h b W

Band-llmlted Square

Figure 12.5 A simple patch.

476 12 Control of Digital Audio Effects

12.5 Algorithmic Control

12.5.1 Abstract Models

Many different abstract models have been proposed for sound synthesis (generating
and distorting sound waveforms) and control. We will only look at the later ones.
The goal is generally to control a multitude of sound events globally. Xenakis used
stochastic models early on in [Xen92, m-Xen951 to evoke sound environments that
marked his youth. Applications of the same strategies have been used by many
authors to control granular synthesis, where a multiple of independent grains have
to be generated. A refinement is the use of tendency masks that describe a time
evolution of minimum and maximum values that constrain the stochastic output.
Cellular Automata [Bey891 have been used to control the same algorithms in an
attempt to recreate an organic evolution over time. Genetic Algorithms are less
straightforward in that the time evolution is not obvious, but they seem to be good
candidates to control the morphing between two different states. Any mathematical
model could in fact be used and the serial approach used by the school of Vienna
composers may be considered one of them. The only question should be whether
they control the sound processing algorithm in an interesting way.

12.5.2 Physical Models

One way to answer the concerns about the auditory perception of those underlying
models is to use archetypical ones. There is a good chance that, if they are based
on well-known energy distribution schemes, they will be heard as such. Some ap-
proaches use models of bouncing balls, fortune wheels, etc. to generate streams of
MIDI events to control synthesizers and samplers. Cordis Anima [CLF93] is a pro-
gram which allows physical models of sound generators to be controlled by physical
models represented by mass, spring and damping elements. These may in turn be
controlled by force feedback interfaces [CLFSO]. One can actually consider that some
uses of stochastic functions fall into this category and so do pendulum, bouncing,
rotation, acceleration-deceleration, aggregation-dispersion, etc.

12.6 Control Based on Sound Features
The sound in itself can be used to control digital audio effects. But before using
it for that purpose, one has to extract the desired information from its complex
structure. These extraction methods should not only rely on the measure of physical
parameters. They must also take perception theories into account [Tro99]. If we go .
back to Fig. 12.1, we see that some kind of pre-processing is already done by the
ear, followed by complex recognition processes performed by the brain. As much as
scaling is important for visualizing internal parameters of algorithms, sound data
representation has to be based on the concept of Just Noticeable Differences (JNDs).
Models of hearing have been established and they can help us extract features which
have a perceptual meaning.

12.6 Control Based on Sound Features 477

12.6.1 Feature Extraction

Many feature extraction algorithms have been discussed in the previous chapters.
The most common ones in practical use are:

0 Pitch tracking: allows the computation of the fundamental frequency of a
monophonic sound input. The first methods were developed for speech pro-
cessing [RS78]. The voice is a particularly difficult signal, as the pitch might
show rapid and constant changes [Puc95]. On top of that, the onset of a note
can have an instantaneous pitch several half-tones away from the note on
which it stabilizes. Then there is the problem of vibrato. Other instruments
like piano, flute or clarinet are easier to follow, as the first harmonic is present
and one can rely on a tempered scale. Some systems are able to perform poly-
phonic pitch extraction in certain contexts [PAZ98], but the problem is far
from being solved for all situations, specially when it has to work in real time.
Because of the difficulties of recognizing chords after identifying individual
notes, certain researchers choose pattern matching techniques on a semi-tone
intensity map derived from spectrum analysis, with a database of chord-type
templates [Fuj99].

0 Amplitude tracking: also called envelope follower, is a program that extracts
the power of an audio signal, usually computing its rms value. Extra param-
eters allow adjustment of raise and fall times. This information may be used
to trigger sound effects on and off by defining absolute or relative thresholds.

0 Centroid tracking: this information gives the evolution of the gravity center
of the spectrum obtained from the FFT analysis (see section 9.4.2). The FFT
is computed for each frame of about 50 ms duration, with a Hanning window
and with a 50% overlap. For the typical sampling rate of 44100 Hz we choose
N = 2048. The frame duration is hence 46 ms and the hop size is 1024 samples
or 23 ms.

0 Voice/silence and voiced/unvoiced tracking: are features originally used in
vocoders to switch the carrier on or off and to decide whether to use the inter-
nal glottal pulse generator or the noise generator for consonants. The latter
often has a Boolean output, but there may also be some kind of percentage
of noisiness for voiced consonants. Detection usually consists of counting the
number of zero-crossings of the audio signal in various frequency bands.

0 Partial tracking: each of the partials (not necessarily harmonic) of an audio
signal is extracted, generally by FFT-based methods.

0 Rhythm tracking: a less common, but musically useful feature is the rhyth-
mical structure and tempo. Tracking it is a complex task, often requiring the
use of artificial intelligence techniques.

478 12 Control of Digital Audio Effects

12.6.2 Examples of Controlling Digital Audio Effects

Several examples have been shown in the previous chapters, where features extracted
from a sound control the processing of the same sound: dynamic processing, denois-
ing, etc. But one can define many different processing tools from the same basic
building blocks. For instance, a voice/silence detector can control a time stretching
program in order to avoid time stretching of silence parts [TruSO].

Another category of control involves the use of features extracted from one sound
to control another one. Modulation, vocoding or more generally cross-synthesis
and hybridization have been described in previous chapters. In a concert, par-
tials extracted from groups of instruments can be classified according to perception
theories, individually modified and resynthesized or used to control other sounds
[m-Fin95, TSS82, TDF951.

In the same spirit, tracked parameters may also be used to control music in
interactive dance performances. Figure 12.6 shows how a MSP module called “rms-”
generates an output signal from the RMS value of an incoming audio signal, using
minimum and maximum values as well as low and high thresholds with associated
slopes (performing a combination of a downwards expander and a compressor in
this example). With associated time-parameters such as attack, decay and hold,
the module will react on specific energy levels and articulations. The right part
of the same picture shows a schematic view of four such modules, each with its
own set of parameters, processing the sound from a single contact microphone.
This kind of setting was used in the dance performance “In Between” [m-NoiOO] to
control the playback volumes of several sound files and the volume of the sounds
picked up by the microphone itself. Adding effects and spatialization over a group
of 8 loudspeakers, the dancer can control a complex sound environment simply by
touching a dedicated surface.

Another important use of feature extraction is score following [PL92, Puc95,
PAZ981, where the computer tries to follow the performer, only by “listening” to the
sound he produces. It is done by ma.tching the pxtracted pitches with a previously
entered score. This frees the performer from having to follow the computer and
allows him an increased level of expressivity.

12.7 Gestural Interfaces

Gestural interfaces complement all the other control methods already described in
this chapter. We pointed out earlier that even with an ideal GUI, something is
missing when it comes down to transforming a digital audio effect into a playable
instrument. The various gestural interfaces available today bridge this gap. The idea
of an instrument has considerably evolved since the times where only acoustical
ones existed. One does not have to excite a vibrating body anymore in order to
make sound, but the kinesthetic and haptic aspects remain important. A very large
variety of interfaces [Par97, Wan971 have been built. Several authors have made
classifications of categories of gestures [CLFSO, Mu1981. Cadoz divides them into

12.7 Gestural Interfaces 479

m s - time parameters

- attack [dB/ms]
- release [dBlms]
-hold [On/Orr]

Contact
Microphone

Output [dB]

t

rms- transfer function

/

Inout fdBl

MAX/MSP
n I

+ V L ! L
scale

l 1 &+Out 3

Figure 12.6 rms- detection module with its transfer function and a schematic example
for an interactive dance performance.

excitation, modulation and selecting gestures. Often the question arises of which is
the best transducer for a specific musical function [WVIROO].

We will divide gestural controllers into four main categories: gestural interfaces
played by touching or holding the instrument, interfaces with haptic feedback, in-
terfaces worn on the body and interfaces that may be played without any physical
contact. First, we will have a look at the importance of the advent of MIDI.

12.7.1 MIDI Standard

The MIDI standard specifies both the hardware interface and the data transmis-
sion protocol. The hardware MIDI serial interface operates at 31.25 kbauds, asyn-
chronous, with a start bit, 8 data bits and a stop bit. The interface uses a 5 mA cur-
rent loop with optoelectronic detectors at the receiver end to avoid risks of ground
loops. The protocol is a definition of status bytes, defining the action, that may be
followed by one or more data bytes, defining the values for that action [MIDI]. The
very existence of such a standard MIDI interface has done a lot for the proliferation
of gestural interfaces, as any of them may easily be connected to almost every digital
audio device or program. The range of commercially available MIDI controllers is
still expanding. Keyboards, guitar controllers, breath controllers, percussion mod-
ules, drum kits and fader boxes have been joined by more exotic controllers from
big manufacturers, like the Roland D-BeamTM infrared system, or the Korg Kaoss
PadTM tactile 2-D surface, showing a growing need for continuous controllers. More
specific controllers like the Matthews Radio baton, the EMS SoundBeam or the

480 12 Control of Digital Audio Effects

Theremin [SmiOO] can be bought in MIDIfied versions.
NoTAM MIDIconverter, STEIM SensorLabTM, Infusion Systems I-CubeTM or

IRCAM AtoMIC" are some of those more universal systems that translate data
from a whole range of sensor systems to MIDI, allowing artists to customize their
interfaces. They are perfect for people who make interactive performances or sound
installations as they accept a large range of sensors and can be used without a
lot of technical knowledge. Using some cheap and easily available microprocessor
development tools, every sensor may be transformed into a MIDI controller and
there are many possibilities: pressure, flexion, position, speed, acceleration, and
conductivity sensors, hall-effect, magnetic, electrostatic and capacitive detectors,
light cells, anemometers, etc.

The vast majority of gestural controllers have adopted the MIDI standard. Most
of the computer-based interfaces are able to exchange data with other MIDI pro-
grams, being thereby able to send out MIDI information when equipped with the
right hardware and software.

12.7.2 Playing by Touching and Holding the Instrument

Keyboards

The piano-like keyboard has without doubts been the most used controller in the
history of electronic instruments and digital synthesizers. Many MIDI status bytes
messages have been devoted to the needs of keyboard players: besides triggering
notes (Note On/Note Off), keyboards usually send information about the speed at
which a key has been depressed (Note On Velocity), and often information about the
speed a t which it has been released (Note Off Velocity). Information is sometimes
sent about the pressure the player exerts after the note has been depressed, either
globally (Aftertouch) or independently for each key (Polyphonic Aftertouch). A
wheel is usually available for controlling the frequency (PitchBend) and another
for the control of vibrato or tremolo (Modulation, part of a list of 127 available
Continuous Controllers).

Besides traditional keyboard design, some atypical ones offer a different layout,
allowing playing of microtonal music. Moog proposed the Multiply-Touch-Sensitive
Keyboards (MTS) [MR90], sensing the (x, y) position of the finger on each key with
resistive films, the up-down position of the key (2 axis) with a capacitive system and
the aftertouch with a resistive film. In [FAOO] a continuous monitoring of the keys
vertical position is performed by an optical system. In order to resolve the problem
of the high data rate, which cannot be transmitted through MIDI, data is embedded
in standard SPDIF or ADAT audio streams. Compared to aftertouch, which only
begins sending data once the key is completely depressed, these two systems provide
information during the whole run of the key. With Stahnke's Bosendorfer 290 SE
prototype [MRgO], the Yamaha Diskclavier is a category in itself, it consists of an
acoustic grand piano fitted with sensors that monitor the depressed keys and send
the related information to MIDI. Actuators under each key make it in turn possible
to play the piano by sending MIDI messages. Jean-Claude Risset developed MAX

12.7 Gestural Interfaces 48 1

objects to both monitor ancl play the piano [RD96] and several of his interactive
compositions made use of them [m-Ris]. Some force-feedback techniques have also
been implemented and will be described in a forthcoming section.

Percussion Interfaces

The first percussion interfaces were acoustic drums fitted with pickups. An envelope
follower with a threshold was used to define a trigger level and the intensity of the
picked-up sound controlled various synthesis parameters such as attack time, filter
cut-off frequency, amplitude, etc. Specific drum-like interfaces, without resonating
bodies, were later introduced and offered by all main instrument manufacturers.
The next step was the introduction of control surfaces that not only reacted to
the force with which they were hit, but also to the position and to the pressure
after the hit. Buchla's Thunder is a good example. The fact that MIDI data may
easily be mapped to various parameters makes it a very versatile instrument. The
Korg Kaoss Pad" tactile 2-D surface may also be used as a percussion instrument,
reacting to the position being hit.

String Instruments

String instruments may also be transformed into MIDI controllers. The most com-
monly used technique is to fit the instrument with multiphonic magnetic pickups
(one for each string) followed by a pitch tracking device that transforms the sensed
frequencies into MIDI notes and pitchbend information. The difficulty lies in tle-
tecting fast enough rapid changes in pitch. Some interfaces use a different approach:
the stick is covered by a sensitive surface that senses the finger's positions and the
pickups are merely used to measure the amplitude of the string's vibrations. In some
cases, the strings completely disappeared leaving only tactile sensors and switches
to track the guitarist's gestures. The MIDI throughput is still a limitation and faster
interfaces are needed to transmit the whole subtlety of a guitarist's playing. Another
solution is to send the audio signal from the pickups directly to the computer and
have the pitch detection algorithm running on the computer where the controlled
sound is generated. Several techniques have also been proposed to track the bow
position relative to the instrument and its pressure on the strings.

Wind Instruments

Two different approaches prevail: one is to replace the acoustic instrument by an
interface measuring breath force and/or bite pressure on the reed and by providing
sensors that track the fingering of the simulated instrument. The other approach
is to analyze the sound of a real acoustic instrument, and extract the gesture from
the sound. Both systems may be combined by fitting sensors on an acoustic wind
instrument.

482 12 Control of Digital Audio Effects

Hyperinstruments and Gesture Extraction

The concept, defined by Tod Machover, consists of expanding the playing modes
of traditional acoustic instruments. Techniques usually combine feature extraction
from audio data as well as specific sensors fitted to the instrument [MC89, m-Mac].
Ot,her researchers focus on the extraction of gesture parameters det,ected solely
from the sound of an acoustical instrument allowing the performer to play his in-
strument normally, without any added sensor [Wes79]. Starting from the knowledge
of the playing modes, the features of sound generation, and constraints of a given
instrument, it is somehow possible to guess what kind of gesture has produced the
analyzed sound. This educated guess may then be used to control parameters of a
digital audio effect. The principles are similar to some techniques used in speech
recognition, where formant extraction is performed by looking at the possible con-
figurations of the vocal tract knowing their constraints. This could improve the
concept of hyperinstruments one step further.

Batons

The first batons were built with the analogy of the conductor in mind [BouSO]. Their
goal was to have t’he computer-generated sounds follow the conductor just like the
other performers in the orchestra. It should therefore be able to track beats, extract
the tempo, detect accents, nuances. This comes down to a type of pattern recogni-
tion system which has to recognize and decode the complex gestures of a conductor.
Different systems were used. The MIDI Baton by David Kean [KG89, KW911 used
a conductive contact ball attached with a spring wire inside the conductive tube
serving as baton. Whenever the direction of the baton changes suddenly, an electric
contact between the ball and the inner tube is made and detected. The tempo is
tracked and converted into MIDI clock messages. The AirDrum, manufactured by
Palmtree Instruments, has a 2-D accelerometer and a rotation detection. As an ex-
tension, [IT991 has proposed not only to track the tip of the baton, but also body
and hand movements with the help of magnetic motion trackers. The data is then
processed with the help of neural networks.

Even though the Matthews and Boie Radio baton was developed in the late
1980s mainly from a conductor’s perspective, its design steadily improved and is
now mostly used as an instrument [BM97]. It features two sticks, one for each hand,
with small coil antennas at the end, each transmitting on a separate frequency of
around 50 kHz. The body of the drum hides an array of five flat receiving antennas,
two on the left and right sides, t,wo on the upper and lower sides and one in the
middle. An (x, y , z) position is computed, for each stick, from the five intensity
levels. The instrument may be used as a triggering device by setting a vertical
threshold, or serve as a double 3-D controller. A modified version of the system
could also theoretically be used on stage, with large flat antennas under a dance
floor to track moving dancers. Often, one stick is dedicated to triggering events
depending on the position, and the second stick is used to move within a timber
space. Arfib [ADOO] uses the radio baton to control a digital version of the intriguing
photosonic instrument. The musical piece “The Nagual” [m-Mai97] is designed as

12.7 Gestural Interfaces 483

a duet between a percussionist playing a set of metal objects and a radio-drum
player controlling computer-generated sounds. The computer produces sounds that
are derived by filtering white noise. The role of the computer-performer is to shape
the sounds in such a way that they tend to be similar to those of the physical objects
and to complement the musical gestures performed by the percussionist. To reach
this goal, the computer-performer uses a radio drum that simultaneously drives the
tuning frequencies and the quality factors as well as the amplitudes of two banks of
eight filters each.

Another successful and commercially available baton controller is The Buchla
Lightning 11. Each of the two batons is fitted with a modulated infrared LED and
tracked with a photodiode array in the receiving station, up to six meters away.
The MIT MediaLab Digital Baton [MP971 detects the 2-D position of the edge of a
baton, also fitted with an infrared photodiode, with the help of an infrared camera.
In order to compensate for the delay introduced by any camera-based system (only
25 or 30 frames per second), an additional three-axis accelerometer helps tracking
fast gestures. Five force-sensitive resistors included in the baton also measure hand
and finger pressure. It was used in the “Brain Opera” [m-Mac].

Flat Tracking Devices

A driver for standard Wacom tablets is available as an external MAX module
[WWF97]. It allows the use of those tablets as input devices to simulate the playing
modes of existing instruments or navigation in a timberspace. A Wacom tablet may
for instance be used to control bowed string instruments [SDWROO] in Max/MSP.
The proposed mapping is as follows: y position + bow position, derivative of x
position -+ bow velocity, z position + bow pressure, tilt angle in the x axis +
string played and tilt angle in the y axis + amount of bow hair.

Several proposals have been made to measure the (x, y) position continuously
and pressure independently for each finger. The Continuum [HAS921 is a poly-
phonic controller that tracks independent (x , g) position and pressure. Several pro-
totypes were made, using various technologies. Tactex recently proposed the MTC
ExpressTM, a commercial product based on a grid of interleaved optic fibers enclosed
in a special fabric, that is able to track position and pressure of up to five fingers.
Though there are only 72 crossing points, centroid computation permits precise
position detection, up to 100 dpi and 256 levels of pressure. At this moment, t,he
sensing surface is still small (15 by 10 cm), but larger models should follow.

Other Interfaces

So many original hands-on controllers have been designed that we can only cite a
few, chosen for their diversity.

0 A non-contact optical tracking device is the VideoHarp [RM90] which is a light
sensitive device that allows the tracking of fingers in a flat, hollow, rectangular
frame.

484 12 Control of Digital Audio Eflects

0 “The Meta-Instrument” [Lau98] is a man-machine interface for control of
algorithms for sound synthesis or multimedia applications in real time. It
consists of two hand and forearm controllers and two foot pedals.

0 The aXiO MIDI controller [Car941 is a long stick-like instrument that stands
on the ground and rests over the left shoulder of the performer. The right hand
controls a chord keyboard while the left hand rests on a palmrest, equipped
with several switches and a touch strip, sitting on top of a 3 degrees of freedom
joystick.

0 The Sentograph [VU951 is a kind of push-button sensitive to z, y and z po-
sition. It is not a very precise device in the sense that it is quite difficult to
control each of those three freedom degrees independently. But the idea is to
capture a global gesture, intuitively and emotionally, rather than very pre-
cisely. It is part of the wider project for the development of a sort of control
cockpit with a topography that may be constantly re-adjusted depending on
the controlling needs [VUK96, UV991.

0 The Gmebaphone [CGL98] is an interface designed to control the spatializa-
tion of tape music during a concert. Touch-sensitive faders with visual position
feedback are used to send the music to groups of loudspeakers placed on stage
and around the audience.

0 A very original approach uses the individual magnetic resonating frequencies
of objects to locate them in space. Up to 30 wireless magnetically coupled
resonant tags may be tracked in the same control space without affecting
each other [HP99]. Such tags may be attached to each finger of a performer,
or included in various objects that can be moved on a surface, a bit like pieces
on a chess game. The system returns the center frequency, resonance width and
integrating coupling amplitude for each tag. The latter provides an indication
of the tag’s distance from the reader and their mutual orientation, enabling
continuous non-contact control. Tactile parameters may also be acquired by
making the resonance frequency parametric with pressure.

12.7.3 Force-feedback Interfaces

Recognizing the importance force-feedback plays when performing an acoustic in-
strument, some researchers have investigated ways to transmit haptic information
to the performer of a digital instrument. The main aim is to offer a more natural
style of interaction between the player and his instrument. Several researchers have
focused on trying to recreate the feeling of playing a real piano by simulating the
changes in the key’s resistance along its vertical path. Gillespie [Gi194] proposed
use of a finite state machine as the couplings between the key, t,he keybed and the
hammer changes dynamically when depressing one key. The vBow [NicOO] provides
haptic feedback for the bow of an electronic violin. Others have tried to expand the
concept to totally new instruments. Long-term research has been led a t ACROE
in the development of missing tools. One problem was the lack of suitable motors

12.7 Gestural Interfaces 485

able to generate enough force-feedback while remaining of reasonable size [CLFSO].
The other problem is to find a method to model the link between the interface and
the sound generating program. The answer lies in a total integration between both,
thanks to physical models of sound generation.

An interesting interface was created in an attempt to let blind users access
window-based computers. The Pantograph [Ram95a, Ram95bl is a sort of force-
feedback mouse with which one can feel the window’s limits and get directed to
locations where to drop files. Though not specifically designed for musical use, one
can easily imagine musical adpplications, like finding relations between resistance
and the concept of musical tension, or having the interface returning spontaneously
back to an equilibrium position. In the meantime a force-feedback mouse is on the
market place. Further haptic interfaces for musical applications can be found in
[Bon94, Cha93, Chu96, RHOO].

12.7.4 Interfaces Worn on the Body

Rather than using an instrument, another approach consists of measuring body
parameters directly, like body temperature, skin electrical resistance, eye activity
through EOG (Electrooculogram), brain activity through EEG (Electroencephalo-
gram), muscle potentials or EMG (Electromyogram), heart activity with ECG (Elec-
trocardiogram). Many bioelectric musical recordings and performances were pro-
duced in the 1960s and the 1970s, under the generic name of biofeedback [RosSO].
The BioMuse [KL90] measures bodily electrical activity (EEG, EOG and EMG) and
transforms them into MIDI d;sta after filtering, frequency analysis, signal recognition
and signal comparison. The BioMuse comes with a series of electrodes mounted on
Velcro bands, a small battery-powered patchbox that may be worn on a belt, and
the signal processing unit that receives the amplified signals from the patchbox,
performs the processing and sends out analog and MIDI data. The MiniBioMuse
[Nag981 is a much smaller and cheaper alternative, but with less inputs.

Other systems mea,sure relative or absolute positions of body pa,rt,s. The best
known device of this kind is the “Data Glove”, which measures finger flexions and
hand position. Laetitia Sonami has been performing for years wit,h such a glove
designed at STEIM and Sonology. It adds an ultrasound sensor to measure relative
distance between both hands and Hall effect sensors on the finger tips to precisely
measure small distances between the fingers and the thumb. The Exos Dexterous
Hand Master has been used by Tod Machover and instead of relying on flexion sen-
sors, it directly measures angles of each finger’s phalanx with much better precision,
but with the disadvantage of a cumbersome mechanical add-on. Michel Waisvisz was
certainly the pioneer in usin.g hand controllers. His system, the “Hands” [KreSO],
was used in numerous performances. It differs from the others in that it is not a
measure of finger flexions. It is a rather complex instrument made of two part,s,
attached to each hand, that he plays by pushing buttons. Special software has been
developed for the instrument. A real-time sample recorder and player with numer-
ous parameters are dynamically assigned to the Hands. We find all categories of
gestures: some switches serve as selectors to change the context, others to trigger

486 12 Control of Digital Audio Eflects

sounds, whilst the latter modulate them.
Feet also convey useful information about dancers’ movements. The Dancing

Shoes [PHH99] is a pair of sneakers, each sensing 16 different tactile and free-gesture
parameters. They rely on a mix of various technologies. Three force-sensitive resis-
tors are located in the forward sole, a piezoelectric foil measures the dynamic pres-
sure at the heel and two back-to-back bend sensors measure the sole’s bi-directional
bend. A vertical gyroscope responds to twists and spins. A 2-axis low-G accelerome-
ter picks up tilt and general foot dynamics. A 3-axis high-G piezoelectric accelerome-
ter gives directional response to rapid kicks and jumps. A 3-axis magnetometer gives
orientation with respect to the local earth’s magnetic field. On top of this, a 40 kHz
sonar receives pings from up to four ultrasound sources that may be located at dif-
ferent positions around the stage to measure absolute position. All sensor values are
sent, independently for each shoe, 50 times per second with low-power transmitters.
A special C++ MIDI mapping library was written to deal with this high amount
of information.

Complete data suits have also been made for immersive virtual reality envi-
ronments, but do not seem to have been used for musical control, possibly be-
cause of their price. The wireless DIEM Digital Dance System offers an alternative
[SJ98, Sie991. It allows up to 14 analog sensors to be put on a dancer or actor
who wears the interface and transmitter on a belt and can move freely while the
receiver converts those signals into MIDI format. In “Movement Study” [m-Sie97],
the dancer wears flexion sensors on her ankles, knees, elbows and index fingers. In-
stead of being fitted in a suit, a solution that was tried without success was that as
the suit moved relative to the body joints with the dancer’s movements, the sensors
are directly attached to the body with a,dhesive tape. Laurie Anderson used a much
simpler technology in her drum suit: piezoelectric sensors detected when they were
being hit, as in most MIDI drum kits.

The NoTAM Control Suit is a MIDI controller suit for use in real-time per-
formance of computer music. The suit has eight strips of semi-conducting plastic
material mounted on the chest and arms, and 16 contacts on the back of the hands,
in the collar and at the hips. Contacts on the finger tips transfer voltage to these
sensors. The plastic strips produce analog signals depending on where they are
touched, whereas the 16 contach are simple on/off switches. NoTAMs own MIDI-
converter is mounted on the belt and converts the control signals to MIDI. The piece
“Yo” by Rolf Wallin uses the control suit connected to an IMW (IRCAM Musical
Workstation) which is programmed with a number of algorithms for granulation
and filtering of sampled vocal sounds.

12.7.5 Controllers without Physical Contact

Going one step further, the position of the body might be used without the need for
the performer to wear any special devices. These are obviously the best solutions
for sound installations but they also offer a greater freedom for dancers.

The “Theremin” was invented in 1919 by a Russian physicist named Leon There-
min [SmiOO], originally designed as an alarm device. Two antennas are connected

12.7’ Gestural Interfaces 487

to a sound producing electrical circuit. One antenna signal controls the frequency
of an oscillator, and the other antenna signal controls the amplitude envelope. As
a hand approaches the vertical antenna, the pitch gets higher and approaching the
horizontal antenna reduces the amplitude. As there is no physical contact with the
instrument, playing the theremin requires precise skills. Theremins have been built
by several companies over the past decades and every decade delivers new successors
based on innovative technologies.

The “Gesture Wall” [PG971 uses electric field sensors to measure the position
and movement of the player’s hands and body in front of a projection screen. The
projected video and musical sounds are changed accordingly. The performer stands
on a plate, which is applied to a radio frequency signal. This signal couples through
the performer’s shoes and is broadcast through the body to a set of four pickup
antennas located around the screen. The antenna signals change with the distance
of the performer from the respective antenna.

The EMS SoundbeamTM uses ultrasound in a reflective way: pulses of a frequency
close to 50 kHz are regularly sent through an electrostatic transducer which also
serves as a receiver. When an object or a human body is standing in the emission
cone, part of the pulse is reflected which is in turn detected by the transducer.
As, for given temperature and humidity values, the speed of sound c is known, the
distance D is proportional to the delay At between the time at which the pulse
was sent and the time it is received: D = ; c a t . This distance information as well
as the presence or absence of reflection can then be mapped to MIDI messages
following the definition of zones, either to trigger notes or to modulate sounds. -4
more precise version has been built to monitor almost imperceptible movements of
dancers [TodOO] within the ultrasound beam. It is used, amongst other things, bo
control the buffer pointer of a real-time granulation algorithm [m-NoiOO].

D-Beam Twin Tower [Tar97, TMS981 expands this idea by fitting four IR re-
ceivers around one transmitter, thereby not only measuring the position, but also
the shape and angle of the h,and.

Systems like STEIM BigEye, David Rokeby Very Nervous System [Win98], or
EyesWeb (shown in Fig. 12.7) can directly process an incoming video signal of
a performer, a dancer or an actor on stage. An interesting development of the
latter is the extraction of barycenters and of expressivity features [CRT99, CCPOO,
CCRVOO].

Litefoot [GF98] is a 1.8 m square surface, 10 centimeters high, with a surface
of plywood recessed with holes to accommodate a matrix of 44 x 44 (1936) optical
sensors. It can track feet in two modes, equally responsive. In the reflective mode,
the footsteps are detected by the proximity of an object causing a reflection of
light back to the sensor that emitted it. It works best when the dancer’s shoes have
reflective soles. In the shadow mode, the floor is flooded with light and the footsteps
stop that light from entering; the sensors.

The principle used in the MIT Laserwall [PHSROO] is the scanning laser range-
finder, whereby a laser beam, modulated at f M = 25 MHz, is detected by an
avalanche IR. photodiode after reflection from the performer’s hands. The received

488 l 2 Control of Digital Audio Effects

Figure 12.7 The EyesWeb graphical programming interfaces.

signal is multiplied by the modulating waveform in phase and in quadrature, giving
two amplitudes from which the phase a can be computed. This phase is directly
proportional to the distance between the laser and the reflecting object: R = & $-,
where c is the speed of light and where a is expressed in rad. As the laser scans
the space, which is done by a rotating mirror of known angular position 0 over
time, the system gives the polar coordinates (R, 0) of every reflecting object in the
detection space. Microwave motion detectors are added to detect the position of the
performer when approaching the wall, before he enters the laser space.

12.8 Conclusion

Being the only link between the user and the algorithm, the control layer is essential
to unleash the power of any digital audio effect. We have seen throughout this chap-
ter, with many examples, that there is no single answer to the problem of mapping.
At the end, it all comes down to finding a musically useful correspondence between
the various accesses given to the user and the parameters of the digital audio effect.
As mapping usually creates implicit or explicit rules constraining the simultaneous
variations of several parameters, it obviously becomes an artistic choice. And it is
no wonder that certain tools are favored in some aesthetic circles. The proliferation
of certain algorithms under various disguises is one answer to the different needs.

12.8 Conclusion

Allowing the user to choose or to customize his control environment, exploiting
fruitfully the flexibility of a virtual architecture, is a better one. We have seen that
many concurrent processes may be part of a complete control structure. In fact,
every control strategy includes these elements in various degrees:

0 GUIs offer various user/performer access and information.

0 Algorithmic control allows global control over a large number of parameters.

0 Feature extraction maps specific aspects of a complex sound structure.

0 Gestural interfaces allow control of gestures ranging from the traditional in-
strumental playing modes to dance movements, with a steadily growing nunl-
ber of controllers.

It is obviously impossible for the programmer of a DAFx algorithm to spend time
providing those many different control layers. Fortunately, it is not needed. With
increasingly standardized real-time interfaces and protocols (MIDI, TCP/IP, USB,
Firewire) as well as inter-applications exchange protocols, he only needs to open
up his program to allow others access to the parameters the way they like. He
does not have to give away his sources or unveil the precious tricks that make his
program sound good. All he should do is to provide an external access and sufficient
information about it. This also counts for non-real-time programs where MIDI files,
SDIF files (Sound Description Interchange Format) [WDK99, WS99, BBSOO, SWOO]
or well structured and documented text files may allow exchange of information
between programs running on various platforms under different operating systems.
His program could then be successfully used for the DAFx fields that apply:

0 Sound design for studio applications.

0 Electro-acoustic composition.

0 Expanding the possibility of an acoustical instrument (hyperinstrument, score
following), thereby allowing the performer to acquire more control of digital
audio effects applied to his instrument.

0 Creating a new instrument: the key elements are expressivity, breathing life
into electronically generated or transformed sounds. The addition of real-time
gestural control often transforms a rather simple algorithm into a powerful
performance instrument mainly because of the added expressivity.

0 Interactive dance performances: the movements of the dancers might be used
to trigger/transform/spatialize sounds and music.

0 Interactive sound installations: defining how it will react to the visitors.

An easy and effective way to achieve this is by writing external modules or plug-ins
for various environments, following the design rules standard to these applications.

490 12 Control of Digital Audio Effects

And other developers will continue their work of devising better GUIs, propos-
ing more elegantly formalized algorithmic environments, developing more effective
feature extraction methods and providing improved gesture controllers. This coop-
erative approach prevents everyone from reinventing the wheel and ensures that
users may choose their favorite working environment and gestural controllers, capi-
talizing on all the knowledge and experience they have gathered over the years, but
still using the most up-to-date DAFx algorithms.

Sound and Music
[m-Fin95] J. Fineberg: “Empreintes”. Premiered the 18th of May 1995 a t IRCAM,

Paris, France.

[m-Mac] T . Machover: “Brain Opera”.

[m-Mai97] M. Maiguashca: The Nagual. In Reading Castaiieda. 1 CD + Booklet.
Edition ZKM 3. Wergo 2053-2, 1997.

[m-NoiOO] M. Noiret: “In Between”, Interactive dance performance. Premiered
the 11th of March 2000, Brussels, Belgium.

[m-Ris] J.C. Risset: “Eight sketches for one pianist”. CD Neuma Electro Acous-
tic Music 111, 450-87.

[m-Sie97] W. Siegel, H. Saunders, and P. Fynne: Movement Study, Interactive
dance, performed a t ICMC97, Thessaloniki, Greece.

[m-Xen95] I. Xenakis: “La lkgende d’Er”. CD Montaigne MO 78 2058, 1995.

Bibliography
[ADOO] D. Arfib and J. Dudon. A digital version of the photonic instrument. In

Proc. International Computer Music Conference, pp. 288-290, Berlin,
2000.

[A11841 J.F. Allouis. Logiciels pour le systkme temps rkel SYTER. Software for
the real-time SYTER system. In Proc. International Computer Music
Conference, pp. 27-28 and pp. 163-164, 1984.

[A11851 J.F. Allouis. Use of high speed microprocessors for digital synthesis. In
J. Strawn and C. Roads (eds), Foundations of Computer Music, MIT
Press, pp. 281-288, 1985.

[AM811 J.F. Allouis and B. Maillard. Simulation par ordinateur du studio de
composition dectroacoustique et applications B la composition musi-
cale. Festival International du Son Haute Fidhlitk (Confkrences des
journkes d’ktudes), pp. 23-42, 1981.

Bibliography 491

[Arf99]

[BBSOO]

[Bey891

[BM971

[Bong41

[BouSO]

[Cad881

[Car941

[CCPOO]

[CCRVOO]

[CGL98]

[C ha931

[Chug61

[CLFSO]

D. Arfib. Visual representations for digital audio effects and their
control. In Proc. DAFX-99 Digital Audio Effects Workshop, pp. 63-
66, Trondheim, December 1999.

M. de Boer, J. Bonada, and X. Serra. Using the sound description
interchange format within the SMS applications. In Proc. International
Computer Music Conference, pp. 190-193, Berlin, 2000.

P. Beyls. The musical universe of cellular automata. In Proc. Interna-
tional Computer Music Conference, pp. 34-41, Columbus, 1989.

R. Boulanger and M. Mathews. The 1997 Mathews radio-baton and
improvisation modes. In Proc. International Computer Music Confer-
ence, pp. 395-398, Thessaloniki, 1997.

B. Bongers. The use of active tactile and force feedback in timbre
controlling electronic instruments. In Proc. International Computer
Music Conference, pp. 171-174, 1994.

R. Boulanger. C!onducting the MIDI Orchestra, Part 1: Interviews with
Max Mathews, Barry Vercoe and Roger Dannenberg. Computer Music
Journal, 14(2):3)4-46, 1990.

C. Cadoz. Instrumental gesture and musical composition. In Proc.
International Computer Music Conference, pp. 1-12, 1988.

B. Cariou. The aXi0 MIDI Controller. In Proc. International Computer
Music Conference, pp. 163-166, Aarhus, 1994.

A. Camurri, P. Coletta, M. Peri, M. Riccheti, A Ricci, R. Trocca, and
G. Volpe. A real-time platform for interactive dance and music sys-
tems. In Proc. International Computer Music Conference, pp. 262-265,
Berlin, 2000.

A. Camurri, P. Coletta, M. Riccheti, and G. Volpe. Synthesis of expres-
sive movement. In Proc. International Computer Music Conference,
pp. 270-273, Berlin, 2000.

C. Clozier, F. Giraudon, and J.C. Le Duc. Le Gmebaphone. Proc.
JIM98, pp. E2:~1-7, 1998.

C. Chafe. Tactile audio feedback. In Proc. International Computer
Music Conference, pp. 76-79, 1993.

L. Chu. Haptic feedback in computer music performance. In Proc.
International Computer Music Conference, pp. 57-58, 1996.

C. Cadoz, L. Lizowski, and J.L. Florens. A modular feedback keyboard.
Computer Music Journal, 14(2):47-51,1990.

12 Control of Digital Audio Effects 492

[CLF93]

[CRT99]

[Dutgl]

[FA001

[JWgI

[Ges98]

[GF98]

[Gi194]

[HAS921

[HP991

[IT991

[KG891

[KL90]

C. Cadoz, A. Luciani, and J.-L. Florens. CORDIS-ANIMA: a modeling
and simulation system for sound synthesis - the general formalism.
Computer Music Journal, 17(1):19-29, 1993.

A. Camurri, M. Riccheti, and R. Trocca. EyesWeb - toward gesture
and affect recognition in dance/music interactive systems. Proc. IEEE
Multimedia Systems '99, Florence, 1999.

P. Dutilleux. Vers la machine ci sculpter le son, modification en temps
re'el des caracte'ristiques fre'quentielles et temporelles des sons. PhD
thesis, University of Aix-Marseille 11, 1991.

A. Freed and R. Avizienis. A new music keyboard with continuous key-
position sensing and high-speed communication. In Proc. International
Computer Music Conference, pp. 515-516, Berlin, 2000.

T. Fujishima. A real-time chord recognition of musical sounds: a sys-
tem using common lisp music. In Proc. International Computer Music
Conference, pp. 464-467, Beijing, 1999.

Y. Geslin. Sound and music transformation environments: a twenty
year experiment at the "Groupe de Recherches Musicales". In Proc.
DAFX-98 Digital Audio Effects Workshop, pp. 241-248, Barcelona,
November 1998.

N. Griffith and M. Fernstrom. Litefoot - a floor space for recording
dance and controlling media. In Proc. International Computer Music
Conference, pp. 475-481, Michigan, 1998.

B. Gillespie. The virtual piano action: design and implementation. In
Proc. International Computer Music Conference, pp. 167-170, Aarhus,
1994.

L. Haken, R. Abdullah, and M. Smart. The continuum: a continuous
music keyboard. In Proc. International Computer Music Conference,
pp. 81-84, San Jose, 1992.

K.H. Hsiao and J. Paradiso. A new continuous multimodal musical
controller using wireless magnetic tags. In Proc. International Com-
puter Music Conference, pp. 24-27, Beijing, 1999.

T. Ilmonem and T. Takala. Conductor following with artificial neural
networks. In Proc. International Computer Music Conference, pp. 367-
370, Beijing, 1999.

D. Keane and P. Gross. The MIDI baton. In Proc. International
Computer Music Conference, pp. 151-154, Columbus, 1989.

R.B. Knapp and H.S. Lusted. A bioelectric controller for computer
music applications. Computer Music Journal, 14(1):42-47, 1990.

Bibliography 493

[KreSO]

[KW91]

[Lau98]

[Loh86]

[MC891

[Meigl]

[MIDI]

[MP971

[MR90]

[Mu1981

[Nag981

[NicOO]

[Nie99]

[Par971

[PAZ98]

V. Krefeld. The hand in the Web: an interview with Michel Waisvisz.
Computer MUSIC Journal, 14(2):28-33, 1990.

D. Keane and K. Wood. The MIDI baton 111. In Proc. International
Computer Music Conference, pp. 541-544, Montreal, 1991.

S. de Laubier. The meta-instrument. Computer Music Journal.
22(1):25-29, 1998.

H. Lohner. The UPIC system: a user’s report. Computer Music Jour-
nal, 10(4):42-4!3, 1986.

T. Machover and J. Chung. Hyperinstruments: musically intelligent
and interactive performance and creativity systems. In Proc. Interna-
tional Computer Music Conference, pp. 186-190, Columbus, 1989.

JP . Meinadier. L’Interface utilisateur. S6rie informatique et stratkgie,
DUNOD, 1991.

MIDI 1.0 Detailed specification. The International MIDI Association.
http://www.midi.org/

T. Marrin and J. Paradiso. The digital baton: a versatile perfor-
mance instrument. In Proc. International Computer Music Conference,
pp. 313-316, Thessaloniki, 1997.

R.A. Moog and T.L. Rhea. Evolution of the keyboard interface: the
Bosendorfer 290 SE recording piano and the Moog multiply-touch- sen-
sitive keyboards. Computer Music Journal, 14(2):52-60, 1990.

A.G.E. Mulder. Design of Virtual Three-dimensional Instruments for
Sound Control. PhD thesis, Simon Fraser University, Burnaby, BC,
Canada, 1998.

Y. Nagashima. Biosensorfusion: new interfaces for interactive multime-
dia art. In Proc. International Computer Music Conference, pp. 129-
132, Michigan, 1998.

C. Nichols. The vBow: a haptic musical controller human-computer
interface. In Proc. International Computer Music Conference, pp. 274-
276, Berlin, 2000.

S.H. Nielsen. R.ea1-time control of audio effects. In Proc. DAFX-99 Dig-
ital Audio Effects Workshop, pp. 55-58, Trondheim, December 1999.

J. Paradiso. Electronic music interfaces: new ways to play.
IEEE Spectrum Magazine, 34(12):18-30, December 1997.
http://web.media.mit.edu/”joep/

M. Puckette, 1’. Apel, and D. Zicarelli. Real-time audio analysis tools
for Pd and MSP. In Proc. International Computer Music Conference,
pp. 109-112, Michigan, 1998.

494 12 Control of Digital Audio Effects

[PD98]

[PG971

[PHH99]

[PHSROO]

[PL92]

[Pucgla]

[PucSlb]

[Puc95]

[Ram95a]

[Ram95b]

[RD96]

[RHOO]

[RM90]

[RosSO]

F. Pachet and 0. Delerue. Constraint-based spatialization. In
Proc. DAFX-98 Digital Audio Effects Workshop, pp. 71-75, Barcelona,
November 1998.

J. Paradiso and N. Gershenfeld. Musical applications of electric field
sensing. Computer Music Journal, 21(3):69-89, 1997.

J. Paradiso, K.H. Hsiao, and E. Hu. Interactive music for instrumented
dancing shoes. In Proc. International Computer Music Conference,
pp. 453-456, Beijing, 1999.

J. Paradiso, K.H. Hsiao, J. Strickon, and P. Rice. New sensor and music
systems for large interactive surfaces. In Proc. International Computer
Music Conference, pp. 277-280, Berlin, 2000.

M. Puckette and C. Lippe. Score following in practice. In Proc. In-
ternational Computer Music Conference, pp. 182-185, San Francisco,
1992.

M. Puckette. FTS: a real-time monitor for multiprocessor music syn-
thesis. Computer Music Journal, 15(3):58-67, 1991.

M. Puckette. Combining event and signal processing in the MAX
graphical programming environment. Computer Music Journal,
15(3):68-74, 1991.

M. Puckette. Score following using the sung voice. In Proc. Interna-
tional Computer Music Conference, pp. 175-178, Banff, 1995.

C. Ramstein. Les interfaces a retour de force. Proc. International
Symposium on Electronic Arts, Montreal. pp. 236-239, 1995.

C. Ramstein. MUIS: multimodal user interface system with force-
feedback and physical models. Proc. INTERACT 95, pp. 157-163,
Lillehammer, Norway, 1995.

J.C. Risset and S.V. Duyne. Real-time performance interaction
with a computer-controlled acoustic piano. Computer Music Journal,
20(l) :62-75, 1996.

J. Rovan and V. Hayward. Typology of tactile sounds and their syn-
thesis in gesture-driven computer music performance. In Trends in
Gestural Control of Music. IRCAM, 2000

D. Rubine and P. McAvinney. Programmable finger tracking instru-
ment controllers. Computer Music Journal, 14(1):26-41, 1990.

D. Rosenboom. The performing brain. Computer Music Journal,
14(1):48-66, 1990.

Bibliography 495

[RS78]

[SDWROO]

[Sie99]

[SJ98]

[SmiOO]

[SWOO]

[Tar971

[TerSl]

[Ter94]

[Ter98]

[TDF95]

[TMS98]

[Tod95]

L.R. Rabiner and R.W. Schafer. Digital Processing of Speech Signals.
Prentice-Hall, 1978.

S. Serafin, R. Dudas, M.M. Wanderley, and X. Rodet. Gestural control
of a real-time physical model of a bowed string instrument. In Proc.
International Computer Music Conference, pp. 375-378, Berlin, 2000.

W. Siegel. Two compositions for interactive dance. In Proc. In-
ternational Computer Music Conference, pp. 56-59, Beijing, 1999.
http://www.daimi.aau.dk/"diem/dance.html

W. Siegel and J. Jacobsen. The challenge of interactive dance: an
overview and case study. Computer Music Journal, 22(4):29-43, 1998.

A. Smirnov. Music and gesture: sensor technologies in interactive music
and the theremin-based space control system. In Proc. International
Computer Music Conference, pp. 511-514, Berlin, 2000.

D. Schwarz and M. Wright. Extensions and applications of the SDIF
sound description interchange format. In Proc. International Computer
Music Conference, pp. 481-484, Berlin, 2000.

L. Tarabella. Studio report of the computer music lab of cnuce/c.n.r.
In Proc. International Computer Music Conference, pp. 86-88, Thes-
saloniki, 1997.

D. Terrugi. Manuel du stage SYTER, INA-GRM, 1991.

D. Terrugi. The Morpho concepts: trends in software for acousmatic
music composition. In Proc. International Computer Music Confer-
ence, pp. 213-215, Aarhus, 1994.

D. Teruggi. Le systbme SYTER. Son histoire, ses de'veloppements, sa
production musicale, ses implications dans le Eangage e'lectroacoustique
d'aujourd'hui. PhD thesis, University of Paris 8, 1998.

T. Todoroff, E. Daubresse, and J. Fineberg. Iana-: a real-time environ-
ment for analysis and extraction of frequency components of complex
orchestral sounds and its application within a musical realization. In
Proc. International Computer Music Conference, pp. 292-293, Banff,
1995.

L. Tarabella, M. Magrini, and G. Scapellato. A system for recogniz-
ing shape, position and rotation of the hands. In Proc. International
Computer Music Conference, pp. 288-291, Michigan, 1998.

T . Todoroff. Instrument de synthkse granulaire dans Max/FTS. Proc.
International Symposium on Electronic Arts, Montreal, pp. 292-296,
1995.

12 Control of Digital Audio Effects 496

[TodOO]

[Tro99]

[TruSO]

[TSS82]

[TT981

[TTL97]

[UV99]

[Var96]

[VU951

[VUK96]

[Wan971

[WBOO]

[WDK99]

T. Todoroff. Modules externes Max/MSP pour l’analyse, la transfor-
mation et la synthkse sonore et leurs applications pour la dame inter-
active. Proceedings of Colloque International Max/MSP, IMEB and
ENSI, Bourges, 2000.

J. Tro. Aspects of control and perception. In Proc. DAFX-99 Digital
Audio Effects Workshop, pp. 63-66, Trondheim, December 1999.

B. Truax. Time-shifting of sampled sound with a real-time granula-
tion technique. In Proc. International Computer Music Conference,
pp. 104-107, Glasgow, 1990.

E. Terhardt, G. Stoll, and M. Seewann. Algorithm for extraction of
pitch and pitch salience from complex tonal signals. J. Acoust. Soc.
Am., 71(3):679-688, 1982.

T. Todoroff and C. Traube. Transformations sonores en temps rkel dans
MAX/FTS et interfaces graphiques pour le contr6le de ces processus.
Recherches et Applications en Informatique Musicale, Editions Hermes,
Collection Informatique Musicale, Chapter 12, 1998.

T . Todoroff, C. Traube, and J.-M. Ledent. NeXTStep graphical inter-
faces to control sound processing and spatialization instruments. In
Proc. International Computer Music Conference, pp. 325-328, Thessa-
loniki, 1997.

T. Ungvary and R. Vertegaal. The SensOrg: time-complexity and the
design of a musical cyberinstrument. In Proc. International Computer
Music Conference, pp. 363-366, Beijing, 1999.

B. Varga. Conversations with Iannis Xenakis. Faber and Faber Ltd.,
1996.

R. Vertegaal and T. Ungvary. The Sentograph: input devices and the
communication of bodily expression. In Proc. International Computer
Music Conference, pp. 253-256, Banff, 1995.

R. Vertegaal, T . Ungvary, and M. Kieslinger. Towards a musician’s
cockpit: transducer, feedback and musical function. In Proc. Interna-
tional Computer Music Conference, pp. 308-311, 1996.

M.M. Wanderley. Les nouveaux gestes de la musique. IRCAM internal
report, April 1997.

M. Wanderley and M. Battier (eds). Trends in Gestural Control of
Music. IRCAM, 2000.

M. Wright, R. Dudas, S. Khoury, R. Wang, and D. Zicarelli. Support-
ing the sound description interchange format in the Max/MSP environ-
ment. In Proc. International Computer Music Conference, pp. 182-185,
Beijing, 1999.

Bibliography 497

[Wes79] D. Wessel. Timbre space as a musical control structure. Computer
Music Journal, 3(2):45-52, 1979.

[Win981 T. Winkler. Motion-sensing music: artistic and technical challenges in
two works for dance. In Proc. International Computer Music Confer-
ence, pp. 471-474, Michigan, 1998.

[WS99] M. Wright and E.D. Scheirer. Cross-coding SDIF into MPEG-4 struc-
tured audio. I:n Proc. International Computer Music Conference,
pp. 589-596, Beijing, 1999.

[WVIROO] M.M. Wanderky, J.P. Viollet, F. Isart, and X. Rodet. On the choice
of transducer technologies for specific musical functions. In Proc. In-
ternational Computer Music Conference, pp. 244-247, Berlin, 2000.

[WWF97] M. Wright, D. Wessel, and A. Freed. New musical control structures
from standard gestural controllers. In Proc. International Computer
Music Conference, pp. 387-390, Thessaloniki, 1997.

[Xen92] I. Xenakis. Formalized Music. Pendragon Press, Harmonologia Serie,
No. 6, 1992.

[Zic97] D. Zicarelli. An extensible real-time signal processing environment for
MAX. In Proc. International Computer Music Conference, pp. 463-
466, Thessaloniki, 1997.

Chapter 13

Bitstream Signal Processing

M. Sandler, U. Zolzer

13.1 Introduction

The motivation for Bitstream Signal Processing (BSP) Sigma Delta Modulation
(SDM) has become the predominant means of converting between analog and digital
domains for audio. There are various reasons for this, principal among them initially
at least, was the low cost of SDM Digital-to-analog Converters (DACs) providing
a quality equivalent to Nyquist-rate DACs (based on resistor ladders or current
sources). There are also good sonic arguments for the use of SDM data converters,
currently mirrored in the debate of 96 kHz and 192 kHz sampling rates, which is that
the benign and slow rate of roll-off of the anti-aliasing filters does not compromise
the phase response. Either way, SDM converters at both the front end and the back
end of audio systems are here to stay for the foreseeable future. So let us look at the
conventional approach to audio signal processing where the converters are SDM,
leaving aside for now the precise details of how SDM works. Referring to Fig. 13.1,
we see that the analog sign,al coming in is converted to single-bit stream at a rate
many times the Nyquist rate (typically 64 times, i.e. the sampling is a t 64x48000
Hz). Because the processing is performed in what we shall call PCM format, i.e 16
or more bits at the Nyquist rate, there is a need to down-sample the bitstream.
This is done using a special filter known as a Decimation filter - the combination
of the blocks labelled 0 and LPF in Fig. 13.1.

Then the processing is performed as conventional DSP dictates, for example
using programmable microprocessor with a Harvard or Super-Harvard architecture,
such as those from Motorola, Texas Instruments or Analog Devices. It is performed
at the Nyquist rate, fs - the sampling frequency - on b bit signal samples. Then to
convert it back to analog form, for monitoring or final rendition, we again use SDM,
this time in a DAC. However, although the SDM DAC itself is very simple, it needs
to run at the high, super-Nyquist rate (e.g. 64x48000 HZ again). This means that

499

500 13 Bitstream Signal Processing

__,’ encoder
-.

decoder .--._

Figure 13.1 Basic structure of DSP system based on Sigma Delta interfaces to the analog
world. SDM=Sigma Delta Modulation representation; LPF = lowpass filter; boxes with 0
are sample rate decrease and increase respectively, by a factor 0, the over-sampling ratio.

the PCM format signal our processing has produced must have its sampling rate
increased, using a special filter known as an interpolation filter - the combination
of the blocks labelled “LPF” and “0” in the figure. So overall, we have simple
analog-digital and digital-analog portals in our system, but we have the expense of
the decimation and interpolation filters on top of this. If the PCM processing in
between these is simple, there is likely to be a processing penalty, in the sense that
the DSP MIPS are dominated by the interpolation and decimation filters.

Thus a question arises. Would it not be simpler (not to mention more elegant)
if we could perform the processing directly on the SDM bitstream that comes out
of the SDM ADC, and write it directly to the SDM DAC - cut out the middle
man? This is shown in Fig. 13.2 where it is clear that we no longer use the sample
rate decrease (decimator) and increase (interpolator) filters and thus have saved
processing.

1 bit @ few bits @ 1 bit @

analog

SDM @ 0.fs
to processing

1 bit SD SDM-
analog loop (1 bit DAC)

Figure 13.2 Basic structure of DSP system based on Sigma Delta coding and bitstream
signal processing. The provision for the result of the operation being more than 1 bit wide
is made explicit - the SD loop.

Probably it is reasoning of this sort that persuaded researchers at Sony and
Philips to investigate how beneficial it would be to work entirely in the SDM signal
domain. They have produced proposals and indeed products, based on the con-
cept that signals should be stored, processed and generally manipulated in SDM
bitstream format. This they have called Direct Stream Digital, and it is this rep-
resentation that underpins the new Super Audio CD format. Because Sony and
Philips propose not only selling music in the Super Audio format, but to configure
the complete processing chain so that it is based on it, that shapes the remainder
of this section. We will look first at the general principles of SDM in both ADCs
and DACs, and will then look at two of the most common signal processing tasks,
IIR and FIR filters, that can be accomplished in SDM format.

13.2 Sigma Delta Modulation 501

13.2 Sigma Delta Modulation
Conventional data converters, both ADCs (Analog-to-Digital Converters) and DACs
(Digital-to-Analog Converters), use no (or mild) over-sampling and as such convert
signals at or just over the Nyquist sampling limit. A general structure for a Nyquist
ADC is shown in Fig. 13.3 and that of a Nyquist DAC is shown in Fig. 13.4.
Typically, then, for a 20 kHz bandwidth, the sampling and conversion will take
place at a rate of, say, 44.1 kHz for CD quality.

b bits

analog
signal in ADC

Figure 13.3 Nyquist-rate ADC.

b bits
lowpass

elliptic
DAC filter analog

signal out

Figure 13.4 Nyquist-rate DAG.

A generic over-sampling ADC structure is shown in Fig. 13.5, where the key point
to note is that the core ADC will typically produce fewer bits per sample than the
final digital output. The extra bits in the output are regained by the decimation filter
which reduces the sampling rate back down to (or close to) the Nyquist rate. The
reason this works is that the quantization error power of a core ADC is determined
solely by the number of bits it uses. However, with over-sampling, this power is
spread more thinly through1 the spectrum, so that the noise power per Hz is reduced
and in-band SNR is improved. Because the decimation filter is used to extract only
the wanted baseband signal it is possible to recover the additional bits. The SNR
improvement is 3 dB for every doubling of sampling rate (over and above Nyquist),
or an extra bit for a 4 times over-sampling, 2 extra bits for 16 times over-sampling,
etc. Over-sampling like this is a simple way to trade amplitude resolution for time
resolution, but if non-linear techniques are used, improved gains can be made. Figure
13.6 presents a generic over-sampling DAC. The principal reason for choosing such
a structure is to ease the ,specification of the reconstruction filter, which is analog
and in Nyquist DACs may introduce unwanted phase distortion. The purpose of
the interpolation filter is to increase the sampling rate of the incoming digital signal
prior to conversion. The signal at the output of that block should approximate

L.fs L.fs fs I
b bits b blts

digital 4 - H Hold H signal in lowpass
Sample’

simple

filter
digital

signal out

Figure 13.5 Over-sampling ADC.

502 13 Bitstream Signal Processing

closely the digital signal that would have been obtained had the analog signal been
sampled at the higher rate rather than the Nyquist rate.

fs, L.fs
b bits b bits

digital
signal in

interpolation lowpass
filter DAC filter

(L times) (simple)

analog
signal out

Figure 13.6 Over-sampling DAC.

Together, interpolation filters and decimation filters are known as multirate
filters [SR73, CR831. This is because they operate at more than one sampling fre-
quency. It is by operating these non-linear SDM systems in excess of the Nyquist
sampling rate that they are able to perform in a quasi-linear manner. Sigma Delta
Modulation works by converting a signal into a sequence of pulses, whose short-
term average follows that of the modulating signal [CT91, NST97J. In this case, the
pulses are of fixed duration, and their number is proportional to the signal ampli-
tude: it is thus sometimes referred to as Pulse Density Modulation (PDM) and has
much in common with error diffusion techniques, as used in image half-toning. An
example of the pulse stream that results from SDM is shown in Fig. 13.7, and a
generic structure for a SDM is shown in Fig. 13.8. Note that the number of levels
that a SDM pulse stream can attain is determined by the number of discrete levels
of its internal quantizer. For a single bit quantizer, there are two levels, normally
denoted as +l and -1. Note that often it is clearer and/or more convenient to label
the negative pulse value as 0, so that pulse values are 1 and 0.

SDM is closely related to delta modulation in which a single bit commands a
decoder either to increase or decrease its output level - thus it is capable of tracking
the input. However, SDM both simplifies the decoder and encoder by including an
integrator in the encoder’s feed-forwa.rd path. The development of SDM is gener-
ally attributed to Cutler [Cut52, Cut541, whose paper actually deals with an error
diffusion approach. The structure now known as Sigma Delta Modulator is due to
Inose et al. [IYM62, IY63] who first reported it in the early 1960s.

13.2.1 A Simple Linearized Model of SDM

The non-linearity within the SDM block diagram makes precise analysis somewhat
intractable, though there have been some excellent publications on exact non-linear
analysis of SDMs [FC91]. This approach leads to accurate but restricted results, so
it is common to model the SDM by a linearized method in which the quantizer is
replaced by an additive noise source. Figure 13.9 shows the linearized model.

Overall, the output, O (z) is a combination of the quantization error, q(n) and
the fedback error, I (x) - O (z) , given by

O (Z) G(z) . (I(z) - O (Z)) + & (x) . (13.1)

13.2 Sigma Delta Modulation 503

-0.2

-0.8

- -0.6

- -0.4

-

I I l I I I I I

8 8.01 8.02 8.03 8.04 8.05 8.06 8.07
(a) One cycle of signal: time in seconds

8.08 8.09 8.1

0.4

0.2

8 8.01 8.02 8.03 8.04 8.05 8.06 8.07
(b) Modulated signal: time in seconds

8.08 8.09 8.1

Figure 13.7 First-order Sigma Delta Modulation of 1 kHz sine wave, 50 times over-
sampled.

Figure 13.8 Sigma Delta Modulator.

Figure 13.9 Linearized model of Sigma Delta Modulator suitable for analysis.

Setting Q (z) = 0 we find the output as a function of the input only, and leads to
the Signal Transfer Function (STF)

(13.2)

504 13 Bitstream Signal Processing

Setting the input I (z) = 0 we find the Noise Transfer Function (NTF)

(13.3)

Note that this makes no assumptions about the probability density function of
q(n) or indeed the nature of the quantizer or the amount of over-sampling. As the
number of bits or levels in the quantizer increases so the analysis proves increasingly
accurate. The same i s true as the over-sampling increases.

In most cases, the design of a SDM will start from this simple form, which
enables a first set of system parameters to be obtained. What then follows is an
extensive process of simulating, testing and modifying until the system performs
adequately well for the intended application. It is still a topic of research interest to
be able to produce SDM models which are amenable to single pass design strategies
for which no simulate-test cycles are needed.

Figure 13.10 First-order Sigma Delta Modulator.

13.2.2 A First-order SDM System

In its simplest form, G (z) is an integrator, which has high gain at low frequencies
so that STF(z) M 1, whereas the NTF at low frequencies will be small, so that the
quantization error (manifested as noise) is greatly suppressed. A first-order SDM is
shown in Fig. 13.10. This is demonstrated in Fig. 13.11, which presents the spectra
for the signal of Fig. 13.10. The noise suppression at baseband is clear and we can
see that, in spite of only a single bit representation of each sample, the modulated
representation provides a good signal-to-noise ratio over a useful bandwidth. A
simple Matlab simulation of this system is shown in M-file 13.1.

M-file 13.1 (fo-sdm.m)
% First-order SDM
c1ear;clf;
N=10000; n=[O:N-l] ;
signa1=0.6*sin(lOO*n*2*pi/N);
q=O;node3=0;

% main loop
for i=O:N-l,

13.2 Sigma Delta Modulation 505

q=(node3>0) ;
nodel=signal(i+l)-2*(q-O.5);
node2=nodel+node3;
node3=node2;
y(i+l)=q;
end

% plots
time1=8:0.001:8.999;time2=8:0.001:8.099;
freqi=O:i:499;freq2=0:0.01:49.99;
figure (1) ;
subplot (2 , 1,l) ;
plot(tirne2,signal(8000:8099));
xlabel(’(a) One cycle of signal : Time in seconds’);
subplot (2,1,2) ;
stem(tirne2,y(8000:8099), ’b’);
xlabel(’(b) Modulated signal : Time in seconds’);

[P , F] =spectrum(y ,2048,1024, [l ,1000) ;
figure (2) ;
subplot(2,1,1);
plot(F,20*loglO(P(: ,l)+O.OOOOl));
xlabel(’a) Power Spectrum (Hz) up to half-sampling frequency’);
subplot(2,1,2);
plot(F(1:205),20*loglO(P(1:205,1)));
xlabel(’b) Narrow-band Power Spectrum (Hz) ’1 ;

13.2.3 Second and Higher Order SDM Systems

Higher order SDMs use cascaded integrators in the loop filter, which increase the
noise suppression at low frequencies. The order of the filter is used to describe the
order of the modulator, e.g. a third-order filter is used in a third-order modulator.
A second-order SDM is shown in Fig. 13.12.

The effect of increasing order is demonstrated in Fig. 13.13 for a second-order
modulator, with the same input signal and over-sampling rate (500) as Fig. 13.11.
We can see greater baseband resolution and/or a wider usable bandwidth. For all
SDMs this is at the cost of amplifying noise at high frequencies. A simple Matlab
simulation of this system is shown in M-file 13.2.

M-file 13.2 (so-sdm.m)
1 Second-order SDM
clear,clf;
N=I0000;
n= [O : N-l] ;
signal=0.6*sin(iO*n*2*pi/N);

506 13 Bitstream Signal Processing

0

-50

-1 00

-1 50 ' I I I I l I I I I l
0 50 100 150 200 250 300 350 400 450 500

(a) Power spectrum (Hz) up to half-sampling frequency

50

0

-50

-1 00

-150
0 10 20 30 40 50 60 70 80 90 100

(b) Narrow-band power spectrum (Hz)

Figure 13.11 Power spectral analysis of first-order SDM for 500 times over-sampled signal
Note the good signal resolution at low frequencies in (a) magnified in (b).

Figure 13.12 Second-order Sigma Delta Modulator.

% main loop
f o r i=O:N-l,
q= (node5>0) ;
nodel=signal(i+l)-2*(q-0.5);
node2=node2+nodel;
node3=node2-2*(q-0.5);
node4=node3+node5;

13.3 BSP Filtering Concepts 507

% q=(node5>0) ;
node5=node4;
y(i+l)=q;
end

x plots
f igure(1) ;
subplot (4,1,1> ;
plot(n(N/2:N-l) ,signal(N/2:N-l));
subplot (4 , 1,2)
plot(n(N/2:N-l) ,y(N/2:N-I), ’y’);
subplot (4,1,3) ;
plot (n(N/2 : N/2+199) , signal (N/2 : N/2+199)) ;
subplot (4,l ,4)
stem(n(N/2:N/2+199) ,y(N/2:N/2+199), ’y’) ;

[P ,F] =spectrum(y ,2048,1024, [l ,1000) ;
figure(2);
subplot (2, l, 1) ;
plot(F,20*loglO(P(: , l))) ;
xlabel(’a) Power Spectrum (Hz) up t o half-sampling frequency’);
subplot(2,1,2);
plot(F(l:205) ,20*logl0(P(1:205,1)~);
xlabel(’b) Narrow-band Power Spectrum (Hz)’);

The generic structure of Fig. 13.7 is often known as an interpolative SDM. Many
alternative topologies exist, but perhaps the most popular is the so-called multiple
feedback structure. This is shown in Fig. 13.14. The great advantage of this structure
is that it is tolerant to coeficient and data path quantization because the filter is
constructed from a cascade of integrators.

13.3 BSP Filtering Concepts

Since the early 1990s a small but significant flurry of work has appeared, dealing
with a variety of signal processing algorithms implemented to process a SDM bit-
stream signal. Topics covered include: FIR filtering [WG90, Won921, second-order
IIR filtering [JL93, JLC93, Qiu931, adaptive filtering [RKT92, QM93], high qual-
ity sinusoidal oscillators [LR.J93a, LRJ93b], signal mixing [Ma192], dynamic range
compression and expansion [Qiu92], phase/frequency modulation [RC941 and de-
modulation [BC94, Ga1941. Useful introductions to sigma-delta signal processing
have appeared [M091, Ma192, Dia941 and present a wide range of the potential
applications.

508 13 Bitstream Signal Processing

-1501 , I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

(a) Power spectrum (Hz) up to half-sampling frequency

50 I I I I I I I I I

0

-50 ~

-100 -

-1 50 , I I I I I I I I

0 10 20 30 40 50 60 70 80 90 100
(b) Narrow-band power spectrum (Hz)

Figure 13.13 Power spectral analysis of second-order SDM for same input as Fig. 13.11.
Note the improved signal resolution at baseband compared to the first-order modulator.

Figure 13.14 Alternative, multiloop SDM structure.

13.3.1 Addition and Multiplication of Bitstream Signals

In many audio applications it is necessary to add or substract two bitstream signals
or to multiply a bitstream signal by a constant parameter for gain manipulation.
The output signal should be a bitstream signal. A bitstream adder was proposed
in [OM901 and is shown in Fig. 13.15. Two over-sampled one-bit signals x1(n) and
x2(n) are added, producing a two-bit result with the sum and the carry bit. The
sum bit is stored and added to the following input bits and the carry bit forms
the output bitstream. It can be shown [OM90], that for low frequencies the carry
output signal represents the addition of the two input signals. The output signal

13.3 BSP Filtering Concepts 509

Figure 13.15 Summation of bitstream signals [OM901

can be represented by its z-transform according to

Y (z) = X I (Z) + X , (Z) - NTF(z) -SUM(z). (13.4)

(l - Z - 1)

The equation represents a first-order sigma-delta modulator, where the sum signal
corresponds to the quantization error. For low frequencies the term representing the
error signal is reduced by the noise transfer function NTF. It is possible to perform
subtraction by inverting the required input bitstream signal.

Several possible multiplication schemes for bitstream processing are discussed in
[M091, Ma192, Dia941. A basic building block for filtering applications was proposed
in [JL93] as a sigma-delta aktenuator, which is shown in Fig. 13.16. A bitstream
signal ~ (n) at the over-sampled rate is multiplied by a multibit coefficient al . The
multiplier can be efficiently realized by a 2-input multiplexer which selects either
a1 or -al . The following SD modulator to return a one-bit output is a simplified
second-order modulator [JL93] with low complexity.

a,

Figure 13.16 Multiplication of a bitstream signal by a sigma-delta attenuator [JL93].

13.3.2 SD IIR Filters

Equalizers for audio applicat,ions are mainly based on first- and second-order filters
as discussed in Chapter 2. A first-order SD IIR filter was introduced in [JL93] and is
shown in Fig. 13.17. It is based on the above described SD attenuator. The transfer
function can be shown [TsiOO] to be given by

(13.5)

For realizing higher order filters a cascade of first- and second-order filters is
used. A second-order SD IIR filter was also proposed in [JL93]. The block diagram

510 13 Bitstream Signal Processing

Figure 13.17 First-order SD IIR filter [JL93].

is shown in Fig. 13.18. The number of SD modulators is equal to the order of the
IIR filter in order to keep the number noise sources as low as possible. The second-
order SD IIR filter is based on an integrator based IIR filter. According to [JL93]
the transfer function is given by

Figure 13.18 Second-order SD IIR filter [JL93]

The application of established IIR filter topologies for over-sampling SD IIR
filters is straight forward. However, the inclusion of SD modulators to maintain a
bitstream output signal has to be investigated carefully.

13.3.3 SD FIR Filters

FIR filters for bitstream processing have been discussed in several publications
[PL73, WG90, Won92, KSSA961. Two methods for building FIR digital filters are
treated in [WG90, Won921 where either the impulse response or the input signal or
both are encoded using sigma-delta modulation. Realization issues for a VLSI im-
plementation of a sigma-delta bitstream FIR filter are discussed in [KSSA96]. The

13.4 Conclusion 511

resulting FIR filter topology is shown in Fig. 13.19. The input signal is a bitstream
signal with one-bit representation and the coefficients are in multibit representa-
tion. The multipliers are again realized as 2-input multiplexers which select the
coefficients bi or -bi. The number and values of the coefficients are identical to
the prototype design for the Nyquist sampling rate fs. The interpolation by over-
sampling factor R of the impulse response is achieved by replacing the z-l operator
by z - ~ . This approach allows the design of the filter coefficients bo, b l , . . . , b N - 1 at
the sampling rate fs using well-known design techniques.

Figure 13.19 SD bitstream FIR filter [WG90, Won92, KSSASG].

13.4 Conclusion

We have reviewed the basics of SDM and shown how it generates a single bit rep-
resentation of audio signals. Subsequently we provide an introduction to the ways
in which direct bitstream processing of these signals can be performed.

Techniques like these are only really suitable for real-time hardware implemen-
tation where cost savings may be made by reducing chip count/size. For example,
one might imagine a next generation of on-stage effects processors built around such
devices. They have already been used in prototype mixing consoles. When imple-
mented carefully the processing and the final sound can be every bit as good as
by more conventional means. Whether or not these processing techniques become
mainstream or not depends less on how good they are and more on the market
success of the DSD format - only time will tell us the answer.

Bibliography

[BC941 R.D. Beards and M.A. Copeland. An oversampling delta-sigma frequency
discriminator. IEEE Trans. on Circuits and Systems-II: Analog and Dig-
ital Signal Processing, 41(1):26-32, January 1994.

[CR83] R.E. Crochiere and L.R. Rabiner. Multirate Digital Signal Processing.
Prentice-Hall, 1983.

[CT91] J.C. Candy and G.C. Temes. Oversampling Delta-Sigma Converters.
IEEE Press, 1991.

512

[Cut521

[Cut541

[Dia94]

[FC91]

[Gal941

[IY63]

[IYM62]

[JL93]

[JLC93]

13 Bitstream Signal Processing

C.C. Cutler. Differential quantization of communication signals. U.S.
Patent 2 605 361, July 29, 1952.

C. Cutler. Transmission systems employing quantization. U.S. Patent 2
927 962, March 8, 1960 (filed 1954).

V. Dias. Sigma-delta signal processing. In IEEE International Sympo-
sium on Circuits and Systems, pp. 421-424, 1994.

0. Feely and L.O. Chua. The effect of integrator leak in sigma-delta
modulation. IEEE Trans. on Circuits and Systems, 38(11):1293-1305,
November 1991.

I. Galton. High-order delta-sigma frequency-to-digital conversion. In
Proc. IEEE ISCAS, pp. 441-444, 1994.

H. Inose and Y . Yasuda. A unity bit coding method by negative feedback.
Proc. IEEE, 51:1524-1535, 1963.

H. Inose, Y. Yasuda, and J. Murakami. A telemetering system by code
modulation ~ delta-sigma modulation. IRE Trans. Space Electron.
Telemetry, SET-8:204-209, September 1962.

D.A. Johns and D.M. Lewis. Design and analysis of delta-sigma based
IIR filters. IEEE Trans. on Circuits and Systems-11: Analog and Digital
Signal Processing, 40(4):233-240, April 1993.

D.A. Johns, D.M. Lewis, and D. Cherapacha. Highly selective analog
filters using delta-sigma based IIR filtering. In Proc. IEEE ISCAS, pp.
1302-1305,1993.

[KSSA96] S.M. Kershaw, S. Summerfield, M.B. Sandler, and M. Anderson. Real-
isation and implementation of a sigma-delta bitstream FIR filter. IEE
Proc. Circuits Devices Syst., 143(5):267-273, October 1996.

[LRJ93a] A.K. Lu, G.W. Roberts, and D.A. Johns. A high quality analog oscillator
using oversampling D/A conversion techniques. In Proc. IEEE ISCAS,
pp. 1298-1301, 1993.

[LRJ93b] A.K. Lu, G.W. Roberts, and D.A. Johns. A high quality analog os-
cillator using oversampling D/A conversion techniques. IEEE Trans. on
Circuits and Systems-11: Analog and Digital Signal Processing, 41(7):437-
444, 1993.

[Ma1921 F. Maloberti. Non conventional signal processing by the use of sigma
delta technique: a tutorial introduction. In IEEE International Sympo-
sium on Circuits and Systems, pp. 2645-2648, 1992.

[M0911 F. Maloberti and P. O’Leary. Processing of signals in their oversampled
delta-sigma domain. In IEEE International Conference on Circuits and
Systems, pp. 438-441, 1991.

Bibliography 513

[NST97]

[OM901

[PL73]

[Qiu92]

[Qiu93]

[QMW

[RC941

[RKT92]

[SR73]

[TsiOO]

[WG90]

[Won921

S. Norsworthy, R. Schreier, and G.C. Temes. Delta Sigma Data Conuert-
ers: Theory, Design and Simulation. IEEE Press, New York, 1997.

P. O’Leary and F. Maloberti. Bitstream adder for oversampling coded
data. Electronics Letters, 26(20):1708-1709,27th September 1990.

A. Peled and B. Liu. A new approach to the realization of nonrecur-
sive digital filters. IEEE Trans. Audio Electroacoust., AU-21:4?7-484,
December 1973.

H. Qiuting. Monolithic CMOS companders based on Sigma-delta over-
sampling. In Proc. IEEE ISCAS, pp. 2649-2652, 1992.

H. Qiuting. Linear phase filters configured as a combination of sigma-
delta modulator, sc transversal filter and a low-q biquad. In Proc. IEEE
ISCAS, pp. 1306--1309, 1993.

H. Quiting and G. Moschytz. Analog multiplierless LMS adaptive FIR
filter structure. IEEE Trans. on Circuits and Systems-11: Analog and
Digital Signal Processing, 40(12):790-793, Dec. 1993.

T.A.D. Riley and M.A. Copeland. A simplified continuous phase modula-
tor. IEEE Trans. on Circuits and Systems-11: Analog and Digital Signal
Processing, 41(5):321-328, May 1994.

T. Ritoniemi, T. Karema, and H. Tenhunen. A sigma-delta modulation
based analog-adaptive filter. In Proc. IEEE ISCAS, pp. 2657-2660,1992.

R.W. Schafer and L.R. Rabiner. A digital signal processing approach to
interpolation. Proc. IEEE, 61(6):692-702, June 1973.

E. Tsitsanis. An overview on sigma delta converters and sigma delta
signal processing techniques. Master’s thesis, King’s College London,
University of London, 2000.

P.W. Wong and R.M. Gray. FIR filters with sigma-delta modulation
encoding. IEEE! Trans. on Acoustics, Speech and Signal Processing,
38(6):979-990, June 1990.

P.W. Wong. Fully sigma-delta modulation encoded FIR filters. IEEE
Trans. on Acoustics, Speech and Signal Processing, 40(6):1605-1610,
June 1992.

Glossary

ADT

Aliasing

AT constant

Attack time AT

Audio effect

Auto pan

Brassage
Chorus

Click

Clipping

Comb filter

Automatic Double Tracking: A time-based signal pro-
cessor that simulates the effect of playing a part, then
overdubbing a second part to give a thicker sound.
Frequency components above half the sampling frequency
of a sampled signal that are folded back into the audio
spectrum (0-20 kHz).
Time needed for a signal to reach 63 percent (-4dB) of its
final amplitude. After three time constants it will have
reached 95 percent (-0.4dB) of its final amplitude.
Time for a signal to rise from 10 percent to 90 percent
from its final amplitude.
A modification of a sound by use of a signal processing
technique. It is sometimes called Audio-FX.
TIS change a signal's spatial position in the stereo field
via some modulation source.
French for time shuffling.
Detuning effect where the original signal is mixed with a
pitch modulated copy of the original signal. Pitch mod-
ulation is achieved by a random variation of the length
of a delay line.
A slight sharp noise, usually due to a discontinuity of
the signal or to some computation error. In some forms
of' musical production, such as techno or live sampling,
the clicks become such an important musical relevance,
that they are even emphasized.
Severe distortion of the signal because the amplitude is
la,rger than the processing system can handle.
Filter effect occurring if the original signal is mixed with
a delayed version of the original signal. The effect pro-
duces notches in the frequency domain at regular fre-
quency intervals.

515

516 Glossary

Compressor

Controller

Convolution

Cross-synthesis

Decay rate

Decay time

De-emphasis
De-esser

Denoising
Dispersion

Distance rendering

Distortion

Dithering

Doppler effect

A compressor is used for reducing the dynamics of an
audio signal. Quiet parts or low levels of a signal are
not modified but high levels or loud parts are reduced
according to a static curve.
A device used to modify one or several parameters of an
effect.
Mathematical algorithm which is based on an input sig-
nal and another short signal (for example, an impulse
response) and leads to an output signal.
This effect takes two sound inputs and generates a third
one which is a combination of the two input sounds. The
general idea is to combine two sounds by spectrally shap-
ing the first sound by the second one and preserving the
pitch of the first sound.
The time rate at which a signal decreases in amplitude.
Usually expressed in decibel per second (dB/s).
Time for a signal to decrease from 90 percent to 10 per-
cent from its initial amplitude.
See pre-emphasis
A de-esser is a signal processing device for processing
speech and vocals and is used to suppress high frequency
sibilance.
To decrease the noise within a sound.
Spreading a sound in time by a frequency-dependent
time delay.
The distance of a sound source is largely controllable by
insertion of artificial wall reflections or reverberant room
responses.
A modification of the signal that is usually objection-
able. When a signal is processed by a nonlinear system,
some components appear that were not part of the orig-
inal signal. They are called distortion products. Some
musical instruments such as the electric guitar take ad-
vantage of distortions to enlarge and vary their timbre.
This modifies the sound color by introducing nonlinear
distortion products of the input signal. Related effects
are Overdrive, Fuzz, Blender, Screamer.
Adding a low-level noise to the signal before quantiza-
tion. It improves the signal quality by decorrelating the
quantification error and the signal.
The Doppler effect raises the pitch of a sound source
approaching the listener and lowers the pitch of a sound
source departing the listener.

Glossary 517

Dropout

Dubbing

Ducking

Echo
Equalizer

Exciter

Expander

Fade-in

Fade-out
Feedback

Flanger

Flatterzunge

Flutter

Foley

Formant changing

A temporary loss of audio information. This is a typical
problem of magnetic-tape-based storage and processing
systems.
In general a “dry” sound is a sound that has not been
processed by any means. It qualifies originally sounds
that were recorded in an anechoic room. In our appli-
cation the phrase “dry signal” denotes the sound before
processing. See also wet.
Adding further material to an existing recording. Also
known as overdubbing.
A ,system for controlling the level of one audio signal with
another. For example, background music can be made to
“duck” whenever there is a voiceover [Whi99].
Several delayed versions of the original signal.
Filter system to shape the overall sound spectrum. Cer-
t a h frequency ranges can be either increased or cut. A
parametric equalizer allows individual setting of boost or
cut, center frequency, bandwidth and filter type.
Signal processor that emphasizes or de-emphasizes cer-
tah frequencies in order to change a signal’s timbre.
Expanders operate on low level signals and increase the
dynamics of these low level signals.
Gradually increasing the amplitude of a signal from si-
lence.
Gradually decreasing the amplitude of a signal to silence.
To send some of an effect’s output signal back to the
input. Also called regeneration.
Sound effect occurring if the original signal is mixed with
a delayed copy (less than 15 msec) of the original signal.
The delay time is cont,inuously varied with a. low fre-
quency sinusoid of 1 Hz.
A sound effect which is produced by rolling the tongue,
blowing air through the mouth and performing a rapid
fluttering motion of the tongue.
Variations due to short-term speed variations at rela-
tively rapid rates (above 6 Hz) [Met93]. See wow.
Imitation of real sounds for cinema applications. See also
sound effect.
This effect produces a “Donald Duck” voice without any
alteration of the fundamental frequency. It can be used
for performing an alteration of a sound whenever there
is a formant structure.

518 Glossary

Freezing

Frequency shifter

Frequency warping
FX

Gaussian noise

Glissando

Glitch

Granulation

Halaphon

Harmonizer
Impulse response

Inharmonizer

Jitter

Leslie

Leveler

(1) Selecting a fragment of sound and playing it as a
loop. The time seems to be frozen to the date when the
fragment was sampled. (2) Memorizing the spectrum en-
velope of a sound at a given time in order to apply this
envelope onto another sound [Ha195, pp. 59-60].
A signal processor that translates all the frequency com-
ponents of the signal by the same amount fi -+ fi + A f .
A alteration of the linearity of the frequency axis.
Shortcut for effects.
A random noise whose instantaneous amplitudes occur
according to the Gaussian distribution.
Linear transition from one pitch to another. This implies
that the frequencies corresponding to the pitches vary
according to a logarithmic law. See portamento.
An unwanted short-term corruption of a signal, or the
unexplained, short-term malfunction of a piece of equip-
ment. See click.
Extracting short segments from the input signal and re-
arranging them to synthesize complex new sounds.
A 4-channel sound projection system that was devel-
oped in 1971 by Hans Peter Haller and Peter Lawo.
Four amplitude envelope oscillators with different wave-
forms driving four amplitude modulators allowed com-
plex sound projection patterns at various speeds. An
8-channel version was used in 1973 for the production
of “Explosante fixe” by Pierre Boulez and a 10-channel
version for the production of (‘Prometeo” by Luigi Nono.
The methods for spatialization proposed by John Chown-
ing could also be implemented [Ha195, pp. 77-90].
A trademark of Eventide for a pitch shifter.
The response of a system which is fed by an impulse
signal.
This effect is obtained by frequency warping an origi-
nal harmonic sound. The resulting sound is enriched by
inharmonic partials.
Degradation of a signal by sampling it at irregular sam-
pling intervals. It can be interpreted as a modulation
process where the audio signal equals the carrier and the
jitter signal equals the modulation source.
This effect was initially produced by rotating micro-
phones or rotating loudspeakers. It can be approximated
by a combination of tremolo and doppler effect.
A dynamic processor that maintains (or “levels”) the
amount of one audio signal based upon the level of a

Glossary 519

LFO
Limiter

Live sampling

Masking

Modulation

Morphing

Morphophone

Multi-effects

Mute
Noise gate

Normalize

second audio signal. Normally, the second signal is from
an ambient noise sensing microphone. For example, a
restaurant is a typical application where it is desired to
maintain paging and background music a specified loud-
ness above the ambient noise. The leveler monitors the
background noise, dynamically increasing and decreasing
the main audio signal as necessary to maintain a con-
stant loudness differential between the two. Also called
SPL controller [BohOO].
Low Frequency Oscillator. See modulation.
Signal processor that lets the input signal pass through
when its level is lower than a defined threshold and lim-
its the output signal to a fixed level when the limiter
threshold is exceeded.
A musical style that relies on the replay of sounds or frag-
ments of them that are sampled during the performance
from other performers or sound sources.
Phenomenon whereby one sound obscures another, usu-
a1l.y one weaker and higher in frequency [Alt90].
Process of altering a parameter, usually through some
automatic or programmed means such as an LFO. See
vibrato and tremolo.
(1) Imposing a feature of one sound onto another. (2) A
transition from one sound to another. (3) Generation of
an intermediate sound between two others. (4) Gener-
ation of one sound out of the characteristics of another
sounds. (5) Transforming one sound’s spectrum into that
of another. See spectral mutation.
A tape-based multi-delay system with a bandpass filter
on the input signal as well as on each of the 10 playback
heads. The mixed output can be fed back to the input.
This device was designed by J. Poullin [PouGO] and A.
Moles [Mo160, p. 731.
A signal processor containing several different effects in
a single package.
Cuts off a sound or reduce its level considerably.
Signal processor that lets the input signal pass through
when its level is higher than a defined threshold.
To amplify the sound so much that its maximum reaches
the maximum level before clipping. This operation opti-
mizes the use of the available dynamic range of the audio
format and reduces the risk of corruption of the signal
by low level perturbations that could happen during a
further processing or the transmission of the sound.

520 Glossary

Octavider
Off-line

Overdubbing
Overload

Panorama

Patch

Peak filter

Phasing

Phonoggne

Pink noise

Pitch
Pitch scaling

Pitch shifting

Pitch transposer

Producing a signal one octave below the input signal.
A process is said to be off-line when it is applied on a
recorded signal instead of on a real-time signal. Some
processes are inherently off-line such as time contrac-
tion. Others are too computationally intensive to be per-
formed in real-time.
See dubbing.
To exceed the operating capacity of a representation,
transmission or processing system.
Composing a panorama of acoustic events in the space
spanned by loudspeakers.
Another word for program, left over from the days of
analog synthesizers. Also, the process of interconnecting
various devices.
Tunable filter which boosts or cuts certain frequency
bands with a bell-like frequency response.
Effect where phase shifts of a copy of the original signal
and mixing with the original signal cause phase cancel-
lations and enhancements that sweep up and down the
frequency axis.
A special tape recorder playing a loop at various speeds.
It “has a circular arrangement of 12 capstan to change
the tape speed within the 12 steps of the tempered scale”.
The pinch roller facing each capstan is activated by a
piano-like keyboard. This device was designed by P. Scha-
effer. A further development of this device is called the
“Phonogkne universel”. It allows continuous transposi-
tion and/or time contraction and expansion. It relies on
the rotating drum carrying 4 heads that was proposed by
Springer [Mo160, p. 731; [Sch73, p. 471; [PouGO, Bod841.
Noise which has a continuous frequency spectrum and
where each frequency band of constant relative band-
width A f / f contains the same power. e.g. each octave
has the same power.
Subjective perception of frequency.
See pitch shifting.
Modification of the pitch of a signal. All the frequency
components of the signal are multiplied by the same ra-
tio. fi + r . fi. Asynchronous pitch shifting is achieved
by varying the output sampling rate [Mas981 (see section
7.2).
A signal processor that duplicates the input a t a defined
pitch interval.

Glossary 521

Portamento

Post-echo
Precedence effect

Pre-echo
Pre-emphasis

Print through

Quantize

Random noise

Ratio

Real-time

Recirculate
Regeneration

Release time RT

Resonator

A gliding effect where the pitch of a sound is changed
gradually rather than abruptly when a pitch modification
is required.
See print through.
In a stereo loudspeaker set-up, if we step to one side
of the central position and listen to a monophonic mu-
sic program, we locate the apparent sound source in the
same position as our closest loudspeaker, and the appar-
ent position does not move even if the other channel is
significantly louder.
See print through.
A system to boost high frequencies of a sound before
processing it. A de-emphasis should be performed before
playing the sound back after processing. This procedure
attenuates high frequency noise contributed by the pro-
cessing or transmission system.
The undesirable process that causes some magnetic in-
formation from a recorded analogue tape to become im-
printed onto an adjacent layer. This can produce low-
level pre- or post-echoes.
Coding the amplitude of a signal with a given number
of bits. Reducing the number of bits used to represent
a signal usually degrades the quality of the signal. This
effect can be attenuated by the use of dithering. Quan-
tizing and dithering occur usually at the AD and DA
stages of an audio processing system.
A noise whose amplitude cannot be predicted precisely
at any given time.
Quotient of two quantities having the same unit. The
transposition ratio is the quotient of the output frequen-
cies to the input frequencies when they are expressed in
Hz. The compression or expansion ratio is the quotient
of the output amplitudes to the input amplitude when
they are expressed in dB.
A process is said to be real-time when it processes sound
in the moment when it appears. A real-time system is
fast enough to perform all the necessary computations to
process one sample of sound within a sampling period.
See feedback.
See feedback.
T.ime for a signal to decrease from 90 percent to 10 per-
cent from its final amplitude.
Narrow bandwidth filter that amplifies frequencies around
a center frequency.

522 Glossary

Reverberation

Rise time

Robotization
RT constant

Sampler

Scaling

Shelving filter

Shuffling

Sibilance

Side-chain

Side-chain input

Side-chain insert

Slapback

Sound effect

Speaker emulator

Natural phenomenon occurring when sound waves prop-
agate in an enclosed space.
Time for a signal to rise from 10 percent to 90 percent
from its final amplitude.
Applying a fixed pitch onto a sound.
Time needed for a signal to reach 37 percent (-9dB) of
its initial amplitude. After 5 time constants it will have
reached 1 percent (-43dB) of its initial amplitude.
A digital system for recording and playing back short
musical sounds in real-time. It is controlled by a MIDI
keyboard or controller.
As applied to continuous controllers, this determines how
far a parameter will vary from the programmed setting
in response to a given amount of controller change.
Tunable filter which boosts or cuts the lower/higher end
of the audio spectrum.
Out of a sequence of time or frequency elements of sound,
producing a new sound with a new random order. The
time shuffling is called brassage in french.
High frequency whistling or lisping sound that affects
vocal recordings, due either to poor mic technique, ex-
cessive equalization or exaggerated vocal characteristics
[Whi991.
In a signal processing circuit, such as one employing a
VCA, a secondary signal path in parallel with the main
signal path in which the condition or parameter of an
audio signal that will cause a processor to begin work-
ing is sensed or detected. Typical applications use the
side-chain information to control the gain of a VCA.
The circuit may detect level or frequency or both. De-
vices utilizing side-chains for control generally fall into
the classification of dynamic controllers [BohOO].
The side chain input is necessary for the “ducking” effect,
used by disc jockeys to automatically compress the music
when they are talking [Whi99].
This insert can be used to insert an additional equalizer
into the side chain, to turn a standard compressor into
a de-esser for example [Whi99].
Echo effect where only one replica of the original signal
is produced.
A sound that comes as an audible illustration in an audio-
visual or multi-media production.
A signal processor designed to imitate the effect of run-
ning a signal through a guitar amplifier cabinet.

Glossary 523

Spectral mutation

Spectrum inverter

Sweetening

Time-constant

Time warping
Transposition

Tremolo

Undersampling

Varispeed
VCA

Vibrato

Vocal gender change
Vocoding
Wah-wah

Wet

Whisperization
White noise

Timbral interpolation between two sounds, the source
sound and the target sound, in order to produce a third
sound, the mutant. Operates on the phase and magni-
tude data pair of each frequency band of the source and
target spectra [PE96].
An amplitude modulator where the modulating frequency
is equal to fs/2. By usual audio sampling frequencies,
this effect is usually unpleasant because most of the en-
ergy of the signal is located close to the higher limit of
the frequency range.
Enhancing the sound of a recording with equalization
and various other signal-processing techniques, usually
during editing and mixing of a production.
A time required by a quantity that varies exponentially
with time, but less any constant component, to change
by the factor 1/e = 0.3679. The quantity has reached 99
percent of its final value after a 5 time-constants.
An alteration of the linearity of the time axis.
See pitch shifting.
A slow periodic amplitude variation, at a typical rate of
0.5 to 20 Hz.
Sampling a signal a t a frequency lower than twice the
signal bandwidth. It produces aliasing.
Pl.aying back a signal with time-varying speed.
Voltage Controlled Amplifier.
A cyclical pitch variation at a frequency of a few herz,
typically 3 to 8 Hz.
Changing the gender of a given vocal sound.
See cross-synthesis.
A foot-controlled signal processor containing a bandpass
filter with variable center frequency. Moving the pedal
back and forth changes the center frequency of the band-
pass.
In. practice the sound processed by an audio effect is often
mixed to the initial sound. In this case, the processed
sound is called the “wet signal” whereas the initial signal
is called the “dry signal”. The term “wet” was initially
used to qualify sounds affected by a lot of reverberation,
whether contributed by a room or by an audio processor.
Applying a whisper effect onto a sound.
A sound whose power spectral density is essentially in-
dependent of frequency (white noise need not be random
noise).

524 Glossary

wow

Zigzag

Zipper noise

Instantaneous variation of speed at moderately slow rates.
See flutter.
During a zigzag process, a sound is played at the nomi-
nal speed but alternatively forwards and backwards. The
reversal points are set by the performer [Wis94, Mir981.
Audible steps that occur when a parameter is being var-
ied in a digital audio effect [Whi99].

Bibliography

[Ah901 S.R. Alten. Audio in Media. Wadsworth, 1990.

[Bod841 H. Bode. History of electronic sound modification. J. Audio Eng. Soc.,
32(10):730-739, October 1984.

[BohOO] D.A. Bohn. http://www.rane.com/digi-dic.htm. Rune Professional Audio
Reference, 2000.

[Ha1951 H.P. Haller. Das Experimental Studio der Heinrich-Strobel-Stiftung des
Sudwestfunks Freiburg 1971-1989, Die Erforschung der Elektronischen
Klangumformung und ihre Geschichte. Nomos, 1995.

[Mas981 D.C. Massie. Wavetable sampling synthesis. In M. Kahrs and K.-H.
Brandenburg (eds), Applications of Digital Signal Processing to Audio and
Acoustics, pp. 311-341. Kluwer, 1998.

[Met931 B. Metzler. Audio Measurement Handbook. Audio Precision Inc., 1993.

[Mir98] E.R. Miranda. Computer Sound Synthesis for the Electronic Musician.
Focal Press, 1998.

[Mol601 A. Moles. Les musiques expcpe'rimentales. Trad. D. Charles. Cercle d'Art
Contemporain, 1960.

[PE961 L. Polansky and T. Erbe. Spectral mutation in soundhack. Computer
Music Journal, 20(1):92-101, Spring 1996.

[PouGO] J. Poullin. Les chaines klectro-acoustiques. Flammarion, pp. 229-239,
September-December 1960.

[Sch73] P. Schaeffer. La musique concrtte. QSJ No 1287, PUF 1973.

[Whig91 P. White. Creative Recording, Effects and Processors. Sanctuary Publish-
ing, 1999.

[Wis94] T. Wishart. Audible Design: A Plain and Easy Introduction to Practical
Sound Composition. Orpheus the Pantomime, York, 1994.

Index

Acoustic rays, 169, 172
ADC, 3, 6, 501

Nyquist, 501
over-sampling, 501
sigma-delta, 500

Additive synthesis, 379,390,396,403,

Algorithm, 6, 8, 10, 18-20, 24, 27, 29
Aliasing distortion, 105, 108, 109
AM-detector, 85
Ambisonics, 141, 159, 163-164, 167
Amplitude, 229

404

instantaneous, 404
time-varying, 242

Amplitude envelope, 361-3G2, 366
Amplitude follower, 82, 85, 88-90
Amplitude modulation, 75, 77,87,90,

Amplitude panning, 139, 140, 162
Amplitude scaler, 84
Amplitude tracking, 477
Analog-to-digital converter, see ADC
Analysis, 237, 238, 242-244, 269, 277,

201, 220

282, 294
grid, 269
hop size, 243, 244, 255, 269, 270,

277, 282
window, 239, 244
zero-phase, 244

Apparent distance, 143, 187
Apparent position, 138, 141,170,188,

Apparent source width, 137, 153, 177,

Architecture and music, 145

190

187

Artificial reverberation, 152, 177, 180,

Attack time, 95, 98, 99, 101, 102
Attack time-constant, 84
Autocorrelation, 307,350-357,366,367
Autocorrelation analysis, 351
Autocorrelation features, 366-368
Autocorrelation method, 305-308,310,

Averagers, 83

Bandpass signal, 240-242, 247
Bandwidth, 3, 317
Baseband signal, 240-242, 247
Bidirectional Reflection Distribution

Function, see BRDF

183

350

Binaural, 151, 153,158-160,165,166,

Binaural listening, 153, 158, 165
Binaural model, 151, 189
Binaural to transaural conversion, 166
Bitstream, 499, 500

187-190

addition, 508
FIR filter, 507, 510
IIR filter, 509
multiplication, 508
signal processing, 500, 507

Blumlein law, 138
BRDF, 174
Brilliance, 149, 175
Buffer centering, 382

Causality, 21
Cepstrum, 300,301,310-315,319-322,

326, 334, 347
complex, 311, 315

525

526 Index

real, 311, 315
Cepstrum analysis, 311, 319, 323, 326
Channel vocoder, 300-303, 315-317,

Characteristic curve, 95, 111, 112, 117-

Chorus, 69, 70, 75, 460
Circulant matrix, 183
Clipping, 105, 112, 121, 122

322

120, 122, 123, 125, 128

asymmetrical, 112, 120-125
center, 353
hard, 105, 120

symmetrical, 112, 118-120, 125
Comb filter, 166, 172, 177, 178, 459

FIR, 63, 144
IIR, 64, 180
lowpass IIR, 72, 166, 178, 179
universal, 65

120, 128

Soft, 112, 114, 118-120, 123-125

Compression, 97, 100, 110, 116, 118,

Compression factor, 97
Compressor, 97,98,100-102,104,105,

129
Cone of confusion, 150
Control, 465

algorithmic, 476
feedback loop, 467
force-feedback, 484
gestural interfaces, 478
GUI, 470
mapping, 467
MIDI, 479
sound features, 476

batons, 482
flat tracking devices, 483
force-feedback, 484
haptic interfaces, 484
hyperinstrument, 482
keyboards, 480
percussion interfaces, 481
string instruments, 481
wind instruments, 481
without physical contact, 486
worn on body, 485

Controllers

Convolution, 18, 19, 29, 48-50, 154,

258, 264, 265, 408
175, 184-186, 192, 240, 255,

circular, 264, 274, 302, 303, 321
fast, 6, 46, 49, 264, 265, 319, 323,

334
Cross-correlation, 187, 209, 210
Cross-synthesis, 285, 315-322, 478
Csound, 158, 183

DAC, 3, 6, 501
Nyquist, 501
over-sampling, 502
sigma-delta, 500

DAFX, 1, 3, 29
Decorrelation, 152, 188, 189
Delay, 63-73, 143, 147, 169, 172, 173,

177, 178, 180-184, 352
dispersive, 445
fractional, 66-68
time-varying, 220
variable-length, 66, 70, 71, 142

Delay line modulation, 82, 87, 201,
203, 220, 221

Delay matrix, 182
Demodulation, 82, 88
Demodulator, 75, 82-85
Denoising, 291-294
Detector, 82, 83

amplitude, 82, 361
full-wave rectifier, 83, 85
half-wave rectifier, 83, 85
instantaneous envelope, 83-85
pitch, 76
RMS, 84, 85, 89
squarer, 83

Deterministic component (see Sinusoidal
component), 377, 396

DFT, 7, 379
Difference equation, 22, 23, 26, 29
Diffusion, 171, 174, 184, 188, 189
Digital signals, 3
Digital systems, 2, 3, 18-23
Digital Waveguide Networks, 178
Digital-to-analog converter, see DAC

Index

Directional psychoacoustics, 141,161-

Directivity, 137, 192
Discrete Fourier transform, see DFT
discrete-time, 3, 6, 10, 21
Dispersion, 266-268
Distance rendering, 143-145
Distortion, 93,113,115-117,120,124-

126, 128, 129, 131
Doppler effect, 68, 86, 87, 145-147,

169
Dummy head, 154, 186
Duration, 201,202,204,205,207,216,

Dynamic behavior, 98
Dynamic range controller, 95-100
Dynamics, 99, 102
Dynamics processing, 95-105

164

217, 227, 229, 232, 233

Early reflections, 175, 176, 178-180
Echo, 69
Enhancer, 131-132
Envelope detector, 95, 96, 98
Envelope follower, 95
Envelopment, 175-177, 185
Equalizer, 50-54

Excitation signal, 305, 317, 328, 336
Exciter, 128-131
Expander, 97, 98, 100-102,104
Expansion, 97, 100
Externalization, 151, 153, 154, 158,187

time-varying, 58-59

Far field, 171
Fast Fourier transform, see FFT

Feature analysis, 399
Feature extraction, 336-369, 477
Feedback canceller, 59
Feedback Delay Network, see FDN
Feedback matrix, 182

FDN, 178, 180-184, 189

FFT, 6-8, 10, 12, 15, 16, 238, 240,
242-244, 246, 251, 252, 254,
255, 257, 258, 262, 264, 265,

294, 303, 310, 311, 313, 315,
268, 269, 272-274, 279, 287,

527

323, 326, 330, 334, 337, 361,
363,367, 382, 430, 433

FFT analysis, 244, 255, 263, 269
FFT filtering, 264, 265, 302
Filter, 31

allpass, 32, 38-42, 51, 53, 57, 58,

arbitrary resolution, 416
bandpass, 32, 35, 37, 38, 41, 43,

44, 47, 55, 56, 58, 240, 244,
247,301,317,416

bandreject, 32, 38, 41, 43, 44, 47
bandwidth, 32, 38, 41, 42,45, 50,

54, 55, 58
comb, 172, 177, 178, 180
complementary, 71
complex-valued bandpass, 249
damping factor, 33-38
FIR comb, 63-65, 144
gain, 50, 52, 54, 55, 58
heterodyne, 246, 248, 255
highpass, 32, 35, 37, 38, 40, 41,

IIR comb, 64
lowpass, 3, 31, 33-38, 40, 43, 47,

240, 242
notch, 32, 56, 57, 59
peak, 50-55, 58
Q factor, 50, 54, 55, 58
resonator, 32
shelving, 50-53, 58
time-varying, 55-57, 397, 408
universal comb, 65-66
wah-wah, 55

155, 177-179, 188, 433

43, 47

Filter bank, 72,240-242,244-249,254,

Filter bank summation model, 240,244
FIR filter, 45-48, 304, 305, 352, 361
FIR system, 26
Flanger, 69, 75, 88
Flanging, 460
Flatter echoes, 63
Flatterzunge, 90, 460
Formant changing, 321-328
Formant move, 330, 331, 333, 334
Formant preservation, 215, 222

255, 269, 277, 301, 315

528 Index

Formant scaling, 227
Formants, 204, 215, 222, 224, 225
Frequency, 229, 248

bin, 240, 244, 255, 261-263, 268,
272, 277, 282, 284, 365

carrier, 76, 77, 80
center, 54, 55, 58, 247, 301

45, 50, 52, 54, 55
instantaneous, 247,261,263,269,

272, 274, 277, 282, 284, 404
Frequency band, 241, 242, 263, 266,

300
Frequency modulation, 80
Frequency resolution, 10,337,338,342,

CUt-Off, 31, 33-35, 37-39, 41-43,

349, 380, 382, 383, 396, 406,
433

Frequency response, 20,33,37,38,47,
53-55, 313, 322

Frequency scaling, 322, 417
Frequency shifting, 276
Frequency warping, 154, 441

findamental frequency, 220,289,308,

351, 377, 387, 393, 400, 402

time-varying, 453

310, 312, 321,337-339,347-

FUZZ, 116, 117, 120-122, 125, 127

Gabor transform, 257
Gaboret, 251, 257-259, 268, 282, 294
Gaboret analysis and synthesis, 259
Gaboret approach, 257, 258
Gain factor, 95, 96, 99, 100, 102, 104,

Gender change, 422
Geometrical acoustics, 172
Gestural interfaces, 478
Glissando, 228, 460
Granulation, 229-232
Group delay, 39-41, 43
Guide, 392, 393

128

Halaphon, 170
Halftone factor, 349
Harmonic, 299,336,338,339,347,350,

357, 362, 363, 366, 367, 377,

387, 392, 393,400
Harmonic distortion, 93-95, 105
Harmonic generation, 126
Harmonic/non-harmonic content, 366
Harmonics, 94, 95, 105, 110, 112, 117,

even order, 120-122, 124, 126
odd order, 112,119,121,122,124

119-122, 124, 126-128, 131

Harmonizer, 205, 215-217, 423
Head model, 151
Head shadowing, 156
Head-Related Impulse Responses, see

Head-Related Transfer Functions, see

Heaviness, 176
Hidden Markov model, 393, 426, 428
Hilbert filter, 78, 79, 86
Hilbert transform, 78, 79, 83
Hoarseness, 424
Holophonic reconstruction, 159
Holophony, 163, 164
Home theater, 164
Homomorphic signal processing, 319
Hop size, 242-245, 252, 255, 269, 270,

272, 273, 275, 277, 279, 282,
287, 289, 322, 338, 339, 379,
382, 401

HRIR

HRTF

HRIR, 150, 154, 155
HRTF, 150, 151, 153-159, 186

IDFT, 10
IFFT, 10,238,243,244,246,251,252,

254, 257, 264, 265, 268, 269,
272, 274, 279, 282, 291, 311,
313, 323, 330, 334, 361, 363,
367, 403-405,430

IFFT synthesis, 263, 287
IID, 150, 151, 153, 176
IIR filter, 38, 48, 305, 315-317
IIR system, 22
Image method, 173, 174
Impression of distance, 143, 176
Impulse response, 18, 20-22, 26, 27,

Infinite limiter, 105
29,46-49, 314

Index 529

Inharmonizer, 458
Interaural differences, 150-151, 189
Interaural intensity differences, see IID
Interaural time differences, see ITD
Interpolation, 67, 242, 255, 261, 269,

270, 280, 282, 289, 322, 326,

398, 404, 424, 428
Inverse Discrete Fourier transform, see

IDFT
Inverse Fast Fourier transform, see IFFT
Inverse filter, 305, 308
Irradiance, 174
ITD, 150, 151, 153, 155, 156, 176

331, 333, 334, 382--384, 397,

Laguerre transform, 448
short-time, 449

Lambertian diffusor, 174
Late reverberance, 176
Leakage effect, 11
Leslie effect, see Rotary loudspeaker
Level measurement, 95, 98, 99
Limiter, 97-101, 104, 105
Limiting, 97, 99, 105, 122, 1.29
Linear prediction, 300, 317--319, 356
Linear Predictive Coding, see LPC
Liveness, 176
Localization, 138, 141, 149--151, 153,

154, 157, 161, 169
Localization blur, 154
Localization with multiple Lsudspeak-

ers, 160-161
Long-term Prediction (LTP), 351-360
Lossless prototype, 182, 183
LPC, 303-310,315,317,318,322,336,

350, 399, 424
LPC analysis, 350
LPC analysis/synthesis strwture, 304
LPC filter, 305, 306, 310
LT1 system, 18

Magnitude, 237, 240, 244, 251, 255,
269, 272, 285, 287, 291

random, 291
Magnitude processing, 247

Magnitude response, 27,39-41,43,52,

Magnitude spectrum, 7, 9, 10, 240,

Main lobe, 380, 381, 405, 406, 408

MATLAB, 1
Maximum-Length Sequence, see MLS
MIDI controllers, 479
Mimicking, 365, 366
Mirror reflection, 173, 175
MLS, 154
Modulation, 75-82, 86-88, 361, 478

amplitude, 75, 77, 87, 90
frequency, 80
phase, 75, 80, 82, 88

Modulator, 76-82
amplitude, 77
frequency and phase, 80
ring, 76
single-side band, 77

93, 301, 313

291

bandwidth, 381

Moorer’s reverberator, 179
Morphing, 88, 285, 424, 426, 460
Multiband effects, 71, 72
Mutation, 285-287

Near field, 171
Noise gate, 97, 98, 102-104, 291, 292
Nonlinear distortion, see Distortion
Nonlinear modeling, 106-109
Nonlinear processing, 93-135
Nonlinear system, 93, 94, 106-108
Nonlinearity, 94, 108, 109, 120, 124,

Normal modes, 171,172,174,180,183,
133

184

Octave division, 127
Odd/even harmonics ratio, 366, 367
OLA, 238, 244, 251, 254, 265, 274,

280, 282,405,407, 408,430
Oscillator, 246, 247, 404
Oscillator bank, 247, 248, 255, 269,

Overdrive, 93, 116-118, 120
Overlap and Add, see OLA

279,404, 405

530 Index

Panorama, 138, 142, 145
Partial tracking, 477
Peak continuation, 348, 377, 390, 392,

Peak detection, 383,384,390,431,433
Peak filter, 52-54
Peak measurement, 98, 99, 102
Peak Program Meter (PPM), 85
Peak value, 95
Pentode, 112
Perceptive features, 336
Perceptual interface, 176
Phase, 32, 40, 48, 56, 237, 240, 242,

244, 245, 247, 248, 251, 254,

287, 291, 337, 338, 377, 379,
396, 397, 431, 434

397, 431,433

255, 267-269, 272, 284, 285,

instantaneous, 338, 404
random, 290, 408
target, 262, 338, 339
unwrapped, 262, 263, 270, 274,

zero, 287
275, 339

Phase difference, 270, 272, 277, 338
Phase increment, 269, 270, 272, 274,

Phase interpolation, 255, 261, 269
Phase modulation, 75, 80, 82, 88, 201
Phase processing, 247
Phase representation, 254
Phase response, 27, 39-41, 43, 47, 93
Phase spectrum, 8, 240
Phase unwrapping, 255, 261, 275
Phase vocoder, 238,242-244,254,263,

269, 275, 348
Phase vocoder basics, 238-244
Phase vocoder implementations, 244-

263
Phaser, 56-57, 75, 86
Phasiness, 188, 190, 432
Phasing, 460
Phasogram, 244, 259, 260, 289, 292
Pinna-head-torso, 150, 154, 155, 158,

Pitch, 201-207, 209, 211, 212, 214-

277, 279, 282

159

216, 221-224, 229, 232, 233,

303, 314, 315, 336, 337, 363,
365, 366, 387, 422

discretization, 419
transposition, 418, 419, 422

Pitch detector, 76
Pitch estimation, 387
Pitch extraction, 337-360, 367
Pitch lag, 348-350, 352, 354-358
Pitch mark, 212, 214, 222-224, 308,

Pitch over time, 347, 348, 360
Pitch period, 212, 222, 224, 308, 312,

321, 347, 348, 350, 351, 354,
366

Pitch scaling, see Pitch shifting
Pitch shifter, 217, 220
Pitch shifting, 126,147,201,202,215-

310

225, 229, 233, 276-282, 337,
456

tion, 330-336

477

Pitch shifting with formant preserva-

Pitch tracking, 336,337,343,347,360,

Pitch transposer, 217, 220, 221
Pitch-synchronous Overlap and Add,

see PSOLA
Precedence effect, 138, 141, 142, 145,

159, 160, 168, 176, 190, 191
Prediction error, 304, 305, 307-309,

Prediction error filter, 305
Prediction filter, 304
Prediction order, 304
Presence, 175
Processing

350-352,356, 357

block, 6, 24, 27, 29
sample-by-sample, 6, 24, 27, 29

PSOLA, 211-213, 222-225, 227, 231
PSOLA analysis, 212
PSOLA pitch shifting, 225
PSOLA time stretching, 213

Quantization, 6

Radiance, 174
Ray tracing, 173, 185

Index 531

Rectification
full-wave, 126, 127
half-wave, 126, 127

Reflection function, 173
Region attributes, 402
Release time, 95, 98, 99, 101, 102
Release time-constant, 84
Resampling, 201, 217, 218, 222-225,

233, 277, 279, 280, 333, 336
Residual analysis, 396, 397
Residual approximation, 397,399,407
Residual component (see also Stochas-

tic component), 37!1,391,396,
400, 401,403,407

Residual synthesis, 407, 408
Resynthesis, see Synthesis
Reverberation, 137,144,145,149,152,

Rhythm tracking, 477
Richness of harmonics, 362, 363, 369
RMS, 84, 85, 89
RMS measurement, 98, 100
RMS value, 95,301,315-317,361,364,

365
Robotization, 287-289
Room acoustics, 172, 174-176
Room presence, 175
Room-within-the-room model, 149,160,

Root Mean Square, see RMS
Rotary loudspeaker, 86-88
Running reverberance, 175, 176, 186

169-180, 184, 185

167

Sampling, 3, 6
Sampling frequency, 3
Sampling interval, 3, 19
Sampling rate, 3
Sampling theorem, 3
Score following, 478
Segmentation, 402
Shelving filter, 51-52
Short-time Fourier transform, 239-241,

Side chain, 95, 130-132
Sigma Delta Modulation, 499,501,502

243, 375, 376, 379

ADC, 500

DAC, 499, 500
first-order modulator, 504
linearized model, 504
second-order modulator, 506

Signal flow graph, 2, 18, 19, 22, 23
Single reflection, 143, 144
Single-side band, see SSB modulation
Sinusoidal analysis, 387, 390
Sinusoidal component (see also Deter-

ministic component), 377,400,
401, 403, 416-418,420, 424

Sinusoidal model, 376, 383, 391
Sinusoidal plus residual model, 376,

377, 379, 397, 399
Sinusoidal subtraction, 379, 396, 397
Sinusoidal synthesie, 403, 408
Sinusoidal track, 376, 431
Slapback, 69
Slope factor, 97
SMS, 375,426,427,429

SOLA time stretching, 208, 210
Sonic perspective, 145
Sound level meter, 85
Sound particle, 174
Sound radiation simulation, 191-192
Sound trajectories, 147-149
Soundhack, 158
Source signal, 300, 301, 312-315
Source-filter model, 299, 310, 314
Source-filter representation, 336
Source-filter separation, 300-315
Source-filter transformations, 315-336
Space rendering, 143
Spaciousness, see Spatial impression
Spatial effects, 137-200
Spatial impression, 151, 176, 187, 191
Spatialisateur, 145, 149, 158
Spatialization, 146, 149, 151, 153, 159,

Spectral Centroid, 362
Spectral centroid, 366, 477
Spectral correction, 322, 323
Spectral envelope, 201, 202, 222, 224,

SOLA, 208-210, 218

160, 165, 167-170, 191

231, 299-304, 307-315, 317,
319, 321-324, 326, 328, 330,

532 Index

331, 333, 334, 336, 350
Spectral interpolation, 328-330
Spectral models, 375
Spectral shape (see also Spectral en-

velope), 401, 402, 418, 420,
422, 428, 429

Spectral subtraction, 291
Spectrogram, 15,57,59,244,259,260,

289, 292, 342, 343
Spectrum, 238, 246, 268, 291

short-time, 242, 244, 251
time-varying, 238, 240

Spectrum analysis
short-time, 15

Speech recognizer, 426, 428
SSB modulation, 86, 88
SSB modulator, 86
Stability, 21
Stable/transient components separa-

Static function, 95, 97, 99
Statistical features, 369
Stautner-Puckette FDN, 180
Stereo enhancement, 186
Stereo image, 434
Stereo panning, 139, 141, 161
Stochastic component/part (see also

Subharmonic generation, 126
Subtractive synthesis, 403
Sum of sinusoids, 246, 255, 269, 277
Surround sound, 141, 164
Sweet spot, 164, 170
Synchronous Overlap and Add, see SOLA
Synthesis, 237,238,242,244,247,255,

263, 269, 270, 272, 277, 288
grid, 269
hop size, 243, 244, 269, 272, 273,

275, 277, 287
window, 244, 274

tion, 282-285

Residual component), 377,396

Synthesis filter, 303-305,307-309,317,
336

Tangent law, 139, 140
Tape saturation, 128
Tapped delay line, 157, 178, 179

Taylor series expansion, 108
Threshold, 95, 97, 99, 102, 104, 105,

118, 120
Timbre preservation, 418
Time compression, 202, 203, 205, 208,

Time expansion, 202, 203, 205, 208,

Time resolution, 380, 396, 406, 433
Time scaling, see Time stretching, 205,

206, 208, 209, 211, 218, 224,
233, 429

213, 217, 220

213, 217, 220

Time shuffling, 226-229
Time stretching, 201, 205-214, 217,

277, 336, 337, 402
218, 222,223, 225, 229, 268-

adaptive, 368
Time warping, 440
Time-constant, 83

attack, 84
release, 84

Time-frequency filtering, 263-266
Time-frequency grid, 243
Time-frequency processing, 237-297
Time-frequency representation, 15,237,

251, 254, 255, 257, 258, 263,
267, 268, 282, 285, 287, 288,
290, 299, 301, 336, 342

Time-frequency scaling, 268, 269
Trajectories, 390, 391, 393, 397
Transaural, 159, 160, 165, 186, 187
Transaural listening, 165
Transaural spatialization, 160
Transaural stereo, 165-167
Transfer function, 20-22, 24, 26, 34,

Transformation, 237, 238, 269, 274
Transients, 432
Transparent amplification, 142
Transposition, 203,204,207,215-217,

228, 322, 326
Tremolo, 75, 77, 78, 90, 420
Trill, 460
Triode, 111-113, 120, 121
Tube, see Valve
Tube distortion, 122

36, 39-41, 43, 46, 51, 52, 54

Index 533

Tube simulation, 122, 123
Two-way mismatch, 387, 388

Unit impulse, 18, 26

Valve, 109-112,114-116,120,121,128
Valve amplifier, 106, 110-113, 115
Valve amplifier circuits, 113
Valve basics, 111
Valve simulation, 109-116
Variable speed replay, 202-206, 217
Varispeed, 203
Vector Base Amplitude Panning (VBAP),

Vector Base Panning (VBP), 162
Vibrato, 68, 75, 82, 86-88, 402, 420,

429, 460
Virtual room, 149, 159, 167
Virtual sound source, 138-l40, 143,

Vocoder, 85, see Vocoding
Vocoding, 299, 315-321,478
Voice conversion, 426
Voice/silence, 477
Voice/unvoiced detection, 366
Voiced/unvoiced, 345, 366, 367, 369,

Volterra series expansion, 106
VU-meter, 85

162

148, 151, 162, 163, 167-170

477

Wah-wah, 55, 75
Warmth, 149, 175
Warping, 322, 326, 328, 440
Waterfall representation, 15, 16, 115,

116, 119, 120, 122, 124, 126,
129-132

Wave-Field Synthesis, 164
Waveguide reverberator, 178
Waveshaping, 363, 365, 366
Whisperization, 290-291
Whitening, 319, 321, 322
Window, 240, 244, 251, 252, 254, 258,

260, 268, 273, 279, 433
Blackman, 11, 47, 275
Blackman-Harris, 381, 406, 408
functions, 10, 11

Gaussian, 275, 310
Hamming, 12, 47, 275, 307, 310
Hanning, 275, 302, 310
rectangular, 265
size, 379, 381, 382
sliding, 238-240, 254
triangular, 407, 408
type, 379, 381, 382
zero-padded, 251, 274

Window length, 242, 290
Window period, 273
Windowing, 251, 252, 257, 258, 274

Z-transform, 21-23, 26, 27, 46
Zero crossing, 126
Zero-padding, 10, 382, 383, 433
Zero-phase, 314, 382

	DAFX: Digital Audio Effects
	Copyright
	Contents
	Preface
	Acknowledgements
	List of Contributors
	Ch1 Introduction
	1.1 Digital Audio Effects DAFX with Matlab
	1.2 Fundamentals of Digital Signal Processing
	1.2.1 Digital Signals
	1.2.2 Spectrum Analysis of Digital Signals
	1.2.3 Digital Systems

	1.3 Conclusion
	Bibliography

	Ch2 Filters
	2.1 Introduction
	2.2 Basic Filters
	2.2.1 Lowpass Filter Topologies
	2.2.2 Parametric AP, LP, HP, BP and BR Filters
	2.2.3 FIR Filters
	2.2.4 Convolution

	2.3 Equalizers
	2.3.1 Shelving Filters
	2.3.2 Peak Filters

	2.4 Time-varying Filters
	2.4.1 Wah-wah Filter
	2.4.2 Phaser
	2.4.3 Time-varying Equalizers

	2.5 Conclusion
	Sound and Music
	Bibliography

	Ch3 Delays
	3.1 Introduction
	3.2 Basic Delay Structures
	3.2.1 FIR Comb Filter
	3.2.2 IIR Comb Filter
	3.2.3 Universal Comb Filter
	3.2.4 Fractional Delay Lines

	3.3 Delay-based Audio Effects
	3.3.1 Vibrato
	3.3.2 Flanger, Chorus, Slapback, Echo
	3.3.3 Multiband Effects
	3.3.4 Natural Sounding Comb Filter

	3.4 Conclusion
	Sound and Music
	Bibliography

	Ch4 Modulators & Demodulators
	4.1 Introduction
	4.2 Modulators
	4.2.1 Ring Modulator
	4.2.2 Amplitude Modulator
	4.2.4 Frequency and Phase Modulator
	4.2.3 Single-Side Band Modulator

	4.3 Demodulators
	4.3.1 Detectors
	4.3.2 Averagers
	4.3.3 Amplitude Scalers
	4.3.4 Typical Applications

	4.4 Applications
	4.4.1 Vibrato
	4.4.2 Stereo Phaser
	4.4.3 Rotary Loudspeaker Effect
	4.4.4 SSB Effects
	4.4.5 Simple Morphing: Amplitude Following

	4.5 Conclusion
	Sound and Music
	Bibliography

	Ch5 Nonlinear Processing
	5.1 Introduction
	5.2 Dynamics Processing
	5.2.1 Limiter
	5.2.2 Compressor and Expander
	5.2.3 Noise Gate
	5.2.4 De-esser
	5.2.5 Infinite Limiters

	5.3 Nonlinear Processors
	5.3.1 Basics of Nonlinear Modeling
	5.3.2 Valve Simulation
	5.3.3 Overdrive, Distortion and Fuzz
	5.3.4 Harmonic and Subharmonic Generation
	5.3.5 Tape Saturation

	5.4 Exciters and Enhancers
	5.4.1 Exciters
	5.4.2 Enhancers

	5.5 Conclusion
	Sound and Music
	Bibliography

	Ch6 Spatial Effects
	6.1 Introduction
	6.2 Basic Effects
	6.2.1 Panorama
	6.2.2 Precedence Effect
	6.2.3 Distance and Space Rendering
	6.2.4 Doppler Effect
	6.2.5 Sound Trajectories

	6.3 3D with Headphones
	6.3.1 Localization
	6.3.2 Interaural Differences
	6.3.3 Externalization
	6.3.4 Head-Related Transfer Functions

	6.4 3D with Loudspeakers
	6.4.1 Introduction
	6.4.2 Localization with Multiple Speakers
	6.4.3 3D Panning
	6.4.4 Ambisonics and Holophony
	6.4.5 Transaural Stereo
	6.4.6 Room-Within-the-Room Model

	6.5 Reverberation
	6.5.1 Acoustic and Perceptual Foundations
	6.5.2 Classic Reverberation Tools
	6.5.3 Feedback Delay Networks
	6.5.4 Convolution with Room Impulse Responses

	6.6 Spatial Enhancements
	6.6.1 Stereo Enhancement
	6.6.2 Sound Radiation Simulation

	6.7 Conclusion
	Sound and Music
	Bibliography

	Ch7 Time-Segment Processing
	7.1 Introduction
	7.2 Variable Speed Replay
	7.3 Time Stretching
	7.3.1 Historical Methods - Phonoghe
	7.3.2 Synchronous Overlap and Add (SOLA)
	7.3.3 Pitch-synchronous Overlap and Add (PSOLA)

	7.4 Pitch Shifting
	7.4.1 Historical Methods - Harmonizer
	7.4.2 Pitch Shifting by Time Stretching and Resampling
	7.4.3 Pitch Shifting by Delay Line Modulation
	7.4.4 Pitch Shifting by PSOLA and Formant Preservation

	7.5 Time Shuffling and Granulation
	7.5.1 Time Shuffling
	7.5.2 Granulation

	7.6 Conclusion
	Sound and Music
	Bibliography

	Ch8 Time-Frequency Processing
	8.1 Introduction
	8.2 Phase Vocoder Basics
	8.2.1 Filter Bank Summation Model
	8.2.2 Block-by-Block Analysis/Synthesis Model

	8.3 Phase Vocoder Implementations
	8.3.1 Filter Bank Approach
	8.3.2 Direct FFT/IFFT Approach
	8.3.3 FFT Analysis/Sum of Sinusoids Approach
	8.3.4 Gaboret Approach

	8.4 Phase Vocoder Effects
	8.4.1 Time-frequency Filtering
	8.4.2 Dispersion
	8.4.3 Time Stretching
	8.4.4 Pitch Shifting
	8.4.5 Stable/Transient Components Separation
	8.4.6 Mutation between Two Sounds
	8.4.7 Robotization
	8.4.8 Whisperization
	8.4.9 Denoising

	8.5 Conclusion
	Bibliography

	Ch9 Source-Filter Processing
	9.1 Introduction
	9.2 Source-Filter Separation
	9.2.1 Channel Vocoder
	9.2.2 Linear Predictive Coding (LPC)
	9.2.3 Cepstrum

	9.3 Source-Filter Transformations
	9.3.1 Vocoding or Cross-synthesis
	9.3.2 Formant Changing
	9.3.3 Spectral Interpolation
	9.3.4 Pitch Shifting with Formant Preservation

	9.4 Feature Extraction
	9.4.1 Pitch Extraction
	9.4.2 Other Features

	9.5 Conclusion
	Bibliography

	Ch10 Spectral Processing
	10.1 Introduction
	10.2 Spectral Models
	10.2.1 Sinusoidal Model
	10.2.2 Sinusoidal plus Residual Model

	10.3 Techniques
	10.3.1 Analysis
	10.3.2 Feature Analysis
	10.3.3 Synthesis
	10.3.4 Main Analysis-Synthesis Application

	10.4 FX and Transformations
	10.4.1 Filtering with Arbitrary Resolution
	10.4.2 Partial Dependent Frequency Scaling
	10.4.3 Pitch Transposition with Timbre Preservation
	10.4.4 Vibrato and Tremolo
	10.4.5 Spectral Shape Shift
	10.4.6 Gender Change
	10.4.7 Harmonizer
	10.4.8 Hoarseness
	10.4.9 Morphing

	10.5 Content-Dependent Processing
	10.5.1 Real-time Singing Voice Conversion
	10.5.2 Time Scaling

	10.6 Conclusion
	Bibliography

	Ch11 Time & Frequency Warping Musical Signals
	11.1 Introduction
	11.2 Warping
	11.2.1 Time Warping
	11.2.2 Frequency Warping
	11.2.3 Algorithms for Warping
	11.2.4 Short-time Warping and Real-time Implementation
	11.2.5 Time-varying Frequency Warping

	11.3 Musical Uses of Warping
	11.3.1 Pitch Shifting Inharmonic Sounds
	11.3.2 Inharmonizer
	11.3.3 Comb Filtering+Warping and Extraction of Excitation Signals in Inharmonic Sounds
	11.3.4 Vibrato, Glissando, Trill and Flatterzunge
	11.3.5 Morphing

	11.4 Conclusion
	Bibliography

	Ch12 Control of Digital Audio Effects
	12.1 Introduction
	12.2 General Control Issues
	12.3 Mapping Issues
	12.3.1 Assignation
	12.3.2 Scaling

	12.4 GUI Design and Control Strategies
	12.4.1 General GUI Issues
	12.4.2 A Small Case Study
	12.4.3 Specific Real-time Control Issues
	12.4.4 GUI Mapping Issues
	12.4.5 GUI Programming Languages

	12.5 Algorithmic Control
	12.5.1 Abstract Models
	12.5.2 Physical Models

	12.6 Control Based on Sound Features
	12.6.1 Feature Extraction
	12.6.2 Examples of Controlling Digital Audio Effects

	12.7 Gestural Interfaces
	12.7.1 MIDI Standard
	12.7.2 Playing by Touching and Holding the Instrument
	12.7.3 Force-feedback Interfaces
	12.7.4 Interfaces Worn on the Body
	12.7.5 Controllers without Physical Contact

	12.8 Conclusion
	Sound and Music
	Bibliography

	Ch13 Bitstream Signal Processing
	13.1 Introduction
	13.2 Sigma Delta Modulation
	13.2.1 A Simple Linearized Model of SDM
	13.2.2 A First-order SDM System
	13.2.3 Second and Higher Order SDM Systems

	13.3 BSP Filtering Concepts
	13.3.1 Addition and Multiplication of Bitstream Signals
	13.3.2 SD IIR Filters
	13.3.3 SD FIR Filters

	13.4 Conclusion
	Bibliography

	Glossary
	Index

